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Purpose: Delayed rod-mediated dark adaptation (RMDA) is a functional biomarker for
incipient age-related macular degeneration (AMD). We used anatomically restricted
spectral domain optical coherence tomography (SD-OCT) imaging data to localize de
novo imaging features associated with and to test hypotheses about delayed RMDA.

Methods: Rod intercept time (RIT) wasmeasured in participants with andwithout AMD
at 5 degrees from the fovea, and macular SD-OCT images were obtained. A deep learn-
ingmodel was trained with anatomically restricted information using a single represen-
tative B-scan through the fovea of each eye. Mean-occlusion masking was utilized to
isolate the relevant imaging features.

Results: The model identified hyporeflective outer retinal bands on macular SD-OCT
associated with delayed RMDA. The validation mean standard error (MSE) registered to
the foveal B-scan localized the lowest error to 0.5 mm temporal to the fovea center,
within an overall low-error region across the rod-free zone and adjoining parafovea.
Mean absolute error (MAE) on the test setwas 4.71minutes (8.8%of the dynamic range).

Conclusions:We report a novel framework for imaging biomarker discovery using deep
learning and demonstrate its ability to identify and localize a previously undescribed
biomarker in retinal imaging. The hyporeflective outer retinal bands in central macula
on SD-OCT demonstrate a structural basis for dysfunctional rod vision that correlates to
published histopathologic findings.

Translational Relevance: This agnostic approach to anatomic biomarker discovery
strengthens the rationale for RMDA as an outcome measure in early AMD clinical trials,
and also expands the utility of deep learning beyond automated diagnosis to funda-
mental discovery.

Introduction

Age-related macular degeneration (AMD) causes
significant visual impairment and progressive loss of
central vision in older adults.1 Although therapies
are available for exudative AMD, the more common
nonexudative form of AMD still lacks an effective
treatment.2,3 Early biomarkers for nonexudative AMD
are needed to advance clinical trials of potential thera-

pies and to help identify patients at risk for progressing
to advanced disease. Imaging biomarkers are favored
for speed and objectivity; ideally, imaging biomarkers
are also indices of visual function.

Delayed rod-mediated dark adaptation (RMDA) is
a slower return to retinal sensitivity following a bright
light flash stimulus and a known functional biomarker
for incipient early AMD. Older patients with normal
macular health who show delayed RMDA, measured
as longer rod intercept times (RITs), have an increased
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risk of developing AMD.4,5 In addition, delayed
RMDA has been associated with common polymor-
phisms of two major AMD-associated genes, comple-
ment factorH and the age-relatedmaculopathy suscep-
tibility 2 (ARMS2) gene.6 The idea that rod-mediated
vision has merit for documenting the progression of
macular disease is well supported. First, older adults
in normal health report difficulty with visual tasks
performed at low luminance levels.7 Second, compre-
hensive maps of photoreceptor density in human
macula demonstrate not only a high density of foveal
cones but also numerous rods.8 Expressed in units of
the widely used Early Treatment Diabetic Retinopa-
thy Study (ETDRS) grid, the central subfield contains
almost exclusively cone photoreceptors, the inner ring
(0.5–1.5 mm from the foveal center) has a 4:1 rod:cone
ratio, and the outer ring (1.5–3 mm) has a 10:1 ratio.9
Eyes of aged donors exhibit loss of rods especially
in the inner ring.10 Third, RMDA was proposed by
Bird and Fitzke as a dynamic measure of retinoid
resupply to rods across the choriocapillaris-Bruch’s
membrane-retinal pigment epithelium (RPE) inter-
face,11 where AMD pathology is prominent, and given
a strong neurophysiologic underpinning by Lamb and
Pugh.12 Fourth, documented cellular and molecular
age changes in the retinoid resupply route include loss
of macular choriocapillaris and lipidization of Bruch’s
membrane due to retention of lipoproteins of intraoc-
ular origin, while RPE cell numbers are maintained,
suggesting a vascular-originating degeneration.13–15 In
contrast, cone-mediated visual acuity in bright light
can remain preserved well into the disease course,
attributed to additional sustenance by foveal Müller
glia.

