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Single-cell RNA-sequencing (scRNA-seq) has become a powerful
tool for biomedical research by providing a variety of valuable
information with the advancement of computational tools. Line-
age analysis based on scRNA-seq provides key insights into the
fate of individual cells in various systems. However, such analysis
is limited by several technical challenges. On top of the consider-
able computational expertise and resources, these analyses also
require specific types of matching data such as exogenous barcode
information or bulk assay for transposase-accessible chromatin
with high throughput sequencing (ATAC-seq) data. To overcome
these technical challenges, we developed a user-friendly computa-
tional algorithm called “LINEAGE” (label-free identification of
endogenous informative single-cell mitochondrial RNA mutation
for lineage analysis). Aiming to screen out endogenous markers of
lineage located on mitochondrial reads from label-free scRNA-seq
data to conduct lineage inference, LINEAGE integrates a marker
selection strategy by feature subspace separation and de novo
“low cross-entropy subspaces” identification. In this process, the
mutation type and subspace–subspace “cross-entropy” of features
were both taken into consideration. LINEAGE outperformed three
other methods, which were designed for similar tasks as testified
with two standard datasets in terms of biological accuracy and
computational efficiency. Applied on a label-free scRNA-seq data-
set of BRAF-mutated cancer cells, LINEAGE also revealed genes
that contribute to BRAF inhibitor resistance. LINEAGE removes
most of the technical hurdles of lineage analysis, which will
remarkably accelerate the discovery of the important genes or
cell-lineage clusters from scRNA-seq data.

single-cell RNA-seq j lineage analysis j BRAF inhibitor resistance

L ineage analysis is an important assay for developmental biol-
ogy, cancer biology, etc. Classical lineage analysis in develop-

mental biology study is hypothesis driven and relies on the
“pulse-chase” model with an inducible Cre-LoxP system (1, 2).
This system labels the progenitors permanently so the source of
a mature cell type can be identified via lineage tracing. Lineage
analysis also can be used to identify the genes correlated to the
clonal evolution of cancer cells upon treatment, which can be
done on either primary cancer samples or cancer cell lines based
on the somatic mutations. Traditionally, lineage analysis is time
consuming, technically challenging, and in demand of much pre-
existing knowledge. A tool is desired to simplify the lineage anal-
ysis on complex tissues.

Single-cell RNA-sequencing (scRNA-seq) has become a
powerful tool for biomedical research (3–6). Initially employed
as an assay to identify clusters of cells with distinct transcriptomic
features, scRNA-seq data now can provide additional information
with the advancement of computational tools (7–10). Because

scRNA-seq can profile many cell types simultaneously, potentially,
it is a useful tool for lineage analysis. However, this application
normally relies on exogenous barcodes created by transforming
barcode libraries (11) or Cas9-based genome-editing tools (12).
These cellular barcodes therefore are used as reference for clonal
clustering. Regardless of the complexity of performing such
experiments, it is impossible to directly analyze the lineage infor-
mation of clinical samples with this strategy. We therefore aim to
simplify the lineage analysis by developing a user-friendly compu-
tational algorithm based on endogenous markers of scRNA-seq
data.

The whole-genome RNA single nucleotide polymorphisms
(SNP) has been used as endogenous markers for lineage study
(13), though the requirement of high sequencing coverage limits
its application. In comparison, the size of mitochondrial genome
is relatively small. Thus, mitochondrial RNA variant is a great
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resource as endogenous makers. We have shown that it is possible
to perform lineage analysis with mitochondrial RNA variants
based on scRNA-seq data on human islet (14). Unfortunately, the
challenge for lineage analysis with mitochondrial RNA variants is
to identify the informative variants (mutations) for following infer-
ence, without knowing the features of clones in the cells. Ludwig
et al. (15) tried to solve this problem by analyzing bulk assay for
transposase-accessible chromatin with high throughput sequenc-
ing (ATAC-seq) data, which can provide reliable and informative
mitochondria genome variants as reference, from the same sam-
ple at first. Clustering is then performed on scRNA-seq data
based on these variants identified from the bulk ATAC-seq data.
The requirement of parallel bulk ATAC-seq obviously limits the
application of this strategy. A tool solely based on scRNA-seq is
more desirable.

