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Inferring protein expression changes from mRNA in
Alzheimer’s dementia using deep neural networks
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Identifying the molecular systems and proteins that modify the progression of Alzheimer’s

disease and related dementias (ADRD) is central to drug target selection. However, dis-

cordance between mRNA and protein abundance, and the scarcity of proteomic data, has

limited our ability to advance candidate targets that are mainly based on gene expression.

Therefore, by using a deep neural network that predicts protein abundance from mRNA

expression, here we attempt to track the early protein drivers of ADRD. Specifically, by

applying the clei2block deep learning model to 1192 brain RNA-seq samples, we identify

protein modules and disease-associated expression changes that were not directly observed

at the mRNA level. Moreover, pseudo-temporal trajectory inference based on the predicted

proteome became more closely correlated with cognitive decline and hippocampal atrophy

compared to RNA-based trajectories. This suggests that the predicted changes in protein

expression could provide a better molecular representation of ADRD progression. Further-

more, overlaying clinical traits on protein pseudotime trajectory identifies protein modules

altered before cognitive impairment. These results demonstrate how our method can be used

to identify potential early protein drivers and possible drug targets for treating and/or

preventing ADRD.
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W ithout transformative drug discovery, Alzheimer’s
disease and related dementias (ADRD) are projected
to affect 100 million individuals in 20501. To find

molecular drug targets for ADRD, community-based aging
cohort studies and patient-centered research consortia have
generated thousands of brain transcriptomes from individuals at
various stages of disease2. However, the large discrepancies
between mRNA and protein make it challenging to confidently
advance mRNA findings in drug discovery because drugs typi-
cally target protein. The severity of this disconnect is illustrated
by the fact that the most classic protein signs of ADRD—accu-
mulations of β-amyloid and helical filament tau (PHFtau)
pathology—are not accompanied by transcriptional changes of
APP and MAPT genes2, and hence would not be detected by the
standard transcriptome analysis. However, proteomic character-
ization of ADRD brains still lags behind transcriptomics.
Therefore, developing a method to more accurately relate mRNA
levels to proteins would dramatically increase the utility of
existing transcriptome data. The predicted proteomes would
inherit the size and regional diversity of RNA-seq, and enable
systems biology analysis of ADRD at the protein level.

To accelerate drug discovery via predicted protein levels, we
perform a deep-learning-based, multi-omic analysis of post-
mortem brain samples from participants of two large, long-
itudinal cohort studies of aging and dementia, which have
extensive antemortem cognitive assessments, postmortem neu-
ropathologic data, and structural brain imaging3. Specifically, we
utilize RNA-seq data from the dorsolateral prefrontal cortex
(DLPFC) (n= 1192) generated through the Accelerating Medi-
cines Partnership-AD (AMP-AD). For a subset of participants
(n= 384), global proteomics using tandem mass tags (TMT)
from the DLPFC was conducted previously4. This multi-omics
data enables us to build a deep learning model to predict differ-
ences in protein abundance between individuals from RNA-
seq data.

We conduct a series of systems biology analyses to evaluate
whether the predicted proteome can be utilized to identify novel
drug targets and molecular mechanisms of ADRD. In the first
application, we perform a molecular coexpression approach to
defining molecular systems and disease-associated changes5. The
basis for this analysis is to identify covaried proteins across
individuals in a cohort. The groups of covaried proteins termed
“modules” represent the activity of major molecular systems.

In the second application, we test the accuracy of predicted
differential protein abundance in ADRD. In particular, we
examine the predicted protein levels for genes harboring non-
coding variants associated with AD6,7. Since the massive AD
GWAS (genome-wide association study) efforts ostensibly direct
drug development efforts towards particular mechanisms, the
lack of mRNA effects for these GWAS genes has been limiting.

The third major application of this model addressed a funda-
mental challenge to cross-sectional brain omic studies: differ-
entiating upstream molecular changes from downstream or
correlative changes in ADRD. Pseudo-temporal trajectory ana-
lyses - which are often utilized in single-cell transcriptomics8 - are
responsive to major trends in unlabeled samples, which may be
related to disease progression9,10. Here, we employ a pseudo-
temporal reconstruction approach based on estimated proteomes,
as well as RNA-seq data.

Due to the integrative nature of deep neural networks, we find
that it is possible to robustly predict protein levels, despite their
divergence from corresponding mRNA. Further, we find com-
parable accuracy of this model in predicting protein levels for an
entirely separate cohort. The systems biology applications of deep
neural networks to predictive protein abundance indicate that it
can blend the advantages of the wide availability of

transcriptomics with the strong phenotypic relationships of
protein, to enable a more accessible and disease-relevant target
selection for drug discovery.

Results
Deep-neural protein translation of brain transcriptome. The
transcriptome, proteome, and phenotypic data utilized in this
study originate from donors in two longitudinal, community-
based cohort studies of aging and dementia—the Religious Orders
Study (ROS) and the Rush Memory and Aging Project (MAP),
referred to as ROSMAP3. Collectively, ROSMAP has enrolled
>3500 older persons, all of whom have agreed to brain donation
and annual clinical and detailed cognitive evaluation. Brain
transcriptomes of 1192 individuals and unbiased global pro-
teomes of 384 individuals in the DLPFC brain region (Table S1)
were profiled by our group and others as part of the AMP-AD
(syn3388564 and syn17015098).

Out of 8391 proteins measured in ROSMAP, only 3096
proteins showed a minimally significant concordance with
corresponding gene expression (false discovery rate (FDR) at
5%, n= 384), and the average correlation for all proteins was
0.09. This low correlation is indicative of the high degree of
discordance between RNA and protein, which was also observed
in an independent ADRD brain cohort from the Mount Sinai
brain bank (MSBB) (mean R= 0.11, n= 196). Thus, even with
large (n= 100+) sample sizes, standard transcriptome analysis
will likely miss many proteins truly related to ADRD, challenging
a premise of transcriptome analysis, wherein RNA expression
levels are a surrogate for protein abundance. This is indeed the
case with the ROSMAP cohort: considering the 384 ROSMAP
brain samples wherein both mRNA and protein are available,
differentially expressed genes (65, Bonferroni-corrected p < 0.05)
and differentially abundant proteins (201) for AD diagnosis only
overlap in two instances (one-sided Fisher’s exact test, p-
value= 0.51). To overcome the discrepancy of protein levels
and corresponding mRNA levels, we developed a predictive
model of the proteome based on multiple variables extracted from
transcriptome data. The application of this model to large-scale
brain transcriptomes allowed us to predict estimated protein
abundance and conduct subsequent systems biology analyses to
identify early influential changes in specific protein levels (Fig. 1).

