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Abstract Dendrites shape information flow in neurons. Yet, there is little consensus on the level

of spatial complexity at which they operate. Through carefully chosen parameter fits, solvable in

the least-squares sense, we obtain accurate reduced compartmental models at any level of

complexity. We show that (back-propagating) action potentials, Ca2+ spikes, and N-methyl-D-

aspartate spikes can all be reproduced with few compartments. We also investigate whether

afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping

affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches

is reproduced if temporal conductance fluctuations stay below a limit that depends on the average

difference in input resistance between the ablated branches and the next proximal dendrite.

Furthermore, our methodology fits reduced models directly from experimental data, without

requiring morphological reconstructions. We provide software that automatizes the simplification,

eliminating a common hurdle toward including dendritic computations in network models.

Introduction
Morphological neuron models have been instrumental in neuroscience (Segev and London, 2000).

Major experimental discoveries, for instance that N-methyl-D-aspartate (NMDA) channels

(MacDonald and Wojtowicz, 1982) produce local dendritic all or none responses (Schiller et al.,

2000; Major et al., 2008), or that dendritic Ca2+ spikes mediate coincidence detection between dis-

tal inputs and somatic action potentials (APs) (Larkum et al., 1999), have been combined in mor-

phological models to arrive at a consistent picture of dendritic integration: the dendrite is an

intricate system of semi-independent subunits (Mel, 1993; Poirazi et al., 2003b; Poirazi et al.,

2003a), amenable to dynamic regulation (Poleg-Polsky et al., 2018; Wybo et al., 2019), and able

to distinguish specific input patterns (Branco and Häusser, 2010; Laudanski et al., 2014).

Nevertheless, morphological models are not without shortcomings. They are highly complex and

consist of thousands of coupled compartments, each receiving multiple non-linear currents. The

parameters of the models, typically fitted with evolutionary algorithms to electro-physiological

recordings (Hay et al., 2011; Almog and Korngreen, 2014; Van Geit et al., 2016), number in the

tens of thousands. Since recordings can only be obtained at a few dendritic sites, these fits are

under-constrained, and thus susceptible to over-fitting. Accordingly, the single-neuron fitting chal-

lenge, where model performance was measured on unseen spike trains, was not won by a biophysi-

cal model, but by an abstract spiking model (Gerstner and Naud, 2009; DiLorenzo and Victor,

2013). Finally, many network-level observations can be explained without morphological models

(Gerstner et al., 2012).

These shortcomings underline the need to find the essential computational repertoire of a neu-

ron: the set of computations needed to understand brain functions such as learning and memory.

Model simplification is crucial in this endeavor, as it elucidates the lowest level of complexity at
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which computational features are preserved. Conceptually, the simplification thus extracts the essen-

tial elements required for the computation from the underlying biophysics. Simulation-wise, the

reduced model requires few resources and can thus be integrated in large-scale networks. Experi-

mentally, the reduced model likely leads to a well-constrained fit.

Past simplification efforts can be grouped in two categories: approaches that use traditional com-

partments, but with adapted parameters (Pinsky and Rinzel, 1994; Destexhe, 2001; Tobin et al.,

2006; Bahl et al., 2012; Marasco et al., 2013; Amsalem et al., 2020), and approaches that rely on

more advanced mathematical techniques (Kellems et al., 2009; Kellems et al., 2010; Wybo et al.,

2013; Wybo et al., 2015). Many authors apply ad hoc morphological simplifications and then adjust

model parameters to conserve geometrical quantities, such as surface area (Davison et al., 2000;

Hendrickson et al., 2011; Marasco et al., 2013), or electrical quantities, such as attenuation (Des-

texhe, 2001) and transfer impedance (Amsalem et al., 2020). Other authors propose two-compart-

ment models whose parameters are adjusted to reproduce certain response properties (Pinsky and

Rinzel, 1994; Naud et al., 2014). Nevertheless, these approaches often lack the flexibility to be

adapted to a wide range of dendritic computations. Furthermore, particular afferent spatial connec-

tivity motifs might be lost, so that essential computations are not captured by such a reduction.

Hence, in a network model, the computational relevance of these motifs might unknowingly be

ignored. Advanced mathematical techniques on the other hand are very flexible, as they can incor-

porate the response properties of the morphology implicitly. (Wybo et al., 2013 and Wybo et al.,

2015 propose a system of convolutions whose kernels capture the passive properties of the com-

partmental model, whereas Kellems et al., 2009 and Kellems et al., 2010 linearly transform the

compartmental model into a low-dimensional basis.) However, these techniques are not supported

by standard simulation software, such as NEURON (Carnevale and Hines, 2004), a considerable hur-

dle toward their integration in the canonical neuroscience toolset.

Here, we introduce a simplification method with the flexibility of advanced mathematical techni-

ques, but using traditional compartments. The approach accommodates any morphological model

in public repositories (McDougal et al., 2017) and commonly used ion channels (Podlaski et al.,

2017). The reduced models represent the optimal approximation to the dendritic resistance matrix,

evaluated at any spatial resolution of choice. We fit ion channels by approximating the quasi-active

resistance matrices (Koch and Poggio, 1985). All our fits are uniquely solvable linear least-squares

problems. The obtained models extrapolate well to non-linear dynamics, and reproduce back-propa-

gating APs (bAPs), Ca2+ spikes (Larkum et al., 1999), and NMDA spikes (Schiller et al., 2000;

Major et al., 2008) with few compartments. Additionally, we investigate whether a dendritic tree

with given afferent spatial connectivity motifs can be simplified by ablating subtrees or branches and

grouping synapses in the next proximal compartment. We find that effective weight-rescale factors

for synapses can be computed if temporal conductance fluctuations stay below a limit that depends

on the difference in input resistance between the ablated branch and the next proximal dendrite.

Under application of these factors, voltage responses in the simplified tree are preserved. Finally, we

demonstrate that our approach can fit reduced models to experimental recordings, without the

need to reconstruct full morphologies. We have created a Python toolbox (NEural Analysis Toolbox

– NEAT – https://github.com/unibe-cns/NEAT) (copy archived at swh:1:rev:

1cb15f36aa0a764105348541d046c85ef38e21ee) that implements this method together with an

extension to NEURON to simulate the obtained models.

Results

A systematic simplification of complex neuron morphologies
Our simplification strategy fits compartments with voltage-gated channels to a reduced set of den-

dritic locations of interest (Figure 1A, left-middle). The locations, together with the morphology,

provide a tree structure for the reduced model (Figure 1A, middle-right) where each node corre-

sponds to a traditional compartment and each edge to a coupling conductance. The fit requires that

the reduced model responds similarly to perturbative current steps as the full neuron, at the set of

chosen locations (Figure 1B). We consider perturbations around any spatially uniform holding

potential vh. Experimentally, vh may be reached by injecting a constant current ih, and thus vh is the

effective equilibrium potential under this current injection. In models, we do not need to know ih; we
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simply assume that vh is the equilibrium potential around which to linearize the model. Note that if

ih ¼ 0, vh is the resting membrane potential.

Suppose we have chosen N locations. Let di be a vector describing perturbative input currents to

each of those N locations. The linearized voltage response of the full neuron, at those locations, is

given in the Fourier domain for an input of a particular frequency ! by

dvð!Þ ¼ Zvh ð!Þdið!Þ; (1)

with Zvh the quasi-active (Koch and Poggio, 1985) N�N impedance matrix. In experiments, Zvh is

extracted from dv measured in response to di. In models, Zvh is algorithmically computed based on

the full morphology, the parameters of the passive currents, and the dynamics of the voltage-gated

1 2 3

A

Figure 1. Flexible and accurate reduction methodology. (A) For any set of locations on a given morphology (left, here an L2/3 pyramidal cell

[Branco and Häusser, 2010]), a reduced compartmental model can be derived (middle), with an associated schematic representation (right). (B) Steps

of our approach: (1) choice of locations at which the reduced model should reproduce the full model’s voltage, (2) coupling, leak and channel

conductances are fitted to resistance matrices derived from the full model at different holding potentials, and (3) capacitances are fitted to mimic the

largest eigenmode of the full model. (C) The resistance matrix of the passive full model (top) restricted to the five locations in A is approximated

accurately by the inverse of the conductance matrix of the passive reduced model (bottom). Labels correspond to locations in A. (D) Example

components of the quasi-active resistance matrix of the full model, equipped with a Na+-channel, as a function of the holding potential vh. Red lines

show the four holding potentials at which our methodology evaluates the resistance matrix. Singularities correspond to holding potentials where the

linearization is invalid and should be avoided in the fit. Labels correspond to locations in A. (E) Temporal shape of exemplar input impedance kernels of

the full model (gray) and their reduced counterparts (blue, dashed). (F) Same as in E, but for transfer impedance kernels.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Resistance matrix fit details.
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ion channels (Koch and Poggio, 1985). For our reduction method, we consider perturbative current

steps, so that after an equilibration period, we obtain a steady-state voltage response dv. Note that

this corresponds to evaluating (Equation 1) at zero frequency, and that the corresponding matrix

Zvh ð!¼ 0Þ contains the input and transfer resistances. Throughout the manuscript, we maintain the

notation that z without argument signifies zð!¼ 0Þ, representing an individual input or transfer resis-

tance, and that Z signifies Zð!¼ 0Þ, representing the resistance matrix.

