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Abstract
Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways 
have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect 
hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines 
were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2-damaged RGC-5 cells, 
imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay 
also demonstrated that imipramine ameliorated H2O2-induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse 
the protective effect of imipramine on H2O2-induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced 
apoptosis through the TrkB signaling pathway. 
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Graphical Abstract

Imipramine protects RGCs from oxidative stress-induced apoptosis via the TrkB signaling pathway

Introduction
Optic nerve degeneration and retinal ganglion cell (RGC) 
loss are irreversible in glaucoma, and permanent vision loss 
can be developed in severe cases (Shahid and Salmon, 2012; 
Nouri-Mahdavi and Caprioli, 2015). Extensive efforts have 
been devoted to understand the underlying mechanism of 
RGC degeneration and to seek feasible treatment options 
to protect against RGC loss. In recent decades, a number of 
molecular pathways have been shown to be involved in the 
process of RGC degeneration and to exert some protective 
effects, such as insulin-like growth factor-1(Kermer et al., 
2000; Yang et al., 2013) and hepatocyte growth factor (Mi-
ura et al., 2003; Tönges et al., 2011). Among the identified 
molecular pathways, neurotrophin-regulated signaling path-
ways, including brain-derived neurotrophic factor (BDNF) 
and its receptor (tyrosine kinase receptor B, TrkB), are  
crucial for the survival, differentiation, and regeneration of 

many kinds of sensory neurons, including RGCs (Hyman et 
al., 1991; Jones et al., 1994; Chen and Weber, 2001; Tong et 
al., 2013).

Tricyclic antidepressants, including amitriptyline and 
imipramine, appear to stimulate BDNF/TrkB pathways in 
many neuronal systems (Siuciak et al., 1997; Xu et al., 2002; 
Balu et al., 2008; Réus et al., 2011). Imipramine, combined 
with ketamine, increases BDNF production and protein ki-
nase C phosphorylation in the hippocampus of rats to mod-
ify locomotor activity (Réus et al., 2011). Imipramine pro-
tects cortical neural stem cells from inflammation-induced 
apoptosis by activating BDNF signaling pathways (Peng et 
al., 2008). Furthermore, the long-term use of imipramine 
can induce excessive production of BDNF in rat olfactory 
bulbs to extend brain plasticity after injury (Van Hoomissen 
et al., 2003); however, it is still unclear whether anti-depres-
sants exert BDNF/TrkB neuroprotection in RGCs. 
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Figure 2 Effects of Imip against oxidative stress in RGC-5 cells.
RGC-5 cells were cultured in 6-well plates overnight. H2O2 (10 µM) was added to induce oxidative stress. In the control group, cells were not sub-
jected to H2O2 treatment. In the H2O2 + Imip group, H2O2-treated RGC-5 cells, Imip (5 µM) was added 30 minutes prior to H2O2 treatment. At 48 
hours after culture, the TUNEL assay was performed to identify apoptotic cells (blue staining) amongst the RGC-5 population (positive to Thy-1 
staining; × 20). (B) Percentage of apoptotic RGC-5 cells. Data are expressed as the mean ± SEM. Comparison was conducted by a two-tailed Stu-
dent’s t-test. The experiments were performed in triplicate. *P < 0.05, vs. H2O2 group. H2O2: Hydrogen peroxide; Imip: imipramine; RGC-5: retinal 
ganglion cells.

Figure 3 Imip protects RGC-5 cells from oxidative stress by activating TrkB signaling.
RGC-5 cells were pre-treated with Imip (5 µM) 30 minutes prior to H2O2 (10 µM) to inhibit oxidative stress-induced apoptosis. At 1.5 hours after 
Imip treatment (1 hour after H2O2 treatment), TrkB-specific blocking antibody, TrkB-IgG (0.2 mg/mL), was added to the culture. A non-specific 
antibody, NC-IgG (2 µM), was added to the control culture. Two days later, TUNEL assay was performed to identify the apoptotic cells (blue stain-
ing) among the RGC-5 population (positive Thy-1 staining; × 20). (B) The percentages of apoptotic RGC-5 cells. Data are expressed as the mean 
± SEM. A comparison was conducted using a two-tailed Student’s t-test. The experiments were performed in triplicate. *P < 0.05, vs. H2O2 + Imip 
group with NC-IgG. H2O2: Hydrogen peroxide; Imip: imipramine; RGC-5: retinal ganglion cells; TrkB: tyrosine kinase receptor B.