The central hypothesis underlying the model is that protein
abundance is determined not only by the abundance of mRNA
coding the protein itself but also by other aspects of the tissue
state, which are themselves diffusely represented in the tran-
scriptome profile of the tissue. To estimate the tissue state that can
inform the global proteome profile, we modified the scGen
framework11 that is designed to find the latent state representation
of the transcriptome profile. Specifically, each transcriptome
profile is encoded into low dimensional probabilistic distributions
and then the decoder network takes an encoded vector sampled
from the distributions to create the corresponding proteome
abundance. Then, this decoded proteome was merged with the
transcript features of each protein via a linear regression (LR) layer
to generate a predicted proteome profile (Fig. 1). We designed this
“clei2block” model as an ensemble of deep neural models with 12
combinations of predictive features from mature-RNA, pre-
mRNA, and the 3′ untranslated region (UTR) length (Figs. S1
and S2). We used out-of-fold predictions to evaluate the
performance of the model. Specifically, we split the samples into
ten folds, taking care to balance cognitive status and brain
pathologies. Then, for each fold, we removed the fold from the
data and used the remaining data to train the model. We repeated
this process for each of ten holds, resulting in obtaining 10 models
trained with different training samples and holdout testing data.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28280-1

2 NATURE COMMUNICATIONS |          (2022) 13:655 | https://doi.org/10.1038/s41467-022-28280-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To calculate overall prediction accuracy, predictions for the
holdout samples were concatenated (Fig. S3).

The consensus prediction of the clei2block model showed
significant positive correlations with the actual abundance of 5998
proteins (FDR 5%), and the average correlation for all proteins
was 0.18 (Supplementary Data 1), which is an approximately
2-fold increase compared to the raw RNA expression (Fig. 2a).
Also, our model outperformed two representative baseline
methods, linear-regression-based (Elastic-net) and boosting
tree-based (CatBoost) models (Fig. 2b).

To examine if the sample size (n= 384) is sufficient for
building a model predicting protein abundance, we trained the
clei2block model with sub-sampled training data. The result
indicates the predictive accuracy is saturated and the performance
gain from an increased sample size will be minimal (Fig. S4).

To determine which aspects of the clei2block are chiefly
responsible for its accuracy, we compared three models: (i)

clei2block that is a combination of the scGen and LR modules, (ii)
the NN-linear that is a combination of a fully connected layer and
the LR module, (iii) the scGen model. The clei2block model (i)
performed the best, followed by the scGen and then the NN-
linear model (Fig. 2c). This indicates that the scGen module that
operates latent-space encoding with non-linear transformation is
critical to achieving higher predictive accuracy.

To validate the prediction, we utilized targeted proteomics data
of 121 proteins using selected reaction monitoring (SRM) for
637 samples independent of the training sample. The model
showed superior performance for targeted proteomics data over
the raw RNA expression (Fig. 2d). We also applied the model to
brain transcriptome data from the MSBB cohort and compared
the estimated proteome with global proteomics data (n= 196).
This is a challenging assessment, as tissue sampling, brain region,
sample preparation, measurements, and data processing were
conducted independently from the ROSMAP cohort. However,

Fig. 1 Deep-neural protein translation enables system-wide proteomic analysis in older brains. We built a predictive model called clei2block to estimate
protein abundance from RNA expression and applied the model to the large-scale brain transcriptome data from older adults. We showed the utility of
estimated proteomic data to understand ADRD molecular pathogenesis via a range of systems biology approaches.
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the predicted proteomes based on the model trained with
ROSMAP data showed better concordance with actual proteins
than did the raw RNA expression from that very cohort (Fig. 2e).
This result indicates that the predictive model can be generalized
to other cohorts or protein measurement methods.

Predicted proteomes gain realistic network properties. Coex-
pression network analysis is a common approach to discovering
gene or protein systems associated with the disease. Therefore, we
compared the coexpression network structure between pro-
teomes, transcriptomes, estimated proteomes. For these analyses,
we used high-quality predictions for the 5998 proteins (FDR 5%,
R > 0.1) and 808 samples from the DLPFC (RNA cohort) that
were never used in the training process, ensuring unbiased and
rigorous assessments.

The coexpression network structure between proteomes and
transcriptomes is quite different, with only 6 of 33 protein
modules preserved, mostly cell-type-related modules (Fig. 2f).
However, when the same transcriptomes were transformed into
estimated proteomes, the network structures of 29 modules
became highly concordant with the actual proteomes (Fig. 2f).
This result demonstrates that, in addition to aligning individual
proteins, the estimated levels facilitate detecting system-level
behavior of brain proteomes.

Influential predictors for protein abundance. To track down the
origin of predictive accuracy, we conducted an in-depth investi-
gation on the predictive model. First, we evaluated the collective
contribution of each data type to the prediction accuracy. We
trained clei2block with the removal of each data type and com-
pared the performance with the model trained with a full dataset.
This evaluation quantifies the predictive power uniquely attrib-
uted to each data type. Removing any of the data types reduced
the predictive performance (Fig. 3a), suggesting that blending
different types of data is beneficial for predicting protein abun-
dance. Particularly we observed the largest performance drop
with the lack of mRNA expression in the linear-regression
module followed by 3′UTR and mRNA inputs in the scGen
modules.

Next, to dissect the variables, rather than the data types, that
contributed to protein prediction, we calculated the SHAP
(Shapley Additive exPlanations) score for each input of our
predictive model. For this analysis, we used the model using
principal components (PCs) of mRNAs as an encoder input and
mRNA, pre-mRNA, and the 3′ UTR length as inputs for the LR
module. Overall, mRNA levels of the corresponding protein are
the most informative predictor, reiterating the central dogma of
molecular biology. Several PCs showed greater or comparable
contributions than those of the protein-specific inputs. Interest-
ingly, genes projecting to influential PCs were enriched for cell-
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type-related genes such as immune response and neurogenesis,
and protein translational and degradation, such as ribosomal
proteins and a proteasome accessory complex (Fig. 3b and
Supplementary Data 2). The results suggested that cell composi-
tion, as well as mRNA levels of translational and post-
translational machinery that regulate protein abundance, pro-
vided critical information to improve the prediction accuracy.

Molecular characteristics define protein predictability from
RNA-seq. It is important to understand which kinds of proteins
can or cannot be predicted by the model. We conducted an
extensive investigation in protein characteristics defining its pre-
dictability by RNA-seq (Fig. 3c and Supplementary Data 3). We
found that the proteins with higher mean intensity in the TMT
measurement showed improvement in predictive performance by
the model, more so than those with lower mean intensity. Con-
versely, the proteins with higher variance in the TMT measure-
ment had less benefit from the model, as those proteins already
have a higher correlation with their corresponding mRNA levels.
In addition, we explored various system-level molecular char-
acteristics. We found that connectivity in protein co-abundance
networks and protein–protein interaction networks, the number
of transcription factors bound to the promoter region, and the
number of RNA-binding proteins bound to mRNA adjusted with
the length of mRNA were all positively correlated with the mag-
nitude of performance improvement by the predictive model
(Fig. 3c and Supplementary Data 3). Together these molecular
characteristics explained 14% of the improvement in the predictive
accuracy. Overall, our model performed well for the genes whose
proteins have relationships with many other proteins, consistent
with the logic that such proteins likely have broad latent repre-
sentation in RNA data.

Predicted proteomes can facilitate the discovery of AD-related
proteins. Next, we examined whether the predicted proteomes
gain ADRD-related signals that are not seen in transcriptomes.