The bottleneck of performing de novo and label-free lineage
analysis solely based on scRNA-seq is to identify the informa-
tive variants for clones, so called clonal features, without preex-
isting knowledge. The clonal features are rather sparse and
more sensitive to sequencing error and coverages in compari-
son to expression features. Due to their unique properties, the
clonal features cannot be identified with the similar strategies
as expression features of scRNA-seq data.

Thus, we developed an algorithm to call the clonal features
efficiently based on “low cross-entropy subspace” separation
and identification. Instead of using whole-genome SNPs as
endogenous markers (13), we employed the mitochondrial
RNA SNP for the analysis to avoid the limitation of sequencing
coverage. The initial feature calling still showed an unignorable
level of noise, due to sequencing errors and low coverage. We
therefore improved the feature-selection process by integrating
mutation type and subspace–subspace cross-entropy into con-
sideration. Cross-entropy is a loss function that can be used to
quantify the difference between two probability distributions
(16). Based on this concept from information theory, we
defined a ‘cross-entropy’ measure to quantify the difference of
the embedded cluster structures among subspaces. The “low
cross-entropy subspaces” discovered in this strategy could well
capture lineage information from scRNA-seq. Meanwhile, we
also integrated an optimized consensus-clustering process with
a refinement step to further fully capture and refine the lineage
structure from the “low cross-entropy subspaces.”

This computational algorithm, called label-free identification
of endogenous informative single-ccll mitochondrial RNA
mutation for lineage analysis (LINEAGE), is one for de novo
label-free lineage analysis of scRNA-seq based on endogenous
lineage markers selection. We applied LINEAGE on a label-
free BRAF inhibitor resistance study to identify and validate
the genes associated to the resistance in melanoma. We expect
the application of LINEAGE to dramatically accelerate lineage
analysis–related studies.

Results
Working Principle of the Lineage Analysis in LINEAGE. Full-length
scRNA-seq data generated by Smart-seq2 (17) protocol was
used for lineage analysis. The mitochondrial RNA variants were
called and the allele frequency (AFx,b) was calculated to produce
the variants frequency matrix (Fig. 1A; our preprocessing codes
can be downloaded at https://github.com/songjiajia2018/ppl).

Due to its nature, variant frequency has many more noises
than gene expression. These noises may come from many
aspects of data including sequencing errors and low coverage.
Therefore, variant-related analysis (18–22) normally needs bulk
sequencing data with high coverage. However, scRNA-seq data
are highly sparse, which makes it difficult to do feature selec-
tion. Here, we performed feature selection on the variant fre-
quency from cells containing distinct clones with Seruat version

3.0/version 4.0 (8, 23) and Entropy subspace separation-based
clustering for noise reduction (ENCORE). Unfortunately, nei-
ther of these computational algorithms managed to identify fea-
tures with clonal information (SI Appendix, Fig. S1). These
results suggested that traditional feature-selection strategies,
which were designed for screening expression features, need to
be revised for the analysis of variants frequency.