Early signs of AMD, as revealed by color fundus
photography, can also be detected on spectral domain
optical coherence tomography (SD-OCT). Normal
outer retinal structure shows bands of varying
reflectivity on SD-OCT due to horizontally aligned,
vertically compartmentalized photoreceptors and
supporting RPE and glia.16,17 In early and inter-
mediate AMD, hyper-reflective foci (clumps) in the
retina are associated with both progression risk and
delayed RMDA.18–20 Recent studies clearly linked
aberrant imaging findings in imaging to histopatho-
logic changes.20,21 However, biomarkers for even
earlier stages of disease may require a different strat-
egy. The intricacy and small size of outer retinal cells
challenge histologic quantification of anatomy due
to disorganization during postmortem processing,
including problems discerning the lengths of photore-
ceptor inner and outer segments. Thus, SD-OCT
images of the human retina in vivo have the potential
to answer such questions. In addition, human eyes
are advantageous for studying AMD over laboratory

animals lacking maculae. Even monkey eyes that do
have maculae and develop drusen are less overall rod-
dominant than humans and do not progress to AMD
end-stages.22,23

Advances in artificial intelligence may provide novel
methods for identifying anatomic features on SD-OCT
that correlate with a knownmeasure of retinal dysfunc-
tion. Deep learning algorithms in particular offer a
unique approach to this challenge. Unlike automated
diagnostic machine learning models,24–28 which are
trained using hand-labeled data to detect known
findings, supervised deep learning models can also be
trained to identify image characteristics that corre-
spond to a known measurement in a previously unrec-
ognized way.29,30 Using functional, objective training
targets with visualization techniques, a deep learning
model could potentially identify novel imaging features
and specific anatomic details on SD-OCT that correlate
with a known functional biomarker, such as delayed
RMDA. In this study, we sought to train deep learning
models to predict the rate of RMDA using RIT and
anatomically restricted SD-OCT imaging data as well
as localize de novo imaging features associated with
RMDA.

Methods

This study was approved by the Institutional Review
Board of the University of Alabama at Birmingham,
followed the tenets of the Declaration of Helsinki and
was conducted in compliance with the Health Insur-
ance Portability and Accountability Act. Informed
consent was obtained from all subjects. The collec-
tion of data for the Alabama Study on Early Age-
Related Macular Degeneration has been described
previously.4,31

SD-OCT volumes were obtained with Spectralis
HRA + SD-OCT (Heidelberg Engineering, Heidel-
berg, Germany). We acquired SD-OCT volumes of
all maculae (Spectralis HRA + SD-OCT; Heidel-
berg Engineering). B-scans (n = 73) were horizontally
oriented and centered over the fovea in a 20 degree ×
15 degree (5.7 × 4.2 mm) area. Automatic Real-Time
averaging was 8 to 18, and quality was 20 to 47 dB. All
SD-OCT images shown in this paper are unadjusted
from the original manufacturer’s intensities.

Dark adaptation was measured at 1-2 visits, using
theAdaptDx (MacuLogix, Harrisburg, PA) adaptome-
ter in a 20 minute test protocol, which has been
described4,32 and validated33 in previous studies.
Briefly, patients’ eyes were dilated to ≥ 6 mm and the
non-test eye was occluded. The test eye was aligned to a
red fixation light using an infrared camera system, and
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a focal photoflash (0.25 ms duration, 58,000 scotopic
cd/m2 second intensity; equivalent approximately 85%
bleach) centered at 5 degrees on the superior vertical
meridian was applied for bleaching. Targets were then
presented to this area every 2 to 3 seconds (beginning
at 5.00 cd/m2) and decreasing in intensity by steps (0.3
log units), and patients responded by pressing a button
when they saw a stimulus light until they could no
longer detect them. The stimulus light intensity then
increased in small (0.1 log unit) increments, and the
intensity at which the patient was able to detect the light
once again was recorded. The RIT was defined as the
duration after the photo bleach required for sensitiv-
ity to recover to a stimulus light sensitivity of 5 × 10−4

cd/m2, which is located within the second component
of rod recovery.12 No subjects were excluded due to
fixation loss or poor reliability. The RIT and the OCT
images were captured on the same day orwithin 1week.

The dataset was partitioned into three mutually
exclusive sets at the patient level for training (60%),
validation (20%), and test (20%). A conceptual frame-
work for processing and localizing biomarkers was
developed (Fig. 1). This framework consisted of two
parts. First, the SD-OCT volumes were anatomically
registered and deep learning models were separately
trained on narrow bands of the B-scan that passed
through the foveal center of each eye, where each band
was centered at an anatomic location (see Fig. 1B).
Second, the vertical B-scan window that corresponded
to the anatomic location with the highest performance
was then extracted (see Fig. 1B) and systematically
perturbed to find the areas leading to higher or lower
predicted RIT using the test set (see Fig. 1C). Only B-
scan vertical windows were used to train the models.
The number of B scans per volume did not differ
between subjects.