Results of this examination will determine to what extent the
estimated protein data can improve our understanding of ADRD.
To do this, we conducted differential expression analysis between
AD and control cases, based on (1) the transcriptomes, (2) the
actual proteomes, and (3) the estimated proteomes, and then
contrasted test statistics of the differential expression. To ensure
no bias from the training samples, we used the RNA cohort for #1
and #3 and the TMT cohort for #2. The correlation of differential
expression statistics of actual proteomes and transcriptomes are
moderate (R= 0.38) (Fig. 4a and Supplementary Data 4), which
again indicates the limitations of transcriptome data in finding
AD-related proteins. However, differential expression statistics of
the estimated proteomes were highly concordant with those of the
actual proteomes (R= 0.88), in contrast to the baseline tran-
scriptome vs. estimated-proteome relationship (R= 0.39).
Moreover, the association of predicted protein modules with AD
diagnosis is highly correlated (R= 0.91) with that computed from
actual proteome data (Fig. S5). We stratified the proteins based
on the test set accuracy and examined how the accuracy impacted
the detection of disease signals. The result indicates that even for
proteins with lower correlation, their disease effects are in line
with the actual observation better than mRNA (Fig. 4b). To verify
the result with independent data sets, we repeated the same
analysis for the SRM cohort and the MSBB cohort. For both data
sets, the consistency between actual protein and mRNA was
improved by converting mRNA into estimated protein using the
clei2block model trained with the ROSMAP TMT data set
(Fig. 4c–f and Supplementary Data 4).
To further provide more evidence that our model indeed

facilitates disease protein discovery, we conducted an additional
analysis with the MSBB data. We followed the typical scenario for
discovering disease-related proteins with RNA-seq data, where (i)
run association analysis with the RNA-seq data, (ii) select
candidates from differentially expressed genes, (ii) measure protein
levels for those genes to validate that they are differentially
expressed at the protein level. We used the CERAD (Consortium to
Establish a Registry for Alzheimer’s Disease) score, neuropathologic

Fig. 2 Deep neural networks improve protein–RNA concordance. a Test data performance of the clei2block model. The violin plot is based on Pearson’s
correlation between actual and predicted protein abundance or its corresponding mRNA level. To generate this plot, 7925 and 8391 different genes were
used for mRNA and estProtein, respectively. The upper, center, and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The
upper and lower whisker of the boxplot indicates 75% quantile +1.5 * interquartile range (IQR) and 25% quantile −1.5 * IQR. The bar plot indicates the
number of mRNAs and estimated proteins positively correlated with actual protein abundance at FDR 5%. The percentage of the concordant proteins out
of all measured proteins was displayed above the bar. b Performance comparison of clei2block with Elastic-net and CatBoost. We trained the Elastic-net
and CatBoost models for each protein separately using the same data and sample splits with those of the clei2block model. Because training the Elastic-net
model took a significantly long time with a large number of predictors, we focused on the six submodels that take mRNA-PCs, pre-mRNA-PCs, or UTR-PCs
as predictors in this comparison. The boxplot represents the performance of these six models for all groups. A blue diamond indicates the performance of
ensemble prediction. The upper, center, and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The upper and lower whisker of
the boxplot indicates 75% quantile +1.5 * interquartile range (IQR) and 25% quantile −1.5 * IQR. c Performance comparison of different neural net
architectures. The clei2block was compared with the model without the scGen component and the scGen models. To generate this plot, the performance of
12, 12, and 6 models were used for clei2block, NN-linear, and scGen, respectively. A blue diamond indicates the performance of ensemble prediction. The
upper, center, and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The upper and lower whisker of the boxplot indicates 75%
quantile +1.5 * interquartile range (IQR) and 25% quantile −1.5 * IQR. d Validation of model performance in SRM cohort. To generate this plot, 121 different
genes were used for both mRNA and estProtein. The upper, center, and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The
upper and lower whisker of the boxplot indicates 75% quantile +1.5 * interquartile range (IQR) and 25% quantile −1.5 * IQR. e Validation of model
performance in MSBB cohort. To generate this plot, 3254 and 3305 different genes were used for mRNA and estProtein, respectively. The upper, center,
and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The upper and lower whisker of the boxplot indicates 75% quantile +1.5
* interquartile range (IQR) and 25% quantile −1.5 * IQR. f Congruence of co-abundance module structures between actual proteome and estimated
proteome. Protein modules were created based on the actual proteome data with SpeakEasy. To examine whether protein modules are preserved in
transcriptome or estimated proteome, we ran the modulePreservation function implemented in the WGCNA R package. For the transcriptome data, we
used the data from the same individuals where the actual proteome data was measured. For the estimated proteome data we used the estimated data from
independent individuals without proteome measurements for rigorous assessment of module preservation. Enrichment of brain cell-specific genes for
proteomic modules was evaluated based on Fisher’s exact test and the modules that passed the Bonferroni-corrected p-value less than 0.05 were indicated
as + symbol.
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diagnosis of AD, as a phenotype for this experiment. We picked the
top N-genes associated with the phenotype in RNA-seq data and
the estimated protein data, respectively. Then we examined how
many of them are differentially expressed with the actual protein
data from the same individuals (Fig. 4g). For instance, out of the top
100 significant genes in RNA data, 69 matched the direction of the
association at the actual protein levels, and of these 23 showed p-
value < 0.05. In contrast, 80 out of the top 100 genes in the

predicted protein data matched the direction of the association with
the actual protein data and 36 showed p-value < 0.05. For reference,
we also selected genes randomly, resulting in an 11% success rate.
Our prediction model improved the success probability of disease
protein discovery 1.6-fold over the RNA-based gene selection and
3.4-fold over random selection. This demonstrates that the
clei2block deep learning approach significantly improves disease
protein discovery over traditional processes.

Fig. 3 Understanding molecular basis of protein prediction. a Ablation experiment to identify key data types. The clei2block model was trained with the
removal of entire input variables of each data type as indicated in the heatmap. The average Pearson’s correlations between predicted and actual protein
levels for each model are indicated in the bar graph on the right. b Influential predictors for protein abundance. The predictive contribution of each variable
in the model with mRNA-PCs and all LM inputs was estimated using GradientExplainer. Representative gene ontologies enriched for genes contributing to
the influential PCs were described for each PC. The enrichment analysis was conducted using one-sided Fisher’s exact test. The significance levels were
adjusted for multiple comparisons using FDR at 5%. c Molecular characteristics defining protein predictability. Correlations of protein with mRNA and
estimated protein and the difference between these were compared with characteristics in the protein measurement and molecular interactions.
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Fig. 4 Differential expression statistics of the estimated proteomes. a Estimated proteome greatly improved the concordance of AD-related signals
between RNA-seq data and protein data. We conducted case–control studies to find differentially expressed genes in AD based on transcriptome data, the
actual TMT proteome data, and estimated proteome data. To maximize the similarity of AD-associated genes, we used the same individuals for the
transcriptome data and the actual proteome data. Whereas, to prevent any information leakage from the actual proteome data, we used estimated
proteome data of an independent subset. T-statistics for AD diagnosis were used for this comparison. We used Pearson’s correlation for the comparison.
b Pearson’s correlation between predicted and actual AD association in the TMT proteome data stratified by prediction accuracy. Proteins are stratified
based on the prediction accuracy of the clei2block model in testing data. For each group of genes, we compared t-statistic for AD diagnosis. We repeated
the same analysis for (c, d) the SRM cohort and (e, f) the MSBB cohort. We used Pearson’s correlation for these comparisons. The source of prediction
accuracy used in the stratification analyses is the same as one for Fig. 4b, but we stratified proteins into three groups instead of four due to the smaller
number of proteins in the SRM and MSBB data. g Estimated proteome accurately identifies differentially expressed proteins in AD. The clei2block model
trained with ROSMAP data was applied to MSBB data, which is entirely independent of the ROSMAP cohort. AD-related genes identified from the
estimated protein data are more likely validated with the actual proteome data than those from raw RNA expression.
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Proteins associated with cognitive decline. Slowing down or
halting the rate of cognitive decline is the primary clinical end-
point for any dementia therapy. Therefore, to examine whether
estimated proteomics can identify proteins related to cognitive
decline, we conducted a proteome-wide association analysis
against the person-specific slope of the cognitive decline trajec-
tory based on annual cognitive evaluations12. In this assessment,
we used the 808 samples of high-quality predictions for 5731
genes measured in both RNA-seq and TMT proteomics. We
found 3277 proteins associated with cognitive decline (Bonfer-
roni-corrected p < 0.05) (Fig. 5a and Supplementary Data 5),
which is 13-fold more than those identified from the actual
proteome data of 384 samples, and 6-fold more than those from
transcriptome data of the same 808 samples. The greater numbers
of differentially expressed genes in estimated proteomes were also
seen for AD diagnosis, global AD pathology (Fig. 5a), and