To address this point, LINEAGE (https://github.com/
songjiajia2018/LINEAGE) developed a feature-selection strat-
egy to efficiently pick out lineage-informative variants (defined
as clonal features) from scRNA-seq datasets. Firstly, the
variant-frequency matrix is separated into 12 submatrices
according to the mutation types, and highly variable sites are
discovered in each submatrix. A merged-frequency matrix with
12*20 highly variable variants is generated. This process guar-
antees that the initial selected highly variable features contain
variants with different mutation types. So, the downstream
analysis may avoid being misled by mutational type–specific sys-
temic noises such as sequencing errors. Then, we applied the
same hypothesis as ENCORE that features with similar
dynamic pattern tend to capture similar cell cluster structures.
Thus, subspace separation was performed on the merged
matrix to generate 20 subspaces based on the dynamic patterns
of variants frequency. In this way, variants with similar fre-
quency dynamic patterns would be clustered into the same sub-
space, and cluster signals resulted from different events (noise,
lineage, or other events) tend to be clearly separated. Then to
find out informative feature subspaces for lineage inference,
LINEAGE used a method to define the “cross-entropy” among
subspaces and pick out “low cross-entropy subspaces” as infor-
mative subspaces. In detail, the consensus status among subspa-
ces is indicated by “cross-entropy,” which is defined based on
the adjusted rand index (ARI, detailed in SI Appendix,
Supplementary Note 1). This is based on the hypothesis that
cluster structures with more consensus information among
subspaces are more likely generated by informative events as
lineage structures. By default, six subspaces with lowest cross-
entropy among subspaces are selected for downstream analysis
(Materials and Methods and Fig. 1B).

Then LINEAGE performed consensus clustering to get the
initial clusters with clonal information based on these “low cross-
entropy subspaces.” Candidate endogenous markers were subse-
quently identified for each candidate cluster. To improve the
accuracy, LINEAGE applied a refinement process by refining
the distance between cells based on these marker variants (Fig.
1C). The final result of clonal identification was presented as
t-distributed stochastic neighbor embedding (t-SNE)/Uniform
Manifold Approximation and Projection (UMAP) plot as well
as heatmap. The details of variant-frequency matrix generation,
subspace separation, low cross-entropy subspace selection, and
consensus clustering are described in Materials and Methods.

LINEAGE Identified Clones from ScRNA-Seq Data in a De Novo and
Label-Free Fashion. We firstly tested LINEAGE on a simulated
dataset, which consists of two human melanoma cell lines,
A375 and 451Lu (24) (dataset description is detailed in SI
Appendix, Table S1). LINEAGE can separate the cells from dif-
ferent cell lines accurately (SI Appendix, Fig. S2 A and B). To
further test the performance of LINEAGE on datasets with
cells from close lineages, we tested LINEAGE on a scRNA-seq
dataset (named as TF1 clones) containing 70 cells with exoge-
nous barcoding from three clones and a more-complicated
scRNA-seq dataset (named as TF1 barcoding) containing 158
cells with exogenous barcoding from 11 clones (15) (dataset
description is detailed in SI Appendix, Table S1). In both cases,
data from six subspaces were selected. We found that the line-
age information of different clones was captured in different
subspaces (Fig. 2). In comparison, the unselected subspaces
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(high–cross-entropy subspaces) showed little lineage structure
(SI Appendix, Fig. S3).

The capability of accurate lineage inference was compared
among LINEAGE and three other methods, including Ludwig
et al. (15) (mitochondrial SNPs from both bulk ATAC-seq +
scRNA-seq), trajectory inference based on SNP information
(TBSP) (13) (whole-genome RNA SNPs + expression), and
Seurat version 3 (23) (gene expression). In the dataset contain-
ing 70 cells/three clones, LINEAGE outperformed the other
methods as correctly sorting all the cells into corresponding
clones (Fig. 3A and SI Appendix, Fig. S4A). For the dataset con-
taining 158 cells/11 clones, LINEAGE identified clones with
comparable accuracy as Ludwig et al. (15) and much-higher
accuracy than the other two methods (Fig. 3B and SI Appendix,
Fig. S4B). Especially, there is a large overlap of the markers
selected by Ludwig et al. (15) and LINEAGE (SI Appendix,
Fig. S5 and Table S2), although LINEAGE does not require
high-depth bulk ATAC-seq data from same samples.