Linearizing the reduced compartmental model around a holding potential (see Materials and

methods — The conductance matrix) yields an N � N conductance matrix Gvh , with on its diagonal

gLiþ
X

n2N i

gC;in þ
X

d2I i

gdildðvhÞ; (2)

where gLi is the unknown leak conductance of the i-th compartment, N i the set of nearest neighbor

compartments, and gC;in the unknown coupling conductance between compartment i and compart-

ment n2N i. The second sum runs over the set I i of all linearized currents of ion channels present in

compartment i, where gdi is the unknown maximal conductance of ion channel d and ldðvhÞ is a factor

that follows from linearizing the dynamics of channel d around the holding potential vh (see

Materials and methods – Quasi-active channels). Thus, the unknowns gLi, gC;in for n2N i, and gdi for

d 2 I i are to be fitted for each compartment, and the factors ldðvhÞ are known and determined by

the ion-channel dynamics. The ij’th off-diagonal element of Gvh is �gC;ij – the negative of the cou-

pling conductance between compartments i and j – if i and j are nearest neighbor compartments on

the reduced tree structure, and zero otherwise. The conductance matrix relates the reduced model’s

voltage response to the perturbative input current steps

Gvh dv¼ di: (3)

The full neuron and reduced model will behave similarly for all possible perturbative input steps

di if their responses dv match. From (Equation 1) and (Equation 3), it follows that Zvh should be the

inverse of Gvh . Consequently, we require that multiplying the known Zvh (measured or calculated) by

the parametric Gvh yields the identity

Zvh Gvh » I: (4)

From (Equation 2), it can be seen that (Equation 4) is linear in the parameters that have to be fit-

ted (leak, coupling, and maximal ion-channel conductances of the reduced compartments). By con-

sequence, (Equation 4) can be cast into a least-squares problem and solved accurately (Figure 1C,

Figure 1—figure supplement 1A).

Since the linearized ion channel activation ldðvhÞ depends on the holding potential, Zvh changes

with vh (Figure 1D). The fit must disentangle the changes in Zvh induced by the various channels. In

models, we first block all voltage-gated ion channels in the full and reduced models and fit Gpas to

Zpas according to (Equation 4), and thus obtain leak and coupling conductances for each compart-

ment. Then, we unblock one ion channel at a time and decompose the conductance matrix into

Gvh ¼ Gpas þ Gvh;chan, with Gvh ;chan a diagonal matrix containing the conductances of the unblocked

channel, linearized around vh, at each compartment. Thus Gvh;chan depends linearly on the unknown

maximal ion channel conductance parameters. With Zvh and Gpas known, we optimize these maximal

conductances, so that the left-hand side of

Zvh Gvh;chan » I�Zvh Gpas: (5)

matches the right-hand side, and that it does so for multiple holding potentials (we chose

vh ¼�75;�55;�35, and �15 mV, Figure 1D, Figure 1—figure supplement 1D). Thus, we obtain an

overdetermined system of equations in the unknown maximal channel conductances at each com-

partment and compute its solution in the least mean squares sense.

Having fixed the steady-state behavior of the reduced model, we are left with the capacitance of

each compartment of the reduced model to match the temporal dynamics of the full model as

closely as possible. In our reductions, the capacitance of each compartment is thus a parameter to

be fitted. To do so, we found it sufficient to consider passive membrane dynamics. Blocking all volt-

age-gated ion channels in the reduced model (Gvh;chan ¼ 0), temporal voltage responses follow
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diagðcÞ _v¼�Gpasvþ i; (6)

with c a vector containing the unknown capacitance of each compartment. We require that voltage-

decay back to rest, as described by (Equation 6), matches voltage decay in the full neuron with all

active channels blocked, at the N chosen locations. According to linear dynamical systems theory

(Strogatz, 2000), this decay can be decomposed as a sum of exponentially decaying eigenmodes,

each with an associated eigenvalue ak and eigenvector fk. The former gives the exponential

time scale t k ¼ 1=ak of the decay and the latter the spatial profile of the mode. The most prominent

of these modes has the largest time scale t 0 ¼ 1=a0, and primarily models the voltage decay back to

rest through trans-membrane currents (Holmes et al., 1992). In experiments, we extract this mode

by fitting an exponential to the voltage decay. In full models, we compute the eigenvalue a0 and

eigenvector f0 – restricted to the N chosen locations – with the separation-of-variables method

(Major et al., 1993). In the reduced model, eigenmodes are found as the eigenvalues and eigenvec-

tors of the matrix S¼�diagðcÞ�1
Gpas. To fit the capacitances, we require that S has a0 as eigenvalue

and f0 as corresponding eigenvector:

Sf0 ¼ a0f0 : (7)

This system of equations is linear in the reciprocals of the capacitances entering in S and can thus

be solved efficiently.

To accurately reproduce the spatio-temporal voltage responses of the full model, the reduced

model must approximate the ‘impedance kernels’ zðtÞ (Wybo et al., 2015), the inverse Fourier trans-

forms of the frequency-dependent elements of the impedance matrix. Despite only fitting the larg-

est time scale 1=a0, we accurately reproduce kernels at all times (Figure 1E,F, Figure 1—figure

supplement 1B).

Unless a large number of closely spaced compartment sites is retained on the morphology, our

reductions replace the true axial currents flowing along the dendritic tree, which are shaped by the

distribution of ion channels in the dendritic membrane, with a strong abstraction: a single coupling

conductance between compartments that may be far apart. Hence, it is not guaranteed that the rest-

ing voltage of reduced model will be equal to the resting voltage of the full model, at the N chosen

locations. We ensure that this will be the case by fitting the leak reversals for each compartment.

The product of leak conductance and reversal represents a constant current for each compartment,

and thus does not influence model dynamics beyond fixing it’s resting voltage. To fit the leak rever-

sals, we evaluate all ion-channel currents in the reduced model at the full model’s resting voltage

and require that temporal voltage derivatives are zero. The obtained equations are linear in the

reduced model’s leak reversals, and hence can be solved efficiently. Note that our methodology

does not guarantee that the obtained reversals are within physiological limits. Thus, they should

purely be seen as fit parameters that determine the resting membrane potential.

Reduced models match the voltage response of their full counterparts
We demonstrated the reduction on two computations that require accurate spatio-temporal interac-

tion. We reproduced sequence discrimination in an L2/3 pyramidal cell model (Branco and Häusser,

2010), where a neuron responds more strongly to a centripetal sequence of inputs than to a centrif-

ugal one, by only retaining compartments on a single branch (Figure 2A). We also reproduced

input-order detection (Torben-Nielsen and Stiefel, 2009), where a neuron responds more strongly

when one input arrives before the other, by only retaining compartments at the soma and the two

input sites (Figure 2B).

We then tested our approach with non-linear currents concentrated at discrete points (hot-spots)

along the morphology. In two biophysical models – an L5 neocortical pyramid (Hay et al., 2011;

Figure 2C) and a Purkinje cell (Chen et al., 2013; Miyasho et al., 2001; Figure 2D) – we removed

active dendritic channels, but added their total conductance at rest to the passive leak (we term this

the ’passified’ model), while retaining all active channels at the soma. The soma, with its AP-generat-

ing channels, naturally forms such a non-linear hot-spot. We implemented dendritic hot-spots by

clustering sets of excitatory (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] +

NMDA) and inhibitory (g-aminobutyric acid [GABA]) synapses at randomly selected points on the

morphology. Both the reduced pyramidal cell model and the reduced Purkinje cell model accurately
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reproduced the somatic and dendritic membrane voltage traces of their full counterparts

(Figure 2C,D, middle panels). Furthermore, 97% and 89% of APs coincided within a 6 ms

window, respectively (Jolivet et al., 2008; Figure 2C,D, right panels).

Models with passive dendritic membranes but non-linear synapse clusters can already reproduce

much of the canonical computational repertoire of dendrites. Clusters of AMPA+NMDA synapses at

the distal tips of basal dendrites can make neurons function as two-layer networks (Mel, 1993;

Poirazi et al., 2003b; Poirazi et al., 2003a). Such reduced models also exhibit the same robustness

to input noise as the full models (Poleg-Polsky, 2019), and can include modulation of the co-opera-

tivity between AMPA+NMDA clusters through compartments with shunting conductances

(Wybo et al., 2019). Furthermore, because our reduced models reproduce dendritic input imped-

ance properties, long time-scale NMDA currents activate strongly in distal compartments as high dis-

tal input impedance helps to overcome their voltage-dependent Mg2+ block (Jahr and Stevens,

1990a; Jahr and Stevens, 1990b), whereas short time-scale AMPA currents dominate in more prox-

imal compartments. Thus passive models with non-linear synapse clusters also capture the shift in

computational strategy from a proximal temporal code to a distal rate code (Branco and Häusser,

2011).