cognitive score (Fig. S6). There are substantial similarities in the
ADRD-associated proteins between actual and estimated data
across different traits, but they are clearly distinct from mRNA
results (Fig. S7).

Next, we applied the model to RNA-seq data from the
posterior cingulate gyrus (n= 645) and the anterior caudate
(n= 705) regions from the ROSMAP cohort to examine whether
the model trained by DLPFC samples can also augment the
connection of RNA-seq data with cognitive decline in different
brain regions. Indeed, we detected a notable increase in the
number of genes associated with cognitive decline based on the
estimated proteome compared to the mRNA (Fig. S8).

To reveal biological pathways of protein-specific differentially
expressed genes, we conducted gene ontology (GO) analysis for
genes associated with cognitive decline at the protein level
(Bonferroni-corrected p < 0.05) but not at the mRNA level

Fig. 5 Estimated proteome identifies proteins associated with the cognitive decline with greater significance than does the transcriptome. a The
number of genes associated with cognitive decline and other ADRD-related traits. Estimated proteomes and transcriptomes from the same individual (RNA
cohort, n= 808) were tested for their associations with traits using limma. A Bonferroni-corrected p-value less than 0.05 was set as a significance
threshold. b GO enrichment map for protein-specific cognitive-decline associated genes. One-sided Fisher’s exact test was conducted to assess GO
enrichment in genes significantly associated with cognitive decline at the protein level but not the mRNA level. The significant GOs at FDR 5% were
visualized as a 2D map embedded by UMAP. c Differential expression statistics of AD GWAS genes at the protein and the mRNA level. The test was
conducted using limma. We used the same significance threshold with Fig. 5a. d Influential predictors for the protein-trait association. The predictive
contribution of each variable in the encoder inputs of mRNA-PCs was estimated using GradientExplainer. For each protein-trait pair, we selected the top
two PCs, indicated by an asterisk, that strengthened their association. The color of the heatmap represents the contribution of each PC to the protein
variance explained by trait in percentage. e Overall contributions of PCs to the associations across AD GWAS proteins and the traits. Representative gene
ontologies enriched for genes contributing to the influential PCs were described in the bar plot. The enrichment analysis was conducted using one-sided
Fisher’s exact test. The significance levels were adjusted for multiple comparisons using FDR at 5%.
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(nominal p > 0.05). There is strong biological enrichment in
elevated immune response, proteolysis, and a part of mitochon-
drial pathways for faster cognitive decline, whereas higher
ribosomal proteins and endoplasmic reticulum proteins, and
some mitochondrial protein levels were associated with slower
cognitive decline (Fig. 5b and Supplementary Data 6).

AD GWAS associated with cognitive decline. Understanding
how genetic susceptibility genes for AD may drive cognitive
decline is an important and largely unresolved question for
ADRD pathogenesis. To this end, we focused on 15 AD-GWAS
genes6 with both mRNA and estimated protein data. The direc-
tion of disease-related changes was overall concordant between
mRNA and estimated proteins, but proteins showed a stronger
association with cognitive decline (Fig. 5c). Notably, APP and
PICALM proteins exhibited several orders of magnitude greater
associations with cognition than their mRNAs. Specifically,
higher APP predicted protein explained 18.9% of faster cognitive
decline, whereas APP mRNA levels showed weak and even
reversed association (Fig. S9). For PICALM, lower protein levels
explained 14.3% of faster cognitive decline, in line with the pre-
vious reports showing the decreased PICALM protein in AD13.

We conducted an in-depth analysis to determine what
biological systems contribute to the associations of AD genes
with AD diagnosis, cognitive decline, and global AD pathology.
Specifically, we removed the contribution of each PC in mRNA-
PCs from the estimated protein levels and conducted differential
expression analysis. Then we compared the variance of protein
levels explained by the trait with that of the original estimation
(Fig. 5d). For instance, by removing the effect of the 1st PCs of
mRNAs (PC1), the variance of APP explained by cognitive
decline was reduced by 13.5%. PC1 was strongly associated with
neuronal genes. This might indicate that APP protein is predicted
through the number of neurons or molecular state changes in the
neuronal population. We averaged the contributions across AD
genes and traits and found that immune gene signature affected
the associations the most, followed by ribosomal proteins, nuclear
speckles, and neuronal genes overall (Fig. 5e).

Protein-state trajectory reflects ADRD progression. Given
insightful findings from trajectory analyses for ADRD using bulk
RNA-seq data, we hypothesized that dementia progression can be
modeled as state transitions in the brain proteome. To test this
hypothesis, we applied a top-performing algorithm for linear
trajectory identification14 to the predicted proteomes of
1192 samples from DLPFC and inferred the protein-state tra-
jectory among diverse older adults (Fig. 6a). We note that the
trajectory was estimated purely based on estimated protein levels
without any guidance from clinical or pathologic phenotypes or
any prior protein selection. The protein pseudotime progression
was associated with AD diagnosis (Fig. 6a) and global AD
pathology (Fig. 6b), which contrasted with mRNA pseudotime,
only showing moderate association with these traits (Fig. 6a, b).

Notably, the protein pseudotime was associated with cognitive
decline (R=−0.34, p= 4.4e−32) stronger than the RNA
pseudotime (R=−0.13, p= 1.6e−5) (Fig. 6c). The associations
with cognition score also showed the same trend as that of
cognitive decline (Fig. S10). Variance decomposition analysis
indicated that the protein pseudotime explained 11.2% of
cognitive decline independent of age at death (var. exp., 3.3%)
and the RNA pseudotime (var. exp.,1%). This suggests that the
protein pseudotime based on the predicted proteomes captures a
significant component of cognitive decline, thus representing the
effectiveness of our computational protein translation approach
in understanding ADRD progression.

To track down the potential origin of association between
pseudotime and cognitive decline, we compared each sample’s
position in pseudotime with hemisphere volume (n= 459), as
well as hippocampus volume, a key brain region for memory and
learning. We found that individuals with advanced protein
pseudotime tended to have smaller hemisphere volume
(R=−0.18, p= 0.00012) (Fig. 6d), and hippocampal atrophy
(R=−0.31, p= 5.8e−12) (Fig. 6e). The association of protein
pseudotime and hippocampal atrophy persists even after adjust-
ing for the hemisphere volume (R=−0.26, p= 1.3e−8)
(Fig. S11). Conversely, the association of the hippocampus
volume with RNA pseudotime was largely attenuated with
accounting for the hemisphere volume (R=−0.10, p= 0.03)
(Fig. S11). This indicates that the protein pseudotime is a
representation of not only regional molecular changes, but also
brain structural changes, especially in the hippocampus.