The performance of the four methods was also quantified by
the Nearest Neighbor Error (NNE) (25), which represents the
error neighbor relationships among cells captured by each
method (Fig. 3C). The calculation process of NNE is detailed in
SI Appendix, Supplementary Note 2. LINEAGE performed as

good as Ludwig et al. (15) as their NNE scores were comparable.
The running time and the required input data of these four
methods are shown in SI Appendix, Table S3. Obviously, LINE-
AGE has the higher computational efficiency than other variant-
based methods. In general, LINEAGE can perform lineage
analysis well on label-free scRNA-seq solely, without the require-
ment of preexisting bulk ATAC-seq data and exogenous barcodes.

LINEAGE Reveals Transcriptomic Features of BRAF Inhibitor–Resistant
Clones in Cancer Cells with BRAF V600E Mutation. We then applied
LINEAGE on a scRNA-seq dataset of BRAF V600E mutated
melanoma cells 451Lu, which contains parental cells and
BRAF inhibitor–resistant cells (24). By performing lineage
analysis, we aimed to analyze the clonal evolution with BRAF
inhibitor treatment and identify the genes correlated to BRAF
inhibitor resistance. Two clusters with distinct clonal features
were discovered (Fig. 4 A and B and SI Appendix, Fig. S6),
defined as either sensitive Cluster A (the majority are parental
cells) or resistant Cluster B (the majority are BRAF
inhibitor–resistant cells). The differential distribution of paren-
tal and resistant cells in Clusters A and B indicated that the
clonal evolution process happened in the selection process.
Gene-expression comparison was performed between Clusters
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Fig. 1. A schematic representation of LINEAGE. (A) The whole analysis process of LINEAGE. Using full-length scRNA-seq dataset as input, mitochondrial
RNA variants are called and the variant-frequency matrix is generated for lineage inference. (B) Feature selection. LINEAGE firstly screens highly variable
variants across cells with different mutation types and then separates the merged highly variable variant-frequency matrix into subspaces according to
their dynamic frequency patterns across cells. Subspace–subspace cross-entropy calculation is then conducted based on ARI calculation among clusters
from different subspaces to find out the “low cross-entropy subspaces,” which show higher consensus among subspaces than other subspaces. (C) Consen-
sus clustering. LINEAGE learns a strong, informative similarity matrix by using similarity and cell group information from selected low–cross-entropy sub-
spaces. LINEAGE then applies the learned similarity for initial cell-clustering and group marker identification. The group markers are then used as
lineage-related mutations to refine the inference.
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A and B. In total, 64 significantly changed genes were found
(SI Appendix, Figs. S7–S9; method is detailed in SI Appendix,
Supplementary Note 3). The originally reported resistant gene
DCT showed elevation in both sensitive and resistant clones,
indicating that it may not be directly correlated to the clonal
evolution (Fig. 4C).

Many of these genes were enriched in gene ontology (GO) term
“GO_CC: MITOCHONDRION” with Gene Set Enrichment
Analysis (Fig. 4D) (26). Since the connection between mitochon-
dria and BRAF inhibitor resistance has been widely observed (27,
28), this result actually validated the function of LINEAGE. We
then explored the detailed mechanism of the mitochondria–BRAF
connection by focusing on the top differentially expressed gene
GSTP1 (Fig. 4C), which encodes an important redox regulator glu-
tathione-S-transferase (GST). It is known that GST inhibitor can
regulate the pigment generation in melanocytes (29). It has also
been reported that the disruption of redox balance, which is an
important function of GST, may conquer the resistance to BRAF
inhibitor in melanoma cells (30). In consistence, combinational
treatment of BRAF inhibitor Vemurafenib and GST inhibitor
GSTO-IN-2 (31) synergistically decreased the cell viability of two
melanoma cell lines (Fig. 4E). GST can be a target to induce syn-
thetic lethality in BRAF V600E mutated cancer cells.