Figure 1 Effects of Imip on TrkB signaling 
in RGC-5 cells.
RGC-5 cells were maintained in vitro and 
Imip was added at concentrations of 0.5 or 
5 µM. In the control group, no Imip was 
added to the culture. At 12 hours after cul-
ture, cell lysates were collected and western 
blot analysis was conducted with primary 
antibodies against brn3a, ERK1-2, pERK1-
2, TrkB, and pTrkB. (B, C) The degrees of 
TrkB and ERK1-2 phosphorylation were 
measured by comparing the relative blot-
ting intensities of pTrkB against TrkB (B) 
and pERK1-2 against ERK1-2 (C). The 
experiments were performed in triplicate. 
Data are expressed as the mean ± SEM. 
Comparison was conducted by two-tailed 
Student’s t-test. *P < 0.05, vs. control 
group. Imip: Imipramine; RGC-5: retinal 
ganglion cells; (p)TrkB: (phosphorylated) 
tyrosine kinase receptor B; (p)ERK: (phos-
phorylated) extracellular signal-regulated 
protein kinase.
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In this study we hypothesized that imipramine activates 
TrkB signaling pathways through the phosphorylation of 
TrkB/extracellular signal-regulated protein kinase (ERK) 
proteins in RGC-5. We also hypothesized that imipramine 
prevents oxidative stress-induced apoptosis in RGC-5 cells 
through activation of the TrkB signaling pathway. 

Materials and Methods
RGC-5 in vitro culture
The RGC-5 cell line was developed by Dr. Agarwal at the 
University of North Texas in the USA (Agarwal, 2013). We 
obtained RGC-5 cells from the American Type Culture Col-
lection (Manassas, VA, USA). The cells were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, 
Carlsbad, CA, USA) supplemented with 10% fetal bovine 
serum (FBS; Sigma-Aldrich, St. Louis, MO, USA), 100 U/mL 
penicillin and 100 µg/mL streptomycin in 10-cm culture 
dishes with 5% CO2 at 37°C. RGC-5 cells were grown to 
confluency, dissociated by 0.5% trypsin (Invitrogen), and 
subsequently passaged every 2 or 3 days.

Oxidative stress, imipramine, and antibody intervention 
in vitro
Oxidative stress was induced in RGC-5 cells in vitro by hy-
drogen peroxide (H2O2) treatment as previously described 
(Gupta et al., 2013). Briefly, RGC-5 cells were inoculated in 
6-well culture plates at a density of 2 × 105 cells/well. The 
majority of cells attached after 6 hours, and after 1 day the 
cells were treated with H2O2 (10 µM) for 48 hours to induce 
oxidative stress and apoptosis in RGC-5 cells.

Imipramine (Sigma-Aldrich) was initially dissolved in 
dimethyl sulfoxide to make a stock solution of 5 mM. The 
stock solution was then diluted in DMEM to make working 
concentrations of 5 µM or 0.5 µM. To treat RGC-5 cells, 
imipramine was added 30 minutes prior to H2O2 treatment.

TrkB-specific functional antibody (TrkB-IgG) was synthe-
sized by Ribo-Bio (Guangzhou, Guangdong Province, Chi-
na). An equivalent non-specific control antibody, NC-IgG 
(RiboBio) was used as a parallel control. IgG (0.2 mg/mL) 
was added 1.5 hours after imipramine treatment or 1 hour 
after H2O2 treatment.

Western blot assay
At the end of the designated culture, RGC-5 cells were tryp-
sinized and centrifuged in ice-cold PBS. Cell lysates were 
then generated with a lysis buffer containing 50 mM Tris (pH 
7.6), 150 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 
and protease inhibitor cocktail (Invitrogen). The collected 
proteins were then separated in a 10% SDS-PAGE gel and 
transferred onto nitrocellulose membranes. The primary an-
tibodies applied were rabbit anti-brn3a polyclonal antibody 
(1:1,000; Sigma-Aldrich), rabbit anti-ERK1-2 polyclonal an-
tibody (1:1,000; Sigma-Aldrich), rabbit anti-phospho-Erk1-2 
polyclonal antibody (pERK1-2, 1:500; Sigma-Aldrich), rabbit 
anti-TrkB polyclonal antibody (1:1,000; Sigma-Aldrich), and 
rabbit anti-phosphorylated TrkB polyclonal antibody (1:500; 
Sigma-Aldrich). The secondary antibodies were horseradish 

peroxidase-conjugated goat anti-rabbit IgG (1:50,000; Bio-
Rad, Hercules, CA, USA). The optical density of blots were 
visualized with an enhanced chemiluminescence system 
(Amersham Biosciences, Piscataway, NJ, USA), and quanti-
fied by ImageJ software (NIH, Bethesda, MD, USA).