Figure 2. Voltage-match between full and reduced models for spatio-temporal dendritic computations. (A) Reduction of full model (right) to a single

branch (middle) reproduces sequence discrimination (right), full model in gray, and reduced model colored for different time-steps between inputs,

centripetal (dashed), and centrifugal (dash-dotted). (B) Full model (left) and three-compartment reduction (middle, bottom) discriminate temporal order

of inputs, where the response to inputs (middle, top) ordered 1 ! 2 is stronger than 2 ! 1. Voltage responses (right) in full model (gray) and reduced

model (colored). (C, D) Reductions of resp. L5 pyramidal and Purkinje cells with active ion channels at the soma, and excitatory (AMPA+NMDA) and

inhibitory (GABA) synapses at dendritic compartment sites. From left to right: full model with compartment sites (soma S and a selected dendrite site D

are labeled), reduced model, somatic voltage with zoom on a single AP (full model in gray and reduced model in purple, input spikes at the bottom),

dendritic voltage at D (full model in gray and reduced model in green, input spikes at the bottom), and the relative root mean square voltage errors at

each compartment (root mean squared error normalized by the standard deviation RRMSEðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Avg vfull � vreducedð Þ2
q

=svfull ). Spike coincidence factor G

is also shown.
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What level of spatial complexity reproduces characteristic responses generated by somatic and

dendritic ion channels? These responses arise through the interplay of integrative properties of the

morphology – captured in the impedance kernels zðtÞ – and channel dynamics. If a full model (here

the L2/3 pyramid) is reduced to a single somatic compartment (Figure 3A), the impedance kernel

has only one time scale – the membrane time-scale (Figure 3B, top – purple). The kernel of the full

model contains additional shorter time scales (Figure 3B, top – gray), leading to a faster AP onset

than in the reduced model (Figure 3B, bottom). This effect is thus a fundamental limitation of the

A

A
A

A

Figure 3. Dendritic computations with active channels are captured by our reduced models. (A–C) Effect of compartment distribution on AP dynamics

in reduced models. (A) One- and five-compartment reductions of the L2/3 pyramid, equipped with somatic and dendritic ion channels. (B) Differences

in short time-scale behavior in somatic input impedance kernels (top) between full model (gray) and one- (purple) and five-compartment (green)

reductions result in different AP delays (bottom). (C) AP amplitude (top) and AP delay (bottom) for the three models (colors as in B). (D–F) Effect of

compartment distribution on AP back-propagation in basal dendrites. (D) Four- and two-compartment reductions of a basal branch. (E) APs at soma

(top) and most distal compartment site (bottom) for four models (full in gray, four compartments in blue, two compartments in orange, and full but with

a passive dendrite in green). (F) Amplitude (top) and delay (bottom) for bAPs at different distances from soma (if compartment is present in model),

averaged over all basal branches longer than 150 mm (error bars indicate standard deviation). (G–I) AP back-propagation in the apical dendrite of the L5

pyramid. (G) Reductions of the apical dendrite with increasing inter-compartment spacing. (H) Voltage waveform at soma (top, full in gray, Dx ¼ 100 mm

in blue, Dx ¼ 200 mm in orange) and two dendritic sites (middle, bottom). (I) Waveform amplitude as a function of distance to soma for various inter-

compartment spacings. (J, K) Ca2+-spike-mediated coincidence detection. (J) Reduction of the L5-pyramid’s apical dendrite to 11 compartments. (K)

Response to a somatic current pulse (top, left), a dendritic synaptic current waveform (top, right), and the coincident arrival of both inputs (bottom).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Further reduction of the configuration in Figure 3J by omitting compartments in the apical trunk of the L5 pyramid.
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single-compartment reduction. Extending the compartmental model with four nearby dendritic sites

(Figure 3A) adds fast components to the somatic impedance kernel (Figure 3B, top – green) that

model the spread of charge to the other compartments. These components increase AP amplitude

and decrease AP delay (Figure 3C), leading to a better match with the full model.

Dendritic ion channels support the back-propagation of APs (Stuart et al., 1997). For each basal

branch of at least 150 mm in the L2/3 pyramid, we derived reduced models with three compartments

(at 50, 100, and 150 mm from the soma) and with one compartment. We compared bAP amplitudes

and delays relative to the somatic AP (Figure 3E) and found that even models with a single distal

compartment support active back-propagation (Figure 3E,F). In the apical dendrite of the L5 pyra-

mid (Figure 3G), we found that a distance step of 100 mm between compartments was required to

support bAPs to the same degree as in the full model (Figure 3H,I).

Finally, we considered the pairing of a somatic current pulse with a dendritic post-synaptic poten-

tial waveform. We found that an 11-compartment reduction (Figure 3J) – with compartments spaced

at 100 mm through the apical trunk to support bAPs until the Ca2+ hot-zone – reproduced the Ca2+-

mediated coincidence detection mechanism (Larkum et al., 1999; Pérez-Garci et al., 2013).

Conditions under which afferent spatial connectivity motifs can be
simplified
Our method allows us to reduce morphological complexity by removing any branch or subtree with-

out affecting the integrative properties of other branches or subtrees. Up until now, we have only

considered reductions where the to-be removed branch or subtree does not receive direct synaptic

input. However, if this branch or subtree does receive synaptic input, the morphological reduction

also simplifies the afferent spatial connectivity motifs targeting it, as synapses have to be grouped at

the nearest proximal intact compartment. We assess whether the computational repertoire of the

neuron remains intact under such a simplification, or which elements of the repertoire might be lost.

We study two proxies for this repertoire: the voltage difference between full and reduced models at

the intact compartments – in order to assess whether the output of local computations in the

ablated branch or subtree can be recovered, and the difference between full and reduced models in

NMDA-spike threshold at the nearest proximal intact compartment (quantified as the smallest num-

ber of AMPA+NMDA synapses with a weight of 1 nS that need to be activated simultaneously to

elicit an NMDA spike) – in order to assess whether local integrative properties at the intact compart-

ments can also be retained under the shift of synapses. We allow ourselves the liberty of rescaling

the weights of the shifted synapses by a temporally constant factor b (Figure 4A). Which spatial syn-

apse distributions admit simplification in this sense, and under which input conditions?

For a single, current-based synapse, shifted from its original location on the ablated branch to

the next proximal compartment, we analytically compute the weight-rescale factor and find

bcurr ¼ zcs=zcc, with zcs the transfer resistance from synapse site s to compartment site c and zcc the

input resistance at c. Since zcs<zcc (Koch, 1998), the weight-rescale factor weakens the shifted syn-

apse, so that it matches the attenuation of its distal counterpart. Nevertheless, when s is located

more distally on the same branch or subtree as c, the transfer resistance zcs is often close to the input

resistance zcc (Figure 1—figure supplement 1E). Thus, bcurr is often close to one, and hence negligi-

ble (Figure 4B,C). For a conductance-based synapse, rescaling weights by bcurr does not accurately

fit the full model (Figure 4B). We decompose the synaptic conductance gðtÞ as gþ dgðtÞ, with g the

temporal average and dgðtÞ the fluctuations around g. We then analytically compute (see Materials

and methods — Synaptic weight-rescale factors) that the weight-rescale factor for a conductance-

based synapse

bcond ¼
1

1þDzg
(8)

recovers the full model’s voltage if

DzdgðtÞ� 1þDzg; (9)

where Dz¼ zss � zcc is the difference between input resistance zss at the original synapse site s and

input resistance zcc at the nearest proximal compartment site c. Multiplying the synaptic weights by

bcond weakens the synapse so that it matches the shunt effect of its distal counterpart, and so that
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the voltage at all compartments more proximal than c and in their respective side branches is repro-

duced (Figure 4D).

If s and c are close, Dz is small and (Equation 9) is satisfied for plausible conductance fluctuations.

Thus, shifting the synapse to the next proximal compartment keeps the voltage response intact. If

the separation between s and c increases, Dz increases accordingly, and the magnitude of tolerated

conductance fluctuations shrinks (Equation 9). Thus, for a given magnitude of dgðtÞ, it is possible

Figure 4. Simplification of afferent spatial connectivity motifs. (A) Removal of a branch with a synapse (red triangle) is considered possible if the correct

voltages at the compartment sites (here, dendritic – green square and somatic – purple square) can be obtained by shifting the synapse to the

compartment site and rescaling its weight with a fixed factor b for the all input conditions under consideration. (B) Comparison between weight-rescale

factors for current-based (left) and conductance-based (right) input. Voltage trace for dendritic compartment without rescaling (gray) and with the

current-based scale factor bcurr compensating for attenuation (blue). Bottom right panel shows voltage trace with conductance-based scale factor bcond .