In part one, one B-scan that was found to pass
through the foveal center was extracted from each
volume. At each anatomic location in this foveal B-
scan, a 64 × 256 pixel window was created such that
the anatomic location was in the middle of the window
and the vertical placement of the window was placed
on the horizontal maximum intensity projection. A
deep learning model was trained for each anatomic
location using the same neural architecture (Supple-
mentary Figure S1). The input to themodel was the raw
pixel intensities divided by 255, without other normal-
izations or transformations from the 64 × 256 pixel
window, and the output for themodel was a single node
with linear activation to predict the RIT divided by 40
minutes from the RMDA testing to scale the output
of the models between 0 and 1. Mean squared error
was used as the loss function. Weights for the convolu-
tional layers were initialized randomly using the Xavier

normal distribution.34 Nesterov Adam35 was used as
an optimizer with an initial learning rate of 2 × 10−4.
Batch size was set to 26 and the number of epochs
was set to 600. For each anatomic position, nine repeti-
tions of the training session were performed to account
for different random initializations because the main
outcome of the study was to evaluate the model capac-
ity to learn to predict the RIT. Each training session
used a fixed set of hyperparameters. The validation
losses were collected and the weights of models from
the lowest validation loss of each training session were
saved for further analysis (see Fig. 1B).

For part two, test-set vertical B-scan images from
the anatomic location with the lowest loss were used
for visualization of relevant features. At each pixel
position in the image for the whole OCT B-scan, a
16 × 6 pixel window was occluded using the mean of
the pixel intensity of the window and inference was
performed. Occlusion using permuted pixel intensities,
zero intensity, different window sizes led to similar
results. The difference in predicted RIT between the
model output of the altered image and the unaltered
image was measured for an occlusion window centered
at each pixel position. A color map with the differ-
ence in predicted perturbed RIT from the unper-
turbed RIT was then plotted to visualize both length-
ening and shortening perturbations on theOCTB-scan
(see Fig. 1C). These differences were then evaluated
qualitatively using a random sampling method in the
test-set.

All analyses were performed using Python (version
2.7.12) and R (version 3.3.2). Deep learning models
were developed using Keras (version 2.2.0), Tensor-
flow (version 1.7.0), accelerated usingNVIDIACUDA
(version 9.0.333), and trained on a server with dual
Xeon 3.4 GHz processors, 256 GB of random access
memory, and 8 x NVIDIA P100 GPUs.

Results

Seven hundred fifteen patients were imaged using
SD-OCT and tested for RMDA. RIT was measured in
737 eyes in 1-2 visits, resulting in 1218 OCT volumes
of individual eyes paired with RIT measurements. The
demographics of this population are shown in the
Table 1.

Convolutional neural networks were independently
trained on each of the narrow SD-OCT bands at
various anatomic locations. At each anatomic location,
the model was trained nine times with newly random-
ized initialized weights, and the weights correspond-
ing to the lowest root mean squared error (RMSE) in
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Figure 1. Concept diagram of framework for biomarker discovery using deep learning. The overall framework is shown in (A). After align-
ing spectral domain optical coherence tomography (SD-OCT) images, separate datasets are created and different convolutional neural
networks (CNN) deep learning models are trained (B). The frozen models with the best performance, lowest validation loss, are system-
atically perturbed with mean occlusion in the test set and perturbations increasing and decreasing the predictions are shown in green and
red, respectively (C).

the predicted RIT were chosen out of each training
session. The RMSE and mean absolute error (MAE)
of the nine models at each anatomic position were
averaged (Fig. 2A) and collected as a function of eccen-
tricity from the fovea in mm (see Fig. 2B). The trained
models achieved an overall MAE across all the bands

in the test set of 4.71 minutes for predicting RIT (8.8%
of the dynamic range and lower than normal upper
bound of 12.3 minutes).4 In the test set, the correlation
between the predicted RIT and the true RIT showed
moderately high correlation (Pearson’s correlation of
0.69).
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Table. Patient Characteristics

Training Validation Test Total

Patients, n 424 148 143 715
Gender, n
Male 147 57 56 260
Female 277 91 87 455

Race
White 405 145 130 680
African American 15 3 15 28
Asian 2 0 1 3
Other 2 0 2 4

Eyes, n 436 154 147 737
SD-OCT volumes, n 711 254 253 1218
Age, mean (SD) 70.9 (6.4) 71.0 (6.3) 71.5 (6.2) 71.0 (6.3)
AREDS (Grade) Category, n
Normal (1) 482 170 173 825
Early (2–4) 167 70 57 294
Intermediate (5–8) 47 13 19 79
Advanced (9–11) 15 1 4 20

Rod intercept time minutes, mean (SD) 13.2 (9.0) 12.9 (8.4) 13.3 (10.3) 13.1 (9.2)

Demographic information and age-related macular degeneration disease severity of study participants.
AREDS, Age-Related Eye Disease Study; SD, standard deviation; SD-OCT, spectral domain optical coherence tomography.