TUNEL assay
Apoptosis of RGC-5 cells under oxidative stress was quan-
tified in situ using the TUNEL assay. Briefly, at the end of 
culture, RGC-5 cells were fixed with 10% paraformaldehyde 
(PFA; Invitrogen) in PBS (Invitrogen) for 10 minutes, and 
permeabilized with 3% Triton X-100 (Sigma-Aldrich) for 
another 10 minutes. An in situ Apoptosis Detection Kit 
(Chemicon, Billerica, MA, USA) was then applied as per the 
manufacturer’s instructions. In addition, a RGC-5-specific 
antibody (Thy-1, 1:100; Cell Signaling, Beverly, MA, USA) 
was applied during TUNEL staining to identify RGC-5 neu-
rons. Visualization was carried out using an optical BX51 
fluorescence microscope (Olympus, Tokyo, Japan). Apoptot-
ic RGC-5 cells were counted by measuring the percentage of 
TUNEL-positive RGC-5 cells, which were identified by goat 
anti-Thy-1polyclonal antibody (1:200; Sigma-Aldrich) im-
munostaining.

Statistical analysis
All data in the present study are presented as the mean ± 
SEM and were processed using SPSS 11.0 software (SPSS 
Inc., Chicago, IL, USA). Data comparison was conducted 
using a two-tailed Student’s t-test. The experiments were 
performed in triplicate. P-values < 0.05 were considered sta-
tistically significant.

Results
Imipramine activated TrkB signaling pathways in RGC-5 cells
To determine whether imipramine activates TrkB signaling 
pathways in RGC-5 cells, RGC-5 cells were cultured in vitro 
and treated with 0.5 or 5 µM imipramine. After 12 hours, 
5 µM imipramine significantly phosphorylated TrkB and 
ERK1-2 (P < 0.05), whereas 0.5 µM imipramine had little 
effect on TrkB and ERK1-2 phosphorylation (Figure 1).

Imipramine protected RGC-5 cells from oxidative 
stress-induced apoptosis 
To determine whether imipramine inhibits oxidative 
stress-induced apoptosis in RGC-5 cells, a well-known in 
vitro retinal injury model (oxidative stress model) was used. 
RGC-5 cells were cultured in 6-well plates at a density of 2 × 
105 cells/well for 1 day. On the second day of culture, RGC-5 
cells were exposed to 10 µM H2O2 to induce oxidative stress. 
After 48 hours of H2O2 treatment, a considerable number of 
TUNEL-positive cells were produced (P < 0.05, vs. control 
group). To examine the protective effect of imipramine, 5 
µM imipramine was used to culture RGC-5 cells 30 minutes 
prior to H2O2 treatment. TUNEL staining showed that imip-
ramine significantly reduced TUNEL-positive RGC-5 cells as 
compared with the H2O2 group without imipramine treat-
ment (P < 0.05; Figure 2).
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Imipramine protected RGC-5 cells against oxidative stress 
through the TrkB signaling pathway
To determine whether imipramine inhibits apoptosis in 
RGC-5 cells through TrkB signaling activation, TrkB-IgG 
was used to block the activation of the TrkB signaling path-
way and added 1.5 hours after imipramine treatment (1 
hour after H2O2 treatment). At 47 hours after TrkB-IgG in-
tervention, a larger number of TUNEL-positive RGC-5 cells 
were observed compared with cells treated with non-specific 
antibody NC-IgG (P < 0.05; Figure 3). 

Discussion
Our study demonstrated imipramine-activated TrkB signal-
ing pathways in RGC-5 cells, and illustrated that imipramine 
activated TrkB signaling pathways through the phosphor-
ylation of TrkB and ERK1/2. These results are in line with 
previous studies showing that imipramine stimulates BDNF 
production after olfactory bulbectomy (Van Hoomissen et 
al., 2003), activates the TrkB signaling pathway to exert an-
tidepressant-induced behavioral effects (Saarelainen et al., 
2003), or regulates neural plasticity in the brain (Rantamaki 
et al., 2007). Thus, in RGCs, imipramine is likely to act as a 
TrkB agonist, a novel finding that has not been reported.

The functional assay using the TrkB blocking antibody, 
TrkB-IgG, demonstrated that the protective effect of imipra-
mine on RGC-5 cells against oxidative stress-induced apop-
tosis was realized through the activation of the TrkB signal-
ing pathway, thus further confirming our hypothesis that 
imipramine acts as a TrkB agonist in RGCs. Future studies to 
inhibit downstream TrkB targets or block BDNF production 
are necessary to completely understand the underlying mo-
lecular mechanisms of imipramine acting on TrkB pathways 
to inhibit retinal apoptosis or degeneration (e.g., the involve-
ment of TrkB/ERK phosphorylation or BDNF production).
Taken together, our study identifies, for the first time, that 
imipramine reduces oxidative stress-induced apoptosis of 
RGCs in a TrkB-dependent manner. The methods of target-
ing imipramine or other anti-depressant small molecules 
will undoubtedly help our understanding of the mechanisms 
underlying retinal injury, as well as proposing novel thera-
peutic interventions to prevent retinal degeneration.
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