(C) Current- and conductance-based scale factors in the green dendritic branch, for a shift of a synapse at a given distance from the soma to the

dendritic compartment site (green square). (D) Spatial peak voltage without (left, blue) and with (right, orange) application of bcond . (E) For a cluster of

AMPA+NMDA synapses in isolation, scale factors for physiological constants can be obtained (see Materials and methods — Synaptic weight-rescale

factors) that reproduce the correct voltage waveform. Colors as in D. (F) Maximal amplitude of NMDA-spike waveform upon activation of increasing

numbers of synapses – NMDA-spike thresholds indicated with vertical lines. Colors as in D. (G–H) Removing a whole subtree and shifting multiple

synapses (red triangles) to the next proximal compartment site (green square). NMDA-spike generation (gray voltage trace) at the compartment site

through burst inputs to local AMPA+NMDA synapses (green inputs), with AMPA (blue) and GABA (red) background inputs spread throughout the

subtree. Reductions shown without rescaling (blue, dash-dotted), with the analytical single-site rescaling rule (red, full) and the numerical multi-site rule

(orange, dashed). (I) Error in NMDA-spike threshold for the three cases in H. (J) Dependence of the error in NMDA-spike threshold on the factor Dz g,

with Dz the average input resistance difference between synapse sites and the compartment and g the average synaptic conductance.
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that a thick branch can be removed, but not a thin branch, as the input resistance increase in the for-

mer is much more gradual than in the latter. Nevertheless, (Equation 9) suggests that even for large

Dz the full model’s voltage can be recovered by downscaling synaptic weight by bcond, but only if

dgðtÞ � g. A tonic level of AMPA and/or GABA activation, as in the high-conductance state

(Destexhe et al., 2003), can implement this input condition. For NMDA synapses, this input condi-

tion does not hold, as NMDA spikes arise through a strong, transient conductance increase. How-

ever, when a cluster of such synapses – to be moved to a proximal site – is considered in isolation, a

workaround can be found by applying constant rescale factors not just to synaptic weight, but also

to threshold and width of the Mg2+ block, as well as to the reversal (see Materials and methods —

Synaptic weight-rescale factors). These factors recover NMDA-spike shape (Figure 4E) and threshold

(Figure 4F) when the cluster is moved to from s to c.

Our analytical weight-rescale factor bcond treated reductions where a single site s was moved to c.

We consider now the ablation of a whole subtree and the shift of all its synapses to c (Figure 4G). In

our simulations, we distributed 100 AMPA and 100 GABA synapses on the to be ablated subtree,

and activated them with a Poisson process with fixed rate. We studied how the reduction influenced

the local integrative properties at the intact compartment c. As a proxy for those integrative proper-

ties, we checked the shape of the waveform elicited by activating AMPA+NMDA synapses at c in a

short burst (Figure 4H), and we quantified the threshold for NMDA-spike generation. We found that

neither shape nor threshold were preserved by the analytical weight-rescale factors bcond, derived for

the case where only a single input site is present on the subtree. We numerically extend the deriva-

tion of the weight-rescale factors to multi-site inputs (see Materials and methods – Synaptic weight-

rescale factors). These extended weight-rescale factors bext
cond reproduced local voltage (Figure 4H)

and NMDA-spike threshold (Figure 4I). We also investigate whether bext
cond can still be conceptualized

as depending on Dzavg gavg – the product between (1) a difference in average input resistance

between synapses on the to be ablated subtree and the compartment site and (2) the average con-

ductance load exerted by those synapses. To do so, we activated the 100 AMPA and 100 GABA syn-

apses on the to be ablated subtree at a wide range of input conditions (see Materials and methods

– Simulation-specific parameters), and measured the error in threshold for NMDA-spike generation

at c. We found that this error depended strongly on Dzavg gavg and remained small for Dzavg gavg � 1

(Figure 4J).

In conclusion, we can now assess whether given spatial synapse motifs on branches or subtrees

admit simplification by shifting the synapses to the nearest proximal compartment site and ablating

the branch or subtree. We find that reduction in this sense is possible for any motif if fluctuations are

small, so that dgðtÞ � g, by applying temporally constant weight-rescale factors. Otherwise, the syn-

apses must be located sufficiently closely to the compartment site, so that Dz is small and that Dz dg

remains below 1þ Dz g for all relevant activation levels.

Active and passive reduced dendrites under synaptic bombardment
We next investigated how many compartments are needed to reproduce somatic and dendritic

responses under a synaptic bombardment and quantified the contribution of active dendritic Na+,

Ca2+, and K+ channels. We mimicked the in vivo state in the basal dendrites of the L2/3 pyramid by

distributing 200 AMPA and 200 GABA synapses receiving Poisson inputs and 20 clusters of AMPA

+NMDA synapses receiving bursts of inputs (Figure 5A). We sampled 10 different sets of meta-

parameters governing synaptic activation (Poisson and burst rates and synaptic weights, see Materi-

als and methods — Simulation-specific parameters), resulting in output spike rates between 0 and 8

Hz (Figure 5B). We derived reduced models, once based on the full model with all active channels

(‘active reduced dendrite’ in Figure 5C) and once based on the passified full model (‘passive

reduced dendrite’ in Figure 5C). We distributed increasing numbers of compartment sites on the

basal branches and measured somatic and dendritic voltage responses for the active full model and

for the reduced models with active and passive dendrites (Figure 5C, Figure 5—figure supplement

1 for dendritic traces). Spike coincidence (Figure 5D), subthreshold somatic voltage error

(Figure 5E), and dendritic voltage error (Figure 5F) showed a significant improvement when com-

partment numbers increased from 0 (point-neuron – top row in Figure 5C) to 2 per 100 mm. In the

presence of active channels, the error decreases until up to three compartments per 100 mm
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(Figure 5E,F). Spike coincidence factors were consistently ~10% higher than in the passive case

(Figure 5D).

Fitting reduced models directly to experimental data
Traditionally, creating a morphological neuron model involves a reconstruction of the morphology

and an evolutionary fit of the electrical parameters (Hay et al., 2011; Almog and Korngreen, 2014;

Van Geit et al., 2016). Our method allows skipping these resource-intensive steps (Figure 6A). We

adapt our method to a common experimental paradigm where hyper- and depolarizing current

steps are injected under applications of various ion-channel blockers (Marti Mengual et al., 2020).

We extract resistance matrices and holding potentials from voltage step amplitudes (Figure 6B),

and the time scale of the largest eigenmode from the average voltage decay back to rest

(Figure 6C). If the modeling goal is a reduced model, the traditional reconstruction and subsequent

reduction both introduce errors (Figure 6D). Thus, we find that while our reduction of the full model

is faithful within an expected accuracy margin (Figure 6E), fitting a reduced model directly to the

experimental traces is more accurate (Figure 6F).

Figure 5. Reductions with active and passive dendritic compartments under in vivo like conditions. (A) AMPA and GABA synapses, and AMPA+NMDA

synapse clusters are spread randomly throughout the basal dendrites of the L2/3 pyramid (inset). AMPA and GABA synapses receive Poisson inputs and

AMPA+NMDA synapses receive bursting input (right). (B) Output spike rates of the full model for 10 different input configurations. (C) Reductions with

increasing numbers of compartment sites along the basal dendrites (left). Somatic voltage traces and spike times for the full model (gray), for a

reduction with passive dendrites (middle, blue) and a reduction with active dendrites (right, orange). (D–F) Spike coincidence factors (D), relative

somatic voltage errors (E) and relative dendritic voltage errors (F) for reductions with increasing numbers of compartments, and with passive (blue) and

active dendrites (orange), averaged over all 10 input configurations. Relative voltage errors are computed as in Figure 2C,D.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Dendritic voltage traces for reductions with passive and active dendrites.
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Discussion
We have presented a flexible yet accurate method to construct reduced neuron models from experi-

mental data and morphological reconstructions. The method consists of linear parameter fits at hold-

ing potentials that are informative for the full non-linear dynamics. First, we derive leak and coupling

conductances from the passified version of the full model. Second, we fit the maximal conductances

of the active ion-channels, so that the reduced model, at various holding potentials, responds simi-

larly to input perturbations as the full model. Third, we fit the capacitances to reproduce spatio-tem-

poral integrative properties. Finally, we ensure that resting membrane potentials in the full and

reduced models match. The resulting method can be adapted to a wide variety of use cases.

A fundamental use case is deriving reduced models that retain specific elements of the dendritic

computational repertoire, to explore how those dendritic computations may improve network func-

tion. To that purpose, one can apply our method to compartments placed at input sites needed for

Figure 6. Fitting reduced models directly to experimental data. (A) Comparison between the traditional neuron model creation paradigm

(morphological reconstruction and evolutionary fit, possibly followed by a reduction), and the proposed direct experiment to reduced dendrite model

paradigm. (B) Resistance matrices and holding potentials are extracted from the response amplitude to hyper- and depolarizing current step inputs,

here measured once under application of an h-channel antagonist and once under control conditions. (C) Time scale of largest eigenmode is extracted

from average decay back to the resting membrane potential. (D) Combined root mean square voltage error RMSEðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Avg vfull � vreducedð Þ2
q

of full

model (gray) – fitted to current step data through an evolutionary algorithm, of the reduction of the full model (red), and of the direct fit of the reduced

model to the data (brown). (E) Experimentally recorded traces (gray), traces from the full reconstruction (black), and its reduction (green and purple,

dashed). (F) Experimentally recorded traces (gray) and traces from the directly fitted reduced model (green and purple, dashed).
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the computation of interest. For instance, if a computation requires independent computational sub-

units (Poirazi et al., 2003b; Kastellakis et al., 2016), one would place compartments at the den-

dritic tips. If one wants to modulate co-operativity of excitatory inputs at distal sites, one would

place compartments with shunting conductances at the bifurcations between the distal sites

(Wybo et al., 2019). Detecting input sequences (Branco and Häusser, 2010) or implementing a

dendritic integration gradient (Branco and Häusser, 2011) would require placing two or more com-

partments along the branches of interest. For many of these computations, a passive morphology

with non-linear (NMDA) synapses suffices. Furthermore, our method can be combined with abstract

models of AP generation (Pozzorini et al., 2013; Pozzorini et al., 2015).