Because sex has been shown to affect AD pathology15 and gene
expression16 differently in older adults, we also examined the
impact of sex on pseudotime and detected no or subtle sex
differences in pseudotime. It is interesting because we have
detected a strong sex effect on estimated protein abundance,
indicating that our trajectory learning approach has removed the
sex bias in the molecular signature and effectively aligned
pseudotime with the rate of cognitive decline.

Early proteomic events in ADRD progression. The confluence
of predicted protein abundance and pseudotime analysis provides
a way to estimate the progression of proteomic changes from
cross-sectional data. To identify early molecular events in ADRD
progression, we first examined the pseudo-temporal progression
of cognitive impairment and AD pathologies. The model predicts
that amyloid deposition occurs first, then followed by PHFtau
deposition, and finally, cognitive impairment (Fig. 7), which
aligns with previous findings from positron emission
tomography-imaging and cerebrospinal fluid measurements17.
Then, we applied the same approach to the protein modules
(Supplementary Data 7) and divided protein modules into early
(amyloid), mid (PHFtau), or late modules (cognitive impairment)
that altered 25% or more of the overall variation at the corre-
sponding stages (Fig. 7). Modules that showed non-monotonic
changes are termed “unspecified” modules. Notably, glial cells,
including astrocytes, microglia, and oligodendrocytes, are pri-
marily implicated in early modules, whereas excitatory and
inhibitory neurons are involved in both early, mid, and late
modules. The functions of early modules are related to mito-
chondria, synapses, protein folding, and cell defense, whereas mid
and late modules are related to translation, RNA-binding, and
transporting vesicles (Fig. 7 and Supplementary Data 8). The
early modules are particularly interesting as they showed changes
prior to cognitive decline. Interestingly, neuronal modules
decrease their activities at the early- and mid-stages, whereas glial
modules increase. It is worth noting that these modules cannot be
identified as the top key modules for ADRD progression via the
standard linear correlation approach because it assumes linear
relationships between modules and cognitive impairment, thereby
prioritizing mid and late modules (Fig. S12). The eigenvalues for
late modules calculated from raw RNA expression data also
showed the strongest associations than other modules, but weaker
associations than those of estimated proteins.

Discussion
We developed a proteome prediction model in order to overcome
a major limitation of transcriptional studies that are intended to
drive protein drug target discovery. Our approach allowed us to
prioritize differentially expressed transcripts with concordant
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protein changes and also identify ADRD-associated proteins with
negligible changes at the transcript level. This accuracy is likely
mediated by mRNAs informing the abundance of protein
machinery involved in translational processes (Fig. 3b). For
instance, the elevation of immune-related proteins and the
reduction of mitochondrial proteins were more evident at the
protein level (Fig. 5b). We found that known AD risk genes such
as APP and PICALM were strongly differentially abundant in
their estimated protein levels, but not at their mRNA levels
(Fig. 5c). Thus our integrative method complements standard
RNA-seq analysis and bridges the gap between disease genetics
and post-mortem omics.

Due to the complexity of gene regulation, the discrepancy
between mRNA and protein levels has been a standing question
since paired genome-wide measurements became available18.
Because this predictive model brings the two measurements sig-
nificantly closer together, we are able to better understand the
nature of their relationship by examining the components of the
model. There are two types of mRNA-vs.-protein relationships:
(i) across genes within a sample (ii) across samples for each gene.
For example, the RNA‐to‐protein ratio was proposed to estimate
the former relationship from RNA expression19. Our method
modeled the latter relationship, which is usually difficult to
investigate as it requires a large number of samples. Therefore,
our model was developed using the largest human brain data,
with paired mRNA and protein measurements. Although most
proteins showed a positive correlation with their mRNA levels,

the overall correlation was quite low. Notably, this is not specific
to a particular proteomics technology themselves, or limited to a
specific cohort, as we observed consistent results with three
proteomic technologies and three independent cohorts. There-
fore, the discrepancy is likely due to the various technical noises,
post-transcriptional regulation, and translational activity for
individual genes.

Although the disease signals showed a striking agreement
between the estimated and actual proteomes (Fig. 4a), the overall
correlation of protein levels is relatively low. To explore the
theoretical limit of the accuracy of protein prediction, we com-
pared two protein datasets from the same brain region in the
same individuals (N= 384) measured by TMT and SRM. Even
though the majority of proteins showed a positive correlation, an
average correlation between protein abundance quantified by
SRM and TMT methods is as low as 0.20 (Fig. S13 and Supple-
mentary Data 9). This low correlation value is likely due to the
various technical noises introduced in the multi-step sample
preparation and quantification procedures applied at scale to
postmortem brain tissues. However, this low correlation does not
limit the ability to investigate disease effects with our data as the
correlation of fold change between AD and controls is quite high
(R= 0.88, Fig. S14 and Supplementary Data 9). This seemingly
contradictory observation can be explained if we assume that
protein abundance is generated from the following model,

p ¼ bx þ Nð0; σ2Þ;

Fig. 6 Proteome-based pseudotime captures the progression of dementia. a The trajectory of brain proteome and transcriptome in older adults. Each
individual was mapped to 2-dimensional space using the spectral embedding algorithm given the top 40 PCs of the estimated proteome. Then, we used
SCORPIUS to estimate the trajectory of the protein system across individuals and pseudotime for each individual. The stream plot on the bottom shows
that the proportion of AD people is increased as the pseudotime proceeds. The density plots represent relationships of b global AD pathology, c cognitive
decline, d hemisphere volume, and e hippocampus volume with pseudotime based on estimated proteome and actual transcriptome. Pearson’s correlation
and p-value are indicated in each plot. The shaded areas represent the 95% confidence level interval for predictions from a linear model.
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Fig. 7 Pseudo-temporal ordering of cognitive dysfunction, brain pathologies, and protein modules. Protein modules and their expression levels were
computed using SpeakEasy. Pseudo-temporal changes of clinical phenotypes and module expression were smoothed using LOESS (local polynomial
regression) curve fitting. Protein modules were grouped into early, mid, and late based on the period when they altered 25% of the overall variation, which
was indicated as a thick line. Protein module annotations were based on enrichment of gene ontology and brain cell-specific genes for proteomic modules.
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where p represents measured protein abundance, x is a phenotype
of the sample, b is an effect of the phenotype x on the protein
abundance p, and the last term is a noise following the normal
distribution with zero mean and variance σ2. The noise level
greatly affects the correlation of protein abundance between two
repeated measurements. However, even if the noise level is high, b
can be estimated with a decent accuracy because the measure-
ment noise is independent of the phenotype. These empirical and
theoretical backgrounds indicate that our predicted protein data
from RNA-seq holds a reasonable accuracy to investigate protein
systems in ADRD.