Discussion
Many lineage analysis–related studies, such as carcinogenesis
studies, cancer resistance studies (32), or even developmental biol-
ogy studies (33), have used scRNA-seq to understand the detailed
mechanism. However, the requirement of exogenous barcode pre-
vents many scientists from performing such kind of studies.
Although several computational algorithms claimed that they can
perform lineage analysis without exogenous barcodes, the require-
ment of preexisting knowledge such as parallel bulk WGS/ATAC-
seq data on the same samples is certainly a technical challenge. In
addition, the demand of extensive computational expertise and
resource is also beyond many laboratories’ capability.

We created a “low cross-entropy subspace” separation and
consensus clustering–based analysis as LINEAGE. LINEAGE
uses informative mitochondrial RNA variants as endogenous
markers, which has relatively small size, and its polymorphism is

a frequent event across different tissues and ages (34). In com-
parison to the method from Ludwig et al. (15), LINEAGE sim-
plifies the endogenous markers identification process and can be
applied to scRNA-seq studies without preexisting bulk WGS/
ATAC-seq data. In comparison to TBSP, LINEAGE requires
shorter running time and has largely improved performance.

We tested LINEAGE on a classical clonal evolution study of
BRAF inhibitor–resistant melanoma cells. By analyzing the label-
free scRNA-seq dataset from this study, we discovered the sensi-
tive and resistant clones. Differential expression analysis identified
GSTP1 as a BRAF V600E mutation resistance–related gene.
GST inhibitor can sensitize melanoma cells to BRAF inhibitor
treatment. Therefore, it may serve as the target to develop syn-
thetic lethality therapies for BRAF V600E mutated cancer cells if
this result can be validated by in vivo experiment.

In summary, LINEAGE removes most of the technical hur-
dles on performing lineage analysis by a “low cross-entropy
subspace” separation and consensus clustering–based analysis.
Due to the requirement of sequencing depth to call variants, it
is still difficult to perform lineage analysis on scRNA-seq data
from 30/50-end-directed scRNA-seq technologies. However,
with LINEAGE, it is possible to perform lineage analysis on
much existing Smart-seq2 data if desired. Biologists can spare
their time and energy on answering biological questions instead
of establishing complex labeling system or perform intensive
computational analysis. The application of LINEAGE may
remarkably accelerate the discovery of the important genes or
cell clusters in the diverse context of biomedical research.

Materials and Methods
Data Preprocessing.
Read alignment. All scRNA-seq datasets used in this study were obtained
from National Center for Biotechnology Information (https://www.ncbi.nlm.
nih.gov/) with following accessions: Gene Expression Omnibus (GEO):
GSE115218 (TF1_clones_scRNA, TF1_barcoding_scRNA) (15) and GEO:
GSE108383 (scRNA-seq of A375 and 451Lu cell lines were used) (24). The reads
were aligned to the GRCh38 human genome and its associated annotations
(GRCh38.98) using Spliced Transcripts Alignment to a Reference (STAR) version
2.7.1a (35) with default parameters.
Mitochondrial genotype matrix generating. A bam file consisting of mito-
chondrial DNA records, which were extracted from the alignment result with
Samtools (version 1.9) (36), was obtained. The total number of reads aligned
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to per allele on each site of mitochondrial genome were counted using a
Python script (15). Here, nucleotides with minimum base quality or minimum
read’s alignment quality <30 were filtered out. The variant frequency (AFx,b)
was defined as the following:

AFx,b ¼ Rb

∑b∈ A,G,C,Tf gRb
:

Rb is the number of reads holding base b at position x; ∑b∈ A,G,C,Tf gRb is the
total coverage of position ×. Mitochondrial genotype matrix (M), where a col-
umn represented a single cell and a row represented variant frequency of a
specific mitochondrial genotype, was thus generated.
Highly variable site identification. To screen out highly variable sites with dif-
ferent mutation types, M was split into 12 submatrices (Mi, i = 1, 2, 3…12)
according to mutation types. The 20 highest-variable sites were then called by

identifying the rows with highest SD across cells in each submatrix. Consider-
ing the sparsity of the matrix, which heavily affected the SD values, LINEAGE
transformed the zeroes into ones when the median of the nonzero frequen-
cies in the same row ≥0.6. Thus, a merged submatrix M240 of M was obtained
by merging the resulted highly variable sites into a matrix.