A second use case is constructing models directly from electro-physiological recordings. Our

method avoids the labor-intensive detour of reconstructing the morphology and optimizing model

parameters with an evolutionary algorithm (Marti Mengual et al., 2020). In combination with advan-

ces in voltage-sensitive dye imaging, our method may thus form the basis of a high-throughput

experiment-to-model paradigm.

A third use case is elucidating the effective complexity of a given dendritic tree. We assessed

whether afferent spatial input motifs could be simplified by removing a branch or subtree and

grouping the affected synapses at the next proximal compartment. We found that such simplification

is possible when the input resistance of the affected synapse sites is close to the input resistance of

the compartment site. If this condition does not hold, the simplification can still proceed if conduc-

tance fluctuations are small compared to the average conductance magnitude, but not otherwise.

What is the simplest model for a given dendritic tree that captures its full computational repertoire?

We find that spike coincidence and subthreshold voltage metrics reach satisfying accuracy at, but do

not improve much beyond ~3 compartments per 100 mm. Further research is required to tease apart

mere numerical errors from potentially missed computational features.

The process of simplifying complex dynamical systems, such as morphological neuron models, is

inherently approximate. Due to the vast variety of morphologies, voltage-gated ion-channel configu-

rations and input patterns, it is beyond the scope of any single paper to give an exhaustive overview

of possible inaccuracies. Rather, we propose three lines of inquiry if a reduction fails to reproduce a

particular response pattern. First, we suggest checking the discrepancy between the impedance ker-

nels zðtÞ of the full and reduced models. Often, response mismatches arise from slight inaccuracies in

how ion-channel dynamics are integrated by the passive system (Figure 3A–C). Second, we suggest

assessing to what degree afferent spatial input motifs, present in the full model, are simplified, and

whether that simplification still admits a sufficient accuracy in reproducing local voltage-dependent

responses, such as NMDA spikes (Figure 4). Finally, we suggest checking whether the distribution of

compartments on the morphology admits ion channel dynamics that are sufficiently rich to repro-

duce the response characteristic in question. To illustrate these lines of inquiry, we have further sim-

plified the L5 pyramid to five compartments, by omitting the compartments in the apical trunk

(Figure 3—figure supplement 1A vs Figure 3J). This reduction results a change in AP shape, and in

a failure to elicit AP bursts through the pairing of a somatic and a dendritic input, even though a

Ca2+ spike can still be elicited (Figure 3—figure supplement 1B). Likely, the change in AP shape

can be traced back to the difference in the somatic input impedance kernels (Figure 3—figure sup-

plement 1C), while the failure to elicit an AP burst may be due to insufficient Na+-driven cross-talk

between soma and apical tuft.

Computational tools have played a key role in neuroscience. Take NEURON (Carnevale and

Hines, 2004), which accelerated our understanding of morphological neurons, or NEST

(Gewaltig and Diesmann, 2007), which enabled simulation of large-scale spiking point-neuron net-

works. We have implemented a Python toolbox that automatizes the simplification process (NEural

Analysis Toolkit – NEAT – https://github.com/unibe-cns/NEAT; copy archived at swh:1:rev:

1cb15f36aa0a764105348541d046c85ef38e21ee). The toolbox reads any morphology in the standard

‘.swc’ format (Ascoli, 2006) and returns the parameters of the reduced models, while also providing

tools to export the models to NEURON (Carnevale and Hines, 2004).

Our method and toolbox fill a void in between the extremes of modeling large-scale networks

with abstract models and modeling single cells in all their detail. By enabling the efficient systematic

derivation of simplified neurons, amenable to simulation at the network level, our work bridges the

gap between two branches of neuroscience that historically have remained separate.
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Materials and methods

Morpohologies
Three exemplar cell models were used for the analysis: a cortical L2/3 pyramidal cell (Branco and

Häusser, 2010; Figure 2D), a cortical L5 pyramidal cell (Hay et al., 2011; Figure 2E), and a cerebel-

lar Purkinje cell (Figure 2F). The latter morphology was retrieved from the NeuroMorpho.org reposi-

tory (Ascoli, 2006) and the two others from the ModelDB repository (McDougal et al., 2017).

Physiological parameters
In our passive models, physiological parameters were set according to Major et al., 2008: the equi-

librium potential was �75 mV, the membrane conductance 100 �S=cm2, the capacitance 0:8 �F=cm2,

and the intracellular resistivity 100 W � cm. For the active models, we took ion channels and parame-

ters according to Branco and Häusser, 2010 for the L2/3 pyramid, Hay et al., 2011 for the L5 pyra-

mid, and Miyasho et al., 2001 for the Purkinje cell.

AMPA and GABA synaptic input currents were implemented as the product of a conductance

profile, here a double exponential (Rotter and Diesmann, 1999), with a driving force:

isyn ¼ g ðer � vÞ: (10)

AMPA rise resp. decay times were t r ¼ 0:2ms, t d ¼ 3ms and AMPA reversal potential was

e¼ 0mV. For GABA, we used t r ¼ 0:2ms, t d ¼ 10ms, and e¼�80mV. NMDA currents (Jahr and

Stevens, 1990a) had the form:

isyn ¼ gsðvÞ ðe� vÞ (11)

with rise resp. decay time t r ¼ 0:2ms, t d ¼ 43ms, and e¼ 0mV, while sðvÞ, modeling the channel’s

magnesium block, had the form (Behabadi and Mel, 2014):

sðvÞ ¼
1

1þ 0:3e�0:1v
: (12)

The ‘conductance’ of an AMPA or GABA synapse signifies the maximum value of its conductance

window. For an AMPA+NMDA synapse, the conductance is the maximal value of the AMPA conduc-

tance window, and the conductance of the NMDA component is determined by multiplying the

AMPA conductance value with an NMDA ratio RNMDA, set to be either 2 or 3.

Biophysical models
We used the NEURON simulator (Carnevale and Hines, 2004) to implement biophysical and

reduced models. For the biophysical models, the distance step was set according the lambda rule

(Carnevale and Hines, 2004) or smaller.

Quasi-active channels
A voltage-dependent ion channel described by the Hodgkin–Huxley formalism can in general be

written as follows:

i¼ gf ðy1; . . . ;yKÞ ðv� eÞ; _yk ¼ gkðyk;vÞ for k¼ 1; . . . ;K; (13)

where g is the channel’s maximal conductance, e its reversal potential, y1; . . . ;yK its state variables,

f ð
&
Þ a function that depends on the channel type (e.g. for a typical sodium channel f ðm;hÞ ¼m3 h),

and gkðyk;vÞ (k¼ 1; . . . ;K) the functions governing state-variable activation (gkðyk;vÞ can usually be

written as ðy¥kðvÞ� ykÞ=t kðvÞ with y¥kðvÞ the state-variable’s activation and t kðvÞ its time scale). To

obtain the channel’s quasi-active approximation (Mauro et al., 1970; Koch and Poggio, 1985)

around a holding potential vh and a state variable expansion point y0
1
; . . . ;y0K , we linearize

(Equation 13):
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ilin ¼ g
X

K

k¼1

qf

qyk
ðy0

1
; . . . ;y0KÞðvh � eÞðyk � y0kÞþ fðy0

1
; . . . ;y0KÞ ðv� vhÞ

" #

;

_yk ¼
qgk

qyk
ðy0k ;vhÞðyk � y0kÞþ

qgk

qv
ðy0k ;vhÞ ðv� vhÞ fork¼ 1; . . . ;K:

(14)

To obtain the zero-frequency contribution of (Equation 14) to the resistance and conductance

matrices, we set _yk ¼ 0, solve the linearized state-variable equations for ðyk � y0kÞ, and substitute the

result in ilin:

ilin ¼ g �
X

K

k¼1

qf

qyk

qgk
qv

qgk
qyk

ðvh � eÞþ fðy0
1
; . . . ;y0KÞ

" #

ðv� vhÞ: (15)

Introducing a shorthand for the factor in square brackets

lðvhÞ ¼�
X

K

k¼1

qf

qyk

qgk
qv

qgk
qyk

ðvh � eÞþ fðy0
1
; . . . ;y0KÞ (16)

results in the linearized ion-channel current as described in (Equation 2).

The impedance matrix
The voltage response dvxðtÞ at a location x along the neuron to an input current perturbation dix0ðtÞ

at location x0 can be computed as the convolution of an impedance kernel with dix0ðtÞ:

dvxðtÞ ¼ zxx0ðtÞ*dix0ðtÞ: (17)

The impedance kernel itself can be computed in the frequency domain from the quasi-active

cable equation using Koch’s algorithm (Koch and Poggio, 1985). We may assume any a priori arbi-

trary set of holding potentials and ion-channel state variables to compute the quasi-active expansion

(with Koch’s algorithm, the only constraint is that their distribution is uniform for each cylindrical seg-

ment). For our purpose, spatially uniform holding potentials and state-variable expansion points suf-

fice. For a steady-state current dix0 , (Equation 17) simplifies to:

dvx ¼ zxx0 dix0 ; (18)

where we term zxx0 ¼
R

¥

0
dt zxx0ðtÞ the ‘resistance’ (zxx0 is also known as the input resistance if x¼ x0 or

the transfer resistance if x 6¼ x0). For passive membranes, impedance kernels can also be computed

as a sum of exponentials (Holmes et al., 1992; Major et al., 1993):

zxx0ðtÞ ¼
X

¥

l¼0

flðxÞflðx
0Þe

� t
t l ; (19)

where we adopt the ordering t 0 � t 1 � t 2 � . . . Essentially, this infinite sum can be thought of as the

generalization of the eigenmodes for linear dynamical systems (Strogatz, 2000) to partial differential

equations.