Although our model performs well with brain data set from an
external cohort, the result may not guarantee that the model can
work for any transcriptome data. The model takes PCs of tran-
scriptome features or highly variable genes to look for low-
dimensional latent space. However, PC structure or variability of
gene expression could be very different among unrelated tissues.
Thus, the scope of the model is likely limited to older brains, and
re-training of the model in each tissue will be necessary to learn
the tissue-specific transcriptome-proteome relationship. Down-
sampling suggested that 100 samples are needed to obtain a 40%
increase in detected proteins (Fig. S4). Thus, despite the necessity
of acquiring some amount of paired RNA-seq and protein sam-
ples, the predictive power of the model is sufficiently strong to
plan a cost-effective multi-omics study, wherein most protein
data is estimated from RNA-seq.

In addition to its predictive accuracy, training the clei2block
model is significantly faster than the Elastic-net and the CatBoost.
To train the Elastic-net model with 5000 variables in the encoder
input, it took around 9 s per protein using a single core of Intel(R)
Xeon(R) CPU @ 2.30 GHz, and thus 20 h for all 8391 proteins. In
addition to this, the 10-fold-cross validation experiment requires
10 times more of this, which is 200 h of computing time in total.
For the CatBoost model, it took around 435 s per protein (1000 h
for all proteins) and thus will require more than 10,000 h of
computation in total. On the other hand, the clei2block model
only took 9 min to train and thus 1.5 h in total using the same
CPU with an NVIDIA Tesla T4.

There are likely multiple reasons why we found more proteins
associated with AD phenotypes than mRNAs. First, protein levels
likely reflect cognitive decline more than transcript levels, and the
estimated proteome successfully gained this phenotypical cor-
ollary. The actual data supported this hypothesis as we detected
more differentially expressed genes at protein levels than mRNA
levels in the training cohort. Second, the scGen component in the
clei2block model potentially reduces the measurement noise in
data. The reason for that is when the model is properly trained, it
will not be able to learn noise that is independent between protein
and mRNA measurements and between different genes. Thus, the
predicted protein should have less noise. If this is the case, it may
be one source of the stronger statistical significance we observe
with AD phenotypes.

The increased relevance of the predicted proteome to cognitive
decline facilitated pseudotime trajectory analysis that translates all
of the adjusted mRNA effects into a global estimate of brain state.
While a pseudotime trajectory is estimated without a priori
reference to any phenotypes, it explained 11.2% of the rate of
cognitive decline independently from demographics and RNA
pseudotime, indicating that protein pseudotime likely captures a
significant component of cognitive decline (Fig. 6c). As the
pseudotime reflects collective changes among hundreds of pro-
teins, our result indicates that the brain may cope with the
deleterious effects of ADRD by coordinating global protein sys-
tems rather than individual proteins. Interestingly, the protein
trajectory progression was also associated with atrophy of the
hippocampus region, an early inflicted region in ADRD (Fig. 6e).

Thus, the predicted protein trajectory model may provide a
unified representation of the molecular, structural, and cognitive
progression of ADRD.

In summary, deep neural network-based prediction of protein
abundance helps address a long-standing biological conundrum
and also practically provides the basis for improved systems
biology analysis of ADRD data. Specifically, we show how it
facilitates common coexpression and pseudo-temporal approa-
ches, thereby producing more accurate estimates of the protein
systems with early causal effects on ADRD progression.

Methods
Ethical statement. The ROS and MAP studies were each approved by an Insti-
tutional Review Board (IRB) of Rush University Medical Center. Both studies
enroll older persons without known dementia. All participants agree to an annual
detailed clinical evaluation and organ donation at the time of death. Prior to
enrollment, each participant signed informed consent and an Anatomical Gift Act
for (AGA) donation of the brain, spinal cord, nerve, and muscle to the investigators
for research purposes. The AGA is recognized in all 50 states and the District of
Columbia. It is an advanced directive that foregoes the need to obtain consent for
autopsy from a next of kin at the time of death. Participants also sign a repository
consent to allow their data and biospecimens to be shared in accordance with
procedures established by the relevant IRB.

Population characteristics. All human subjects are participants in one of two
prospective studies of aging (ROS and MAP). ROS/MAP is a community-based
cohort study. As community-based cohorts, ROS/MAP has much less referral bias,
which can introduce significant sociodemographic, clinical, and genetic differences
into studies of patients. At enrollment, mean education was 16.2 years, 67.8% were
female, 98.4% were non-Latino white, and 23.2% had one or more APOE 4 alleles.
While all were without known dementia at study enrollment, 7.8% met a research
diagnosis for dementia at their baseline evaluation. These are community-based
observational studies. They are not our patients. Information on other diagnoses
and treatments is limited. The mean age at death was 89.6 years and 35.9% were
diagnosed with Alzheimer’s disease at the time of death.

Recruitment. The ROS study is comprised of older catholic priests, nuns, and
monks throughout the USA. The MAP study recruits older laypersons from the
greater Chicago area. Participants are not compensated for their participation. All
visits and data collection, other than optional biennial MRI, are performed as home
visits to ensure convenience for the participant and data close to death.

Cognitive and clinical evaluations. AD diagnosis was based on criteria of the joint
working group of the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Asso-
ciation (NINCDS/ADRDA) as previously reported20. Uniform structured cognitive
and clinical evaluations are administered each year by examiners blinded to data
from prior years. Briefly, the cognitive battery contains a total of 21 cognitive
performance tests, of which 19 are used to construct a global composite measure of
cognitive function21. The longitudinal rate of decline was computed for each
participant using linear mixed models with adjustment for the effects of age, sex,
and education, which estimate person-specific residual slopes21.

Tau and beta-amyloid measurement. Tissue was dissected from eight brain
regions to quantify the burden of parenchymal deposition of beta-amyloid and the
density of abnormally phosphorylated paired helical filament tau (PHFtau)-positive
neurofibrillary tangles. Tissue sections (20 µm) were stained with antibodies against
beta-amyloid protein and PHFtau protein, and quantified using image analysis and
stereology, as previously described21,22.