Subspace Separation. Hierarchical clustering was carried out to reseparate the
M240 into 20 submatrices according to the frequency dynamic patterns. In
detail, the similarity between pairs of rows in M240 was commonly quantified
by Pearson's correlation tests. The distancematrix (Df) was then generated as:

Df ¼ J� S,

where J is an all-ones matrix and S is the similarity matrix. Hierarchical clusters
were obtained based on this distance matrix, and the feature spaces with
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features (variants) from each resulted cluster were defined as “feature sub-
spaces.” In this way, highly variable sites with similar frequency dynamic pat-
terns would be grouped into the same feature subspace; thus, similar clonal
cluster signals can be concentrated in same subspace.
Entropy evaluation. In each subspace, LINEAGE used t-SNE followed by
k-means clustering to realize cell-clustering (we defined these cluster results
as Csubs). The k, which indicated the number of clusters, in the k-means cluster-
ing process was set to 3 for datasets with cells >100 and otherwise was set to
2. To effectively identify subspaces that might contain clone lineage informa-
tion, LINEAGE calculated ARI between pairs of subspaces as consensus indica-
tor and got the consensus index matrix as A. LINEAGE defined entropy based

on the cell distribution similarity among subspaces, so called “cross-entropy”
here. The subspaces with lowest “cross-entropy” (Ii, i = 1, 2, 3…20), which
indicated highest consensus with other subspaces, were selected for subse-
quent consensus clustering. In this study, six low–cross-entropy subspaces
were selected in all cases, and the number of subspaces can be adjusted by
parameter. Here, I was defined as:

Ii ¼ 1=max Aij
� �

, i, j ∈ 20 subspaces, i ≠ j:

Consensus Clustering. Then, LINEAGE generated a combined distance matrix
as follows:
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Fig. 4. LINEAGE identified important clonal evolution–related genes from a cancer dataset. (A) The lineage analysis result visualized by t-SNE plot from
LINEAGE. Cells are labeled according to its BRAF inhibitor resistance status. (B) The lineage tree from LINEAGE. Cells are labeled according to its BRAF
inhibitor resistance status as well as clonal status. (C) The expression levels of DCT and GSTP1 across resistant and clonal status (P = 0.39 for "ns" in cluster
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A375: 8 μM V, 2.5 μM G. *P < 0.05, ****P < 0.0001).
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~D ¼ ∑Di, i ∈ selected subspaces;

whereDi is the distancematrix from a selected subspace.
Meanwhile, LINEAGE also characterized consensus information across sub-

spaces by calculating a consensus-factor matrix based on the clustering results
(Csubs) from the selected subspaces:

~Wij ¼
0, if celli and cellj are never located in same cluster
1, if celli and cellj are located in same cluster in one subspace
2, if celli and cellj are located in same cluster in two subspaces
…

:

8>><
>>:

By integrating distance information and consensus information, LINEAGE gen-
erated amore-integrative distancematrixD as follows:

D ¼ ~D � 1

3 ~W þ J
,

where J is an all-ones matrix. Basing on distance matrix D, t-SNE followed by
k-means clustering strategy was used to infer the initial consensus cell clone clus-
ters. Here, an adaptive density peak detection algorithm implemented in theADP-
clust package in R (37) was integrated to accurately infer the number of clusters.