When a current perturbation is applied at multiple sites along the neuron (we write

diðtÞ ¼ ðdi1ðtÞ; . . . ; dinðtÞ), we obtain the voltage response dvðtÞ ¼ ðdv1ðtÞ; . . . ; dvnðtÞ at those sites from:

dvðtÞ ¼ ZðtÞ*diðtÞ; (20)

with ZðtÞ the matrix of impedance kernels (the ij’th elements of this matrix is the impedance kernel

between sites i and j). In the steady-state case, we call Z the resistance matrix.

Compartmental models
The voltage vi in a compartment i, connected to a set N i of nearest neighbor compartments, and

with a set of ion channels I i, is given by
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ci _vi þ gLi ðvi� eLiÞþ
X

n2N i

gC;in ðvi � vnÞþ
X

d2I i

idi ¼ ii; (21)

where ci is the capacitance of compartment i, gLi resp. eLi its leak conductance resp. reversal, gCin its

coupling conductance to the neighboring compartment n, idi the ion channel current (Equation 13)

of channel d in compartment i and ii an arbitrary input current to compartment i.

The conductance matrix
To obtain the conductance matrix of the compartmental model for steady-state inputs, (Equation 21)

is linearized around a certain holding potential vh and we assume that _vi ¼ 0. After absorbing all con-

stant terms into ii, we obtain

gLi dvi þ
X

n2N i

gC;in ðdvi� dvnÞþ
X

d2I i

gdildðvhÞdvi ¼ ii; (22)

where dvi ¼ vi� vh, where gdildðvhÞ is the linearized ion-channel current (Equation 15), and where we

used the notation (Equation 16). Summarizing the voltage responses for each compartment in a vec-

tor dv¼ ðdv1; . . . ;dvNÞ, (Equation 22) for each compartment i¼ 1; . . . ;N can be recast as a matrix

equation, yielding (Equation 3).

Simplification method details
For any given set of M sites on the morphology, we construct a simplified compartmental model

whose connection structure follows a tree graph defined by the original morphology (Figure 1A).

We do not allow triplet connections (e.g. sites 1–2, sites 2–3, and sites 3–1 all mutually connected) in

our reduced models. Hence, to obtain accurate results, it is necessary to extend the original set of M

sites with the B bifurcation points that lie in between (Figure 1—figure supplement 1C). With these

N ¼ M þ B sites, we thus define a tree graph that provides the scaffold for our fit (and our reduced

model).

The fitting process proceeds in four steps: (1) fit the passive leak and coupling conductances, (2)

fit the capacitances, (3) fit the maximal conductances of the ion channels, and (4) fit the reversal

potentials to obtain the same resting membrane potentials as in the biophysical model. The order of

steps 2 and 3 is interchangeable, but not of the other steps. We describe these steps in detail

below:

1. If the biophysical model contains active conductances, we compute their opening probabilities
at rest and add them to the leak. Otherwise, we simply take the leak as is. We then compute Z

for the N compartment sites. In the passive case, Z is independent of the holding potential. In
(Equation 21), we substitute _vi ¼ 0, ic ¼ 0. The terms gLi eLi are a constant contribution, and
can thus be absorbed in ii. We obtain:

gLi vi þ
X

n2N i

gC;in ðvi� vnÞ ¼ ii; i¼ 1; . . . ;n (23)

which, when recast in matrix form, yields (Equation 3). (Equation 4) then yields a system of N2

equations, linear in gLi and gC;in (note that this system always has 2N � 1 unknowns). We recast
this system of equations in a form Ag ¼ b and solve it in the least-squares sense for g.

2. To fit the capacitances, we set ic ¼ 0 and again absorb gLi eLi in ii in (Equation 21) to obtain:

_vi ¼
1

ci
�gLi viþ

X

n2N i

gC;in ðvn � viÞ

 !

þ
ii

ci
; i¼ 1; . . . ;n: (24)

In matrix form, we obtain (Equation 6) with S ¼ diagðcÞ�1
G. We require that this matrix has the

same smallest eigenvalue (corresponding to the largest time scale t 0) a0 ¼ 1=t 0 and eigenvec-
tor f0 ¼ ðf0ðx1Þ; . . . ;f0ðxNÞ as the biophysical model, as defined by (Equation 19). Hence, we
obtain the system of (Equation 7) that can be solved for c.

3. We compute the maximal conductances of each ion-channel type separately. Thus, next to set-
ting _vi ¼ 0, we set ic ¼ 0 for all but one of the channels – call the non-zero channel d – and
replace id with its quasi-active, zero-frequency approximation (Equation 15). We choose a
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spatially uniform holding potential vh and expansion point ðy0
1
; . . . ; y0KÞ for ion channel d. We

absorb constant terms in ii and obtain (Equation 21) in terms of dvi ¼ ðvi � vhÞ:

gLi dviþ
X

n2N i

gC;in ðdvi� dvnÞþ gdildðvhÞdvi ¼ ii: (25)

We again recast this equation in matrix form, but distinguish the known passive component
Gpas from the unknown diagonal matrix Gvh;chand containing as its i’th diagonal element the
channel term gdildðvhÞ:

Gpas þGvh;chand

� �

dv¼ i: (26)

From the biophysical model, we compute Z by setting all ion channel conductances except
channel d to zero, to obtain the fit (Equation 5).

By consequence, we have a system of N2 equations, linear in the N unknown maximal conduc-
tances gd ¼ ðgd1; . . . ; gdNÞ, that can be recast in a form A gd ¼ b, where A and b depend on the
holding potential and expansion points. On the one hand, we aim to compute these lineariza-
tions for a sufficiently large range of holding potentials and expansion points. On the other
hand, the fit should be restricted to domains of the ion-channel phase space where the chan-
nel resides during normal input integration, so as to avoid over-fitting on domains of the phase
space that are never reached. We choose four holding potentials around which to linearize:
vh ¼ �75;�55;�35 and �15 mV. For channels with a single state variable y, we choose

y0 ¼ y¥ðvhÞ for these four holding potentials. For channels with two state variables, we com-

puted y0
1
¼ y¥1ðvhÞ and y0

2
¼ y¥2ðvhÞ for the four holding potentials, and choose sixteen expan-

sion points as all possible combinations of these two state variables. We then weigh the
matrices A and vectors b with the inverse of the open probability f ð

&
Þ for their respective

expansion point, concatenate the matrices A and vectors b for each of these expansion points,

and obtain the system Aext gd ¼ bext of EN
2 equations (with E the number of expansion points)

and N unknowns. We solve this system in the least-squares sense for gd and repeat this proce-
dure for each voltage-dependent ion channel in the biophysical model.

4. Finally, we fit eLi (i ¼ 1; . . . ;N) to reproduce the resting membrane potential
veq ¼ ðveq1; . . . ; veqNÞ of the biophysical model evaluated at the compartment sites. We substi-
tute this potential in (Equation 21), set _vi ¼ 0 and ii ¼ 0 for i ¼ 1; . . . ;N and obtain:

gLi ðveqi� eLiÞþ
X

n2N i

gC;in ðveqi� veqnÞþ
X

c2Ci

icðveqiÞ ¼ 0; i¼ 1; . . . ;n: (27)

This is a system of N equations, linear in the N unknowns eLi (i ¼ 1; . . . ;N), and can thus be
solved with standard algebraic techniques.

Synaptic weight-rescale factors
To be able to analytically compute the weight-rescale factor when a synapse with temporal conduc-

tance gðtÞ is moved from its original site s to a compartment site c on a dendritic tree, we use the

steady-state approximation (Equation 18). Because we implicitly convolve the rescaled synaptic cur-

rent with the temporal input impedance kernel zccðtÞ at the compartment site when we simulate the

reduced model, the weight-rescale factor still yields accurate temporal voltage responses

(Figure 4B,E,H). In the original configuration, we have

vc

vs

8

>

>

:

9

>

>

;¼
cczcc zcs

zsc zss

8

>

>

:

9

>

>

;

ic

gðtÞðe� vsÞ

8

>

>

:

9

>

>

;; (28)

with ic an arbitrary current at the compartment site and g resp. e the synaptic conductance resp.

reversal. Eliminating vs from this yields

vc ¼
zccþðzcczss � zcszscÞgðtÞð Þicþ zcs gðtÞe

1þ zss gðtÞ
: (29)

In the reduced configuration we have:
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v0c ¼ zcc ic þbgðtÞðe� v0cÞ
� �

: (30)

From requiring that vc ¼ v0c, b is found as follows:

b¼
zcs

zcc

zcsic � e

1þ zss �
z2cs
zcc

� �

gðtÞ
h i

zccic � 1þ zss � zcsð ÞgðtÞ½ �e
: (31)

When zcc » zcs, which is true in basal dendrites and a reasonable approximation in many apical den-

drites if c is on the direct path from s to the soma, (Equation 31) reduces to

b¼
1

1þðzss � zccÞgðtÞ
: (32)

The weight-rescale factor hence depends on time. Decomposing the time-varying gðtÞ into

gþ dgðtÞ, with g the temporal average and dgðtÞ the fluctuations around g, we find (Equation 8) and

(Equation 9) from requiring that the denominator of (Equation 32) be constant in time:

b¼
1

1þDzgþDzdgðtÞ
¼

1

1þDzgð Þ 1þ DzdgðtÞ
1þDzg

� � »
1

1þDzg
if

DzdgðtÞ

1þDzg
� 1 (33)

where Dz¼ zss � zcc.