RNA-seq gene expression. ROSMAP RNA-seq data of DLPFC, PCG, and AC
regions were downloaded from the AMP-AD platform (syn3388564)4. To increase
the number of samples that have both TMT proteomics and RNA-seq data, we
sequenced additional 63 TMT cases without RNA-seq data at the Rush Alzheimer’s
Disease Center. RNA was extracted using Chemagic RNA tissue kit (Perkin Elmer,
CMG-1212). RNA was concentrated (Zymo, R1080) and RQN (RIN score) was
calculated using Fragment Analyzer (Agilent, DNF-471). RNA concentration was
determined using Qubit broad range RNA assay (Invitrogen, Q10211) according to
the manufacturer’s instructions. Totally, 500 ng total RNA was used for RNA-Seq
library generation and rRNA was depleted with RiboGold (Illumina, 20020599). A
Zephyr G3 NGS workstation (Perkin Elmer) was utilized to generate TruSeq
stranded sequencing libraries (Illumina, 20020599) with custom unique dual
indexes according to the manufacturer’s instructions with the following mod-
ifications. RNA was fragmented for 4 minutes at 85 °C. First-strand synthesis was
extended to 50 min. Size selection post adapter ligation was modified to select for
larger fragments. Library size and concentrations were determined using an NGS
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fragment assay (Agilent, DNF-473) and Qubit ds DNA assay (Invitrogen)
respectively, according to the manufacturer’s instructions. The modified protocol
yielded libraries with an average insert size of around 330–370 bp. Libraries were
normalized for molarity and sequenced on a NovaSeq 6000 (Illumina) at 40–50
million reads, 2× 150 bp paired-end. RNA-Seq data processing was implemented
using three parallel pipelines, an RNA-seq QC pipeline, a gene/transcripts quan-
tification pipeline, a 3′ UTR quantification pipeline. In the QC pipeline, paired-end
RNA-Seq data were first aligned by STAR v2.623 to a human reference genome.
The primary assembly of reference genome fasta file and transcriptome annotation
came from Gencode (Release 27 GRCh38). Picard tools were applied to the aligned
bam files to assess the quality of RNA-Seq data. In the quantification pipeline,
transcript raw counts were calculated by Kallisto (v0.46)24. To quantify pre-mRNA
abundance, the transcriptome reference was customized. Transcript counts were
aggregated at the gene level to obtain gene counts separately in mRNAs and pre-
mRNAs. Samples were excluded if the total reads mapped were less than 5 million.
A total of 17,294 mRNAs and 17,804 pre-mRNAs were expressed in >50% of the
sample with at least 10 counts in each sample. These genes were included for the
downstream normalization process. First, the CQN (conditional quantile nor-
malization) was applied to adjust a sequence bias from GC content and gene
length25. Next, the adjusted gene counts matrix was converted to log2-CPM
(counts per million) followed by quantile normalization using the voom function
implemented in the limma R package26. Finally, an LR model was applied to
remove major technical confounding factors, including post-mortem interval,
sequencing batch, RQN (RNA quality number), total spliced reads reported by
STAR aligner, and metrics reported by Picard and Kallisto. To quantitate the
relative proportion of 3′ UTR isoforms in each gene, we used QAPA27. A nor-
malized 3′ UTR length was computed as the percentage of isoform-weighted 3′
UTR length28. We filtered out genes with missing UTR length in more than
100 samples or with identical UTR length in more than 95% of samples, resulting
in 3204 genes. UTR length was log2-transformed, and then technical confounding
factors were removed as described above.

Mass spectrometry-based proteomics using isobaric TMT. We utilized ROS-
MAP TMT proteomics data from frozen tissue of the DLPFC generated by other
researchers and their methods are already published in multiple papers in detail4,29.
Briefly, digested protein samples were labeled with isobaric TMT and fractionated
by high pH liquid chromatography (LC). Fractions were then analyzed by LC–MS.
The resulting MS spectra were searched against the Uniprot human protein
database and quantified. The effect of the experimental batch and PMI on quan-
tified protein abundance were regressed out via LR. Proteins with missing values in
more than 50% of the 384 subjects that overlapped with RNA-seq samples were
excluded. A total of 8,391 proteins in 384 persons passed the final QC.

Targeted selective reaction monitoring (SRM) proteomics. SRM data were
downloaded from the AMP-AD knowledge portal (10.7303/syn10468856)30. The
SRM proteomics was performed using frozen tissue from the DLPFC region for
proteins suggested by the consortium members of AMP-AD. We used 121 genes
corresponding to 171 peptides that were measured both in the TMT and RNA-seq
measurements. The samples were prepared for LC-SRM analysis using the standard
protocol30. The abundance of endogenous peptides was quantified as a ratio to
spiked-in synthetic peptides containing stable heavy isotopes. The “light/heavy”
ratios were log2 transformed and shifted such that the median log2-ratio was zero.
Finally, an LR model was applied to remove technical confounding factors
including PMI and experimental batch.

Deep-neural protein translation model (clei2block). To estimate the tissue state
that can inform the global proteome profile, we modified the scGen framework11

that is designed to find the latent state representation of the transcriptome profile.
Specifically, each transcriptome profile is encoded into low dimensional prob-
abilistic distributions and then the decoder network takes an encoded vector
sampled from the distributions to create the corresponding proteome abundance.
Then, this decoded proteome was merged with the transcript features of each
protein via an LR layer to generate a predicted proteome profile. The overall model
architecture will be found in Fig. S15. Since translational efficiency is affected by
variations in mRNA structure, we used mRNA abundance, pre-mRNA abundance,
and 3′ UTR length as input transcriptional profiles. To reduce the dimension of the
transcriptional profiles, we used the 5000 most variable transcriptional features or
top 100 PCs. For this feature selection process, we used RNA-seq data from
samples without TMT measurements to prevent information leakage from training
data. We trained 12 models with a different combination of inputs and we then
averaged all model predictions with equal weight to make a consensus prediction
(Figs. S1 and S2). This ensemble process greatly improved model performance
(Fig. 2b, c).

For training the clei2block model, we split the samples into ten folds by
balancing cognitive status and brain pathologies. Then, for each fold, we removed
the fold from the data and used the remaining data to train the clei2block model.
Within the training samples, 10% of them were used as validation data to monitor
learning progress and select the best model during the iteration. The trained model
was applied to the holdout testing data so that we obtained predicted protein data

for the holdout samples. We repeated this process for each of ten holds, resulting in
obtaining ten models trained with different training samples and holdout testing
data. To calculate overall prediction accuracy, predictions for the holdout samples
were concatenated after scaling within each hold and then contrasted with actual
proteome abundance with Pearson’s correlation (Fig. S3). This procedure ensures
no information leakage from the holdout samples.

Model parameters were optimized using Adam optimizer with a learning rate of
0.001 and 0.01 for the scGen module and the LR module, respectively. The number
of maximum training epochs was set to 10,000 with an early-stopping of 30 based
on validation loss. The clei2block model is implemented in Pytorch and trained
using an NVIDIA Tesla T4 GPU with the public docker image for Pytorch (v1.2)
on Google Cloud Platform.

Elastic net model. The elastic-net-based protein prediction model was built based
on the same data used for training the clei2block model for each protein separately.
First, two hyperparameters, alpha, and lambda were tuned via fivefold cross-
validation. Then with the hyperparameters showing the best RMSE (root-mean-
squared error), we trained the elastic-net model using the whole training data.
Lastly, the trained elastic-net model was applied to the hold-out test samples to
generate predicted protein abundance. The elastic-net model was generated using
the glmnet R library (v4.1-2).

CatBoost model. The CatBoost model was built using the catboost R library
(v0.21) with the default setting. We used 10% of the training samples as validation
data. We tuned the number of trees based on the RMSE of validation data with the
maximum number of trees of 10,000 and early stopping of 50 iterations. Because
the computation time for the CatBoost was significantly longer than elastic net or
neural networks, we did not optimize other hyperparameters. Due to this limita-
tion, the performance of CatBoost might be underestimated.

Model validation using data from MSBB cohort. To validate model prediction
with data from an external cohort, we downloaded RNA-seq data (syn8612191)
paired with label-free proteomics data (syn8495241) measured in the frontal pole
(Brodmann area 10) from 196 participants of MSBB cohort31. The demographic of
this cohort is similar to that of ROSMAP. For instance, the majority of participants
are white, and their average age of death is at least 83, whereas their age over 90 has
been censored to 90. About 63% of those are female and 51% are diagnosed as AD
based on the CERAD criterion. Fastq files were processed using the same pipeline
for the ROSMAP cohort to obtain normalized mRNA, pre-mRNA, and 3′ UTR
length values. To correct batch and technical effects, we removed the sequencing
batch, RIN, and PMI from these transcriptional matrices. Label-free quantification
of 3415 proteins for the same individuals was normalized so as to remove the effect
from the experimental batch and PMI using the script in the Synapse repository
(syn8495241). We applied each submodel trained with ROSMAP data to MSBB
data and then averaged model prediction. Then we compared the predicted protein
levels with the actual ones for 3222 proteins measured both in ROSMAP and
MSBB data.