Marker Variants Identification.
Group marker identification. To screen out the marker variants, LINEAGE
transformed the consensus-clustering result into a binary cluster: for a cell
group, if a cell is in this group, set its cluster label as 1; if not, set as 0. For each
highly variable variant, a receiver operating characteristic (38) curve was built,
and the area under the receiver operating characteristic (AUC) score was thus
calculated with the frequency distribution as predictor and the binary cluster
labels of each group as response. Pearson's correlation coefficient was also cal-
culated between the binary cluster labels and the frequency distribution. Var-
iants with P values <0.05 were considered as cell group markers. These
markers were ranked by AUC scores, since higher AUC scores indicated more-
reliable markers. Subsequently, 10 to 20 markers with the highest AUC scores
were used to refine the consensus-clustering result.
Refinement based on marker variants. After the frequency submatrix con-
sisting of frequencies of markers (Mm) was gotten, cells with zeroes on all
markers were removed. LINEAGE integrated both t-SNE and UMAP (39) for
dimension reduction and got refined consensus-clustering results based on
the dimension-reduction results separately.
Iterative optimization. Considering the randomness from clustering and
dimension-reduction processes, an iteration process was implemented in LINE-
AGE to guarantee a more-stable and -reliable cell-clustering/clone-tracing
result. Based on the assumption that real clone clusters always show more-
reliable markers and cell cluster information from more-effective subspaces
with larger information capacity, a measurement Sscore was defined for opti-
mization as follows:

Sscore ¼ Dscore þ 2:5 �∑10
i¼1AUCi

10
,

where ∑10
i¼1AUCi is the sum of the 10 greatest AUC scores of inferred

markers. Dscore is a score calculated in the refinement process. Concretely,
LINEAGE calculated ARIs between the refined clustering results (resulted

from t-SNE or UMAP-Kmeans procedures) and the clustering results in the
selected subspaces (Csubs). Subspaces with ARI > 0.1 were recorded as effec-
tive subspaces and the number of effective subspaces was labeled as n. To
evaluate the information capacity of the consensus results, a Dscore was
defined to reflect the consensus among the refined results and the
selected subspaces:

Dscore ¼ nþBmax þ 2DARI, and DARI ¼
�

1� 0:5, if n¼ 1
1�Asubs , if n > 1

,

where Bmax represents the maximum ARI between the refined consensus-
clustering result and the clusters in effective subspaces; thus, n+Bmax indicates
the consensus information capacity from effective subspaces. Meanwhile,
Asubs represents the average of a submatrix of A, which consists of ARI values
among effective subspaces, and DARI represents the information overlap status
among effective subspaces. LowerDARI means higher overlap. In this way, con-
sensus result-containing cluster structures from various subspaces with low-
overlap cluster information is more preferred.

Among the iteration with same or different parameters, the one with
highest Sscore was reserved as the best result.

Methods Performance Evaluation and Comparison. A simulated dataset was
generated by mixing two human melanoma cell lines A375 and 451Lu. LINE-
AGE processes described as above (Data Preprocessing, Subspace Separation,
Consensus Clustering, andMarker Variants Identification) were carried out on
the simulated and the two standard benchmark datasets. Codes of Seurat ver-
sion 3 and version 4 (8, 23), ENCORE (40), the method developed by Ludwig
et al. (15), and TBSP (13) were downloaded and run according to their man-
uals on the two benchmark datasets.

Cell Culture. A2058 and A375 were cultured in Dulbecco's modified Eagle
medium (Thermo Fisher Scientific) with 10% fetal bovine serum (Yeasen)
and 5% penicillin/streptomycin (Gibco) at 37 °C with 5% CO2. Cell viability
was performed with Cell Counting Kit-8 (CCK-8; Yeasen) according to the
manufacturer's instructions. Briefly, cells were seeded into 96-well plate at
a density of 1,000 cells per well. Cells were treated with different chemical
combinations (Vemurafenib, GSTO-IN-2; MCE) and examined at the time
point of 0, 24, 48, and 72 hours. At each time point, CCK-8 (10%) was
added to the wells, and after an incubation of 1 h at 37 °C, absorbance was
measured at 450 nm with a Microplate Reader Infinite F50 (Tecan).

Data Availability. The scripts for mitochondrial genotype matrix preparation
and examples are available at GitHub, https://github.com/songjiajia2018/ppl.
The scripts for lineage analysis and example data are available at GitHub,
https://github.com/songjiajia2018/LINEAGE.
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