In the case of an NMDA synapse, the conductance depends sigmoidally on the local voltage.

Using scale factor (Equation 8), we obtain for the rescaled synaptic current at the compartment site:

i0s ¼
gsðvs;vT ;DvÞ

1þðzss � zccÞgsðvs;vT ;DvÞ
ðe� vcÞ: (34)

This current still depends on the voltage at the synaptic site vs in the sigmoid. A current at the

compartment site that causes a voltage vc there would have caused a voltage

vs ¼ veqþ
zss

zcc
ðvc � veqÞ (35)

if it was placed at the synapse site. Hence, to retain the same activation level of the NMDA synapse,

we substitute (Equation 35) in the sigmoid. This amounts to a change in threshold and width of the

sigmoid:

sðvs;vT ;DvÞ �! sðveqþ
zss

zcc
ðvc � veqÞ;vT ;DvÞ ¼ sðvc;

zcc

zss
ðvT þ veqÞ� veq;

zcc

zss
DvÞ: (36)

We will denote this modified sigmoid as s0ðvÞ. We have not yet succeeded in reformulating

(Equation 34) by only rescaling its parameters with constant rescale factors, since

1=ð1þðzss � zccÞgs0ðvcÞ still depends on time through its dependence on vc. To obtain constant

rescale factors, we substitute the (Equation 34) in (Equation 17):

vc� veq ¼ zccðtÞ*
gs0ðvcÞ

1þðzss � zccÞgs0ðvcÞ
ðe� vcÞ

� �

: (37)

Here, the current in square brackets is the synaptic current. The convolution to obtain vc is imple-

mented implicitly by the compartmental model. We then approximately eliminate the denominator:

vc � veq »zccðtÞ* gs0ðvcÞðe� vcÞ�
zss� zcc

zcc
gs0ðvcÞðvc � veqÞ

� �

(38)

to obtain for the synaptic current:

i0s ¼
zss

zcc
gs0ðvcÞ

zcc

zss
ðe� veqÞþ veq� vc

� �

: (39)

We thus find that the synaptic weight is rescaled by a constant factor zss
zcc

and the reversal potential

is shifted to zcc
zss
ðe� veqÞþ veq. Note however that this reduction relies on two key assumptions: that
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there are no other inputs to the dendritic tree and that there are no fluctuations in vc generated by

input currents not at site s, as this could lead to spurious activation or suppression of s0ðvcÞ.

Suppose now we shift M conductance synapses to N compartments. Let

v ¼ ðv1; . . . ; vN ; vNþ1; . . . ; vNþMÞ be the vector with K ¼ N þM components containing the voltages at

the N compartment sites and at the M synapse sites. Similarly g ¼ ð0; . . . ; 0; g1; . . . ; gMÞ is a vector of

K components containing N zeros and the M synaptic conductances, while e ¼ ð0; . . . ; 0; e1; . . . ; eMÞ

contains the synaptic reversals. In matrix form, (Equation 18) for this system becomes:

v¼ Z diagðgÞðe� vÞ; (40)

and its solution:

v¼ Ge; (41)

with G a matrix given by:

G¼ IþZ diagðgÞð Þ�1
Z diagðgÞ: (42)

In the reduced setting, we assign each synapse to one compartment site (a reasonable choice

could be the closest site). We introduce an N�M compartment assignment matrix C where an ele-

ment cnm is 1 if synapse m is assigned to compartment n and zero otherwise. We further introduce a

vector of reduced compartment voltages v0 ¼ ðv0
1
; . . . ;v0NÞ, a vector of rescaled synaptic conductances

g0b ¼ ðb1 g1; . . . ;bM gMÞ and a vector of synaptic reversals e0 ¼ ðe1; . . . ;eMÞ. In the reduced model, vol-

tages are obtained from:

v0 ¼ ZCdiagðg0bÞ e0�CT v0
� �

: (43)

We then require that vN ¼ v0, with vN a vector containing the first N components of v. We denote

by GNM the matrix containing the first N rows and last M columns of G, and note that we can write

(Equation 41) as vN ¼ GNM e0. Substituting this in (Equation 43) yields:

GNM e0 ¼ ZCdiagðg0bÞ e0�CT GNM e0
� �

: (44)

We then fit the parameters b1; . . . ;bM (here absorbed in g0b) in the least-square sense from:

GNM ¼ ZCdiagðg0bÞ I�CT GNM

� �

; (45)

which again is a linear fit.

Experimental recordings
Coronal slices (300 mm thick) containing the anterior cingulate cortex (ACC) were prepared from 10

to 12 week old C57BL/6 mice using a vibratome on a block angled at 15 degree to the horizontal in

ice-cold oxygenated artificial cerebral spinal fluid (ACSF) and then maintained in the same solution

at 37˚C for 15–120 min. Normal ACSF contained (in mM) NaCl, 125; NaHCO3, 25; KCl, 2.5;

NaH2PO4, 1.25; MgCl2, 1; glucose, 25; CaCl2, 2; pH 7.4. Individual neurons were visualized with a

Nikon Eclipse E600FN fit with a combination of oblique infrared illumination optics and epifluores-

cence, the switch between optical configurations was software-triggered (Sieber et al., 2013). Pyra-

midal neurons were selected on the clearly visible, proximal apical dendrite. This selection criterion

resulted in a homogeneous population of pyramidal neurons based on their firing properties and

shape of the AP (i.e. all cells possessed a prominent after-hyperpolarization and a significant sag

ratio at the soma). Dual somatic and dendritic whole-cell patch-clamp recordings were performed

from identified L5 pyramidal neurons in the rostroventral ACC (1.1–1.4 mm below the pial surface,

1.1–0.2 mm rostral to the Bregma) using two Dagan BVC-700. During the experiments, the external

recording solution (normal ACSF) was supplemented with 0.5 mM CNQX and 0.5 mM AP-5 to block

excitatory glutamatergic synaptic transmission. Experiments were performed at physiological tem-

peratures between 34–37˚C. Whole-cell recording pipettes (somatic, 4 to 8 MW; dendritic, 12 to 32

MW), were pulled from borosilicate glass. The internal pipette solution consisted of (in mM) potas-

sium gluconate, 135; KCl, 7; Hepes, 10; Na2-phosphocreatine, 10; Mg-ATP, 4; GTP, 0.3; 0.2% biocy-

tin; pH 7.2 (with KOH); 291–293 mosmol l�1. For somatic recordings, 10–20 mm Alexa 594 was
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added to the intracellular solution: first, the soma was patched (whole-cell configuration by negative

pressure); after 5 min of intracellular perfusion, the fluorescent signal allowed for the clear identifica-

tion of the apical dendritic tree, then the dendritic region of interest was patched with a smaller

pipette. Compensation was performed in current clamp mode by recovering the fast, initial square

voltage response to a hyperpolarizing current injection (�100 pA, 50 ms). First the pipette capaci-

tance was compensated to the level that the voltage response showed an immediate voltage drop

due to the series resistance of the pipette that was adjusted subsequently. Compensation of den-

dritic series resistance yielded values between 30 and 60 MW for pipettes with a resistance between

17 and 21 MW. On average, series resistance was 2.3 times larger than the pipette resistance. Series

resistance of both somatic and dendritic recording electrodes was monitored frequently, and experi-

ments were terminated when proper compensation was not possible anymore (i.e. reached values of

more than four times the pipette resistance). All cells were filled with biocytin, and PFA-fixed slices

were developed with the avidin–biotin-peroxidase method for Neurolucida reconstructions

(Egger et al., 2008). Data analysis was performed using Igor software (Wavemetrics) and Excel

(Microsoft).