Coexpression analysis. To statistically identify protein modules, we used a con-
sensus clustering approach SpeakEasy32. We computed the normalized protein
level by subtracting the mean level for that variable across all individuals and
dividing it by the standard deviation. Then, we summarized the composite metric
of each module in each individual by computing the mean of the normalized levels
across all variables in that module. To annotate protein modules, we performed
enrichment analysis for GO terms and brain cell-specific gene sets using Fisher’s
exact test. The cell-specific genes were obtained from the single-nucleus RNA-seq
of the DLPFC region from the ROSMAP cohort16. Specifically, reads from each cell
type were summed to create pseudo-bulk RNA-seq data, and then for each cell type
genes expressed more than twofold compared to other cell types were defined as
cell-specific. To examine whether protein modules are preserved in transcriptome
or estimated proteome, we ran modulePreservation function implemented in
WGCNA R package33. The network type was set to signed and other parameters
were set to default.

Key predictors. To evaluate the importance of input features to the prediction, we
calculated the SHAP score using GradientExplainer34. The GradientExplainer
method estimates the contribution of each input based on the difference in the
gradient of the input from the background input distribution35. To compute the
SHAP score, we used the model that takes PCs of mRNA features and mRNA, pre-
mRNA, and UTR length because the independence of input features is desirable for
an accurate estimate of variable contribution. The SHAP score was computed for
testing data of 100 random proteins. To obtain robust estimates of SHAP score, we
averaged SHAP scores from models built from different subsets of data for each
submodel. We ranked PCs based on the average absolute SHAP score. To
understand the key biological system for the prediction, we conducted GO
enrichment analysis for genes whose loading of the PCs exceeded 95 percentile of
all genes. The enrichment analysis was conducted using Fisher’s exact test with GO
terms in MSigDB v6.136.
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Protein interaction networks, transcription factors, and RNA binding proteins.
We downloaded the genomic locations of the binding sites of 171 RBPs from
POSTAR237 as of October 2018 and 833 TFs from GTRD38 as of October 2018. We
then counted the number of RBPs, and TFs bound to promoters and exons. A
promoter region of each gene was defined as the region from 2000 bp upstream of
the transcriptional start site (TSS) to 1000 bp downstream of the TSS. Protein-
protein interaction networks were downloaded from eXpression2Kinases Web39,
which consists of 209,459 interactions across 15,452 proteins. The degrees of
proteins in the networks were computed using the igraph R package (v1.2.6).

Transcriptome/proteome-wide association study. An LR model was used to test
the associations of transcripts or proteins with a continuous or categorical out-
come. Age at death, sex, and years of education were included in the model as
covariates. Bonferroni correction was employed to reduce the false positive due to
the multiple testing.

Molecular systems contributing to disease association. To estimate the SHAP
score, which is the feature contribution to predicted protein abundance, we applied
GradientExplainer to the model with mRNA-PCs and all protein-specific inputs.
The SHAP score satisfies the properties of local accuracy where the sum of feature
contribution matches the original model output. With this property, we can
evaluate how each feature affects the result of differential expression by subtracting
feature contribution from the original prediction. We calculated SHAP scores for
AD GWAS genes for the 808 samples that were not used for the model training.
For each gene, we computed the variance of protein abundance explained by AD
diagnosis, cognitive decline, and global AD pathology using the original estimated
abundance and ones with the removal of the feature contribution for each mRNA-
PC. We determined influential mRNA-PCs based on the difference in variance
explained between them. To understand the key biological systems for the gene-
disease association, GO enrichment analysis for each influential PC was conducted
as described adobe.

Trajectory analysis. To infer the brain omics trajectory, we first mapped each
individual into two-dimensional space based on the similarity of omics profile. To
do this, we used the spectral embedding method implemented in the scikit-learn
python library. Briefly, the k-nearest neighbor graph (k= 10) among individuals
was constructed based on the Euclidean distance with the top 40 PCs of their omics
profiles. Then, the structure of the graph representing individual-to-individual
relationships was embedded into low-dimensional vectors by computing eigen-
vectors of its graph Laplacian. With the two-dimensional representation of the
graph, we inferred the trajectory using SCORPIUS14 which is one of the best
performers in the recent method comparison8. Briefly, SCORPIUS partitioned
samples into three clusters and optimized the shortest as well as the smooth path
that goes through the center of clusters. Samples were projected onto the given path
and pseudotime was assigned to each sample. The pseudotime estimates were
highly robust with a range of k (5 to 50) and the number of PCs (30–60) as the
average Spearman’s correlation between estimates was 0.99. Based on the pseu-
dotime, smoothed pseudo-temporal changes of clinical phenotypes and protein
module expression were estimated using LOESS (local polynomial regression)
curves, fitting with a degree of two. The proportion of variance in cognitive decline
explained by pseudotimes and demographics was computed using relaimpo R
package.

Brain imaging. At approximately 30 days postmortem, cerebral hemispheres were
imaged in a 3-Tesla MRI scanner using previously described techniques40,41.
Images were warped to a previously developed postmortem cerebral hemisphere
template, on which we had manually drawn a mask encompassing the hippo-
campus. We back-transformed this mask onto images in their original space by
applying the inverse of the individual-to-template transform to the mask image, as
previously described42,43. After eliminating non-tissue-containing voxels, we
extracted the resultant volume of each back-transformed mask, yielding a measure
of hippocampal volume. The total hemisphere volume was calculated based on the
number of tissue-containing voxels.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq and protein data used in these analyses, the predicted proteome data, and
the estimated pseudotimes are distributed under the controlled data restrictions with a
requirement of the Data Use Agreement. The data can be requested at the RADC
Resource Sharing Hub at www.radc.rush.edu or the AD Knowledge Portal (https://
adknowledgeportal.org) with the following accessions: ROSMAP RNA-seq (syn3388564,
10.7303/syn3388564), ROSMAP TMT data (syn17015098, 10.7303/syn17015098),
ROSMAP SRM data (syn10468856, 10.7303/syn10468856), MSBB RNA-seq
(syn8612191, https://www.synapse.org/#!Synapse:syn8612191), and MSBB label-free
proteomics data (syn8495241, https://www.synapse.org/#!Synapse:syn8495241). The AD
Knowledge Portal is a platform for accessing data, analyses, and tools generated by the

Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other
National Institute on Aging (NIA)-supported programs to enable open-science practices
and accelerate translational learning. The data, analyses, and tools are shared early in the
research cycle without a publication embargo on a secondary use. Data are available for
general research use according to the following requirements for data access and data
attribution (https://adknowledgeportal.synapse.org/DataAccess/Instructions). RNA-
binding regions are available at POSTAR2 (http://postar.ncrnalab.org). Transcription
factor binding regions are available at GTRD (https://gtrd.biouml.org). Protein-protein
interaction networks are available at eXpression2Kinases Web (https://maayanlab.cloud/
X2K/). Gene ontology is available at MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/).

Code availability
The deep-neural protein translation model is available at https://github.com/stasaki/
clei2block44 and https://doi.org/10.7303/syn23624037. The code for trajectory analysis is
available at https://github.com/stasaki/SCORPIUS45.
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