Simulation-specific parameters
Parameters Figure 2
For the sequence detection (Figure 1f), the synapse model is as in Branco and Häusser, 2010. The

maximal conductance of the AMPA component is gAMPA ¼ 0:5 nS and its conductance window shape

given by an alpha function (Rotter and Diesmann, 1999) with a time scale of 2 ms. The NMDA com-

ponent is given by a kinetic model (Destexhe et al., 1998) with gNMDA ¼ 8 nS and external magne-

sium concentration of 1 mM, and receives an exponentially decaying (t ¼ :5 ms) neurotransmitter

concentration with amplitude of 5 mM. For the input-order detection (Figure 1G), AMPA synapses 1

and 2 use the standard parameters and have respective maximal conductances of 10 and 5 nS. For

the simulation with the L5 pyramidal cell, excitatory synapses have AMPA+NMDA components with

RNMDA ¼ 2 and g ¼ 3 nS. For inhibitory synapses, g ¼ 2 nS. In the Purkinje cell, excitatory synapses

only have AMPA components with g ¼ 10 nS, while for inhibitory synapses, g ¼ 5 nS. For the L2/3

pyramid, L5 pyramid, resp. Purkinje cell, excitatory Poisson rates are 2, five resp. 6 Hz and inhibitory

firing rates are 4, one resp. 2 Hz. Simulation were run for 10,000 ms.

Parameters Figure 3
APs are evoked with a DC current pulse. For panels A–C, pulse amplitude is iamp ¼ 0:5 nA and pulse

duration is tdur ¼ 5 ms. For panels D–F, we have iamp ¼ 3 nA and tdur ¼ 1 ms. For panels G–I,

iamp ¼ 1:5 nA and tdur ¼ 5 ms. For panels J–K, the somatic current pulse had iamp ¼ 1:9 nA and

tdur ¼ 5 ms, while the dendritic current injection had a double exponential waveform, with t r ¼ 0:5

ms and t d ¼ 5 ms and amplitude iamp ¼ 0:5 nA. Onset of the somatic current pulse precedes onset

of the dendritic current injection by 5 ms.

Parameters Figure 4
In panel B, we inject Ornstein–Uhlenbeck (OU) processes for current (mean � ¼ 0:08 nA and standard

deviation s ¼ 0:025 nA) and conductance (� ¼ 0:005 mS, s ¼ 0:0025 mS). Reversal was 0 mV for the

excitatory conductance and �80 mV for the inhibitory conductance. All OU processes had a

time scale of 30 ms. In panels D–F, we use AMPA+NMDA synapses with g ¼ 0:5 nS and RNMDA ¼ 3.

Burst firing is mimicked by drawing synapse activation times from a Gaussian distribution with as

mean the burst time and a standard deviation of 2 ms.

In panels G–J, AMPA+NMDA synapses at the compartment site (green square) have g ¼ 1 nS and

RNMDA ¼ 2. To determine the NMDA-spike threshold, we activate between 0 and 200 synapses in a

burst. The burst is again modeled by drawing spike times from a Gaussian distribution with a 2 ms

standard deviation. We then multiply the amplitude of the resulting waveform with its half-width,

and average this quantity over five trials for each number of activated synapses. The number of syn-

apses at which this quantity increases most is taken to be the NMDA-spike threshold.

We aim to test the synaptic weight-rescale factors for the AMPA and GABA synapses bext
cond under

a wide range of input conditions. To do so, we conduct simulations with different total time-aver-

aged conductance loads gavg, exerted by the AMPA and a GABA synapse on the subtree that is to
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be reduced. These synapses are activated with spike times drawn from a homogeneous Poisson pro-

cess. We also also change the size of the conductance fluctuations, by conducting simulations with

different firing rates for the homogeneous Poisson processes (since the total conductance load for a

simulation is fixed, a small firing rate means that individual synaptic weights have to be increased to

reach the desired total conductance load, hence resulting in larger conductance fluctuations). We

furthermore change the number of locations on the subtree nloc over which the conductance load is

distributed. Note that by consequence, the conductance load at each location is gavg=nloc. We also

adapt these locations to a specified average difference in input resistance Dzavg between the com-

partment site and the location. Finally, we change the average voltage level achieved by the com-

bined AMPA and GABA input by changing the ‘nudging potential’ en (Urbanczik and Senn, 2014)

en ¼
gAMPAeAMPA þ gGABAeGABA

gAMPA þ gGABA

; (46)

where gAMPA resp. gGABA are the time-average conductances of individual AMPA resp. GABA synap-

ses, and gAMPA ¼ 0 mV resp. gGABA ¼�80 mV their respective reversal potentials.

We thus draw five meta-parameters for each simulation: gavg, ravg, nloc, Dzavg and en. The time-aver-

aged conductance at each location is given by

gavg=nloc ¼ gAMPA þ gGABA: (47)

Together with (Equation 46), this fixes the time-averaged conductance of each individual AMPA

synapse and GABA synapse. Since the temporal conductance profile of a synapse (e.g. the AMPA

synapse) following the arrival of a single input AP is modeled as the product of a weight factor

wAMPA and a unitary conductance window guAMPAðtÞ, the time-averaged conductance of that synap-

ses activated by a homogeneous Poisson process input is

gAMPA ¼wAMPA ravg

Z

¥

0

dt guAMPAðtÞ: (48)

Thus, given ravg and gAMPA, the synaptic weight wAMPA can be extracted (and similarly for the

GABA synapse).

To perform simulations across a wide range of input conditions, we draw 200 samples of these

five meta-parameters from the intervals: en 2 ½�80mV;�50mV�, gavg 2 ½0:01nS; 300nS�,

ravg 2 ½1Hz; 100Hz�, nloc 2 ½1; 20�, and Dzavg 2 ½0MW; 1023:2MW� following the Latin hypercube (LH)

method (Press et al., 2007). gavg and ravg are sampled on a log scale, whereas for all other parame-

ters, we use a linear scale.

Parameters Figure 5
To obtain compartment sites, we divide the longest branch in each basal subtree in n parts of equal

length, thus giving us n distances from the soma, where we increase n from 0 (point-neuron) to 10. In

each subtree, we distribute compartments at all sites at these distances, and also add all bifurcation

sites in between compartment sites. In this way, we obtain 11 reductions that we quantify according

to ‘no. of compartments per 100 mm of dendrite’. We implement 400 ‘background’ synapses; 200

AMPA and 200 GABA synapses with an average conductance of gAMPA resp. gGABA ¼ 4 gAMPA and

firing rate rAMPA ¼ ravg resp. rGABA ¼ ravg. We implement 20 synapse clusters, consisting of AMPA

+NMDA synapses with maximal conductance gAþN and RNMDA ¼ 2. These clusters are activated with

a Poissonian burst rate rburst, the number of spikes per burst is drawn from a Poisson distribution

with parameter navg, and spike times are drawn for each burst time according to a Gaussian distribu-

tion with standard deviation of 5 ms. For each of the parameters not given previously, 10 LH samples

were drawn from gAMPA 2 ½0:4nS; 0:8nS�, ravg 2 ½1:5Hz; 3:0Hz�, gAþN 2 ½0:5nS; 1:5nS�, navg 2 ½10; 30�,

and rburst 2 ½0:25Hz; 0:6Hz�, resulting in 10 different output spike rates shown in B. For each parame-

ter set, a simulation was run for 10,000 ms.

Parameters Figure 6
Hyper- resp. depolarizing current steps have iamp ¼ �:3 nA resp. iamp ¼ :1 nA and tdur ¼ 500 ms. The

full model was optimized with an evolutionary algorithm using the BluePyOpt library (Van Geit
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et al., 2016), where we ran 100 iterations with and offspring size of 100. Goodness of fit was evalu-

ated in a multi-objective manner as the root mean square error of the resting voltage (average volt-

age 100 ms before each current step), the final step voltage amplitudes after sag (average voltage

during the last 100 ms of the DC current injection), and the voltage root mean square error of the

full trace. We optimized the specific membrane capacitance and the conductance densities for pas-

sive leak and h, Kir and Km channels. The membrane currents followed an exponential distribution

gðxÞ ¼ g0e
x=dx , with x the distance from the soma, and as parameters g0 – the conductance at the

soma – and dx – the length constant of the distribution.

Data and software availability
NEAT (NEural Analysis Toolbox), our open-source Python toolbox to obtain reduced models, is avail-

able on https://github.com/unibe-cns/NEAT (copy archived at swh:1:rev:

1cb15f36aa0a764105348541d046c85ef38e21ee).
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Häusser M

2010 Dendritic Discrimination of
Temporal Input Sequences

https://senselab.med.
yale.edu/ModelDB/
ShowModel?model=
140828#tabs-1

ModelDB, 140828

Chen XR, Heck N,
Lohof AM,
Rochefort C, Morel
M, Rosine W,
Doulazmi M, Marty
S, Cannaya V, Avci
HX, Mariani J,
Rondi-Reig L,
Vodjdani G,
Sherrard RM

2013 Mature Purkinje Cells Require the
Retinoic Acid-Related Orphan
Receptor-� (ROR�) to Maintain
Climbing Fiber Mono-Innervation
and Other Adult Characteristics

http://www.neuromor-
pho.org/neuron_info.jsp?
neuron_name=Purkinje-
slice-ageP35-2

NeuroMorpho.org,
NMO_100072

References
Almog M, Korngreen A. 2014. A quantitative description of dendritic conductances and its application to
dendritic excitation in layer 5 pyramidal neurons. Journal of Neuroscience 34:182–196. DOI: https://doi.org/10.
1523/JNEUROSCI.2896-13.2014, PMID: 24381280

Amsalem O, Eyal G, Rogozinski N, Gevaert M, Kumbhar P, Schürmann F, Segev I. 2020. An efficient analytical
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