Figure 2B plots RSME across an entire foveal
B-scan. This curve decreases smoothly from highest
values at approximately 2 mm eccentricity to lowest
values (i.e. most accurate RIT predictions), at 0.34
mm within a central area 1 mm in diameter (0.5
mm radius, or eccentricity from the foveal center).
This region corresponds to the central subfield of the
ETDRS grid, commonly used in clinical and epidemi-
ologic studies,36 and includes the all-cone fovea (350 μm
diameter) with a rim of low rod density. In the macular
retina immediately surrounding the fovea, cone density
steadily declines and rod density steadily increases.8

Using images from the test set centered on 0.34 mm
(1.2 degrees) nasal eccentricity, the relative impact of
systematic mean-occlusion based perturbations were
assessed on the trained models. For each pixel position,
an occlusion mask was placed using the mean value of
the occlusion window, and inference was performed,
where the predicted RIT was the nine-model ensem-
ble average. The deep learning model dependence on
specific SD-OCT features was identified by systemati-
cally perturbing the input images and testing the model
error. The resulting differences in the RIT predictions
were compared against the baseline RIT prediction
without perturbations, identifying specific SD-OCT
signatures that the models were most dependent upon
for predicting RIT. Because RIT is a continuous value,
both the direction and magnitude of the perturbed

inferences were measured. The specific SD-OCT signa-
tures of different areas that caused a longer, more
pathologic RIT were identified.

Visual observation of the test set results showed that
themodel was reliant on two hyporeflective regions that
bounded the ellipsoid zone (EZ) of the inner segment
(Fig. 3). The first region of interest represents the
myoid portion of the photoreceptor inner segments
(above the EZ) and the second represents a relatively
hyporeflective area below the EZ and above the inter-
digitation zone (IZ), between the outer segment tips
and the RPE apical processes (below the EZ).37 The
areas associated with an increase of RIT were in the
myoid zone, whereas areas associated with a decrease
of RIT were localized to apical and basal aspects
of the RPE cell body, possibly including choriocap-
illaris basally. Examination of high-resolution extrac-
tions from these areas in the test set revealed that subtle
reflectivity changes in these areas were correlated with
the RIT (Fig. 4).

Discussion

Advancements in artificial intelligence with the
advent of deep learning have revolutionized biomed-
ical image analysis. Although many applications of
deep learning models have been shown to reach expert
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Figure 2. Performance of deep learning models by anatomic
location. Training curves for two different anatomic locations (blue
andorange curves) (A) by rootmean standard error (RMSE) andmean
absolute error (MAE); shaded region shows 95%confidence intervals
by repeated training sessions. The anatomic positions are indicated
by the two dotted lines of corresponding color in panel (B). Lowest
error on foveal B-scan bymillimeters eccentricity and RMSE loss with
lower being higher performance B. The fovea is labeled with the
white arrow.

level consensus for automated diagnosis and feature
segmentation, current applications mainly recapitu-
late human understanding of diseases. In our study,
we demonstrate a novel framework for localization
and identification of biomarkers using deep learning
by first restricting information to anatomically regis-
tered locations and subsequently applying visualiza-
tion techniques. By training a deep learningmodel with
1218 SD-OCT volumes paired with RMDA measure-
ments, we isolated the relevant imaging features corre-
sponding to the RMDA in a label-agnostic way. Thus,
we discovered hyporeflective outer retinal bands, in a

specific topography, as a novel structural basis for a
functional biomarker of incipient AMD. Our use of
deep learning in this study is additionally novel relative
to recent publications in ophthalmology by focus-
ing on mechanistic questions rather than automated
diagnosis.25,38–42 Interestingly, our findings point to
specific laminar and topographic correlations within
the retina for delayed RMDA, over and above person-
level associations, such as genetic predisposition6 and
plasma metabolites.43–46

Human retina at the interface of aging and early
AMD is especially suited for the demonstrated frame-
work of novel biomarker discovery. The eye is the
brain’s camera, and in it the photoreceptors and
supporting cells (glia, vascular endothelium, and RPE)
are deployed with high geometric precision similar to a
charge-coupled device chip. Comprehensive histologic
mapping studies show that humans have a cone-only
fovea with the point of highest cone photoreceptor
density in the foveal center.8 Rods are absent from this
center. In young adults, rods outnumber cones 4:1 at
0.5-1.5 mm eccentricity9 and crest in an elliptical ring
at 3 to 5 mm, encircling the optic nerve head. In eyes
of older adults like those included in our data, cones
are stable in number and rods decline 30% in the 0.5
to 1.5 mm ring, exactly including the location of our
biomarker.

What are the anatomic correlates of the OCT signa-
tures identified as associated with delayed RMDA?
Each reflective band in the outer retina represents
the precise horizontal alignment of vertically compart-
mentalized cells (i.e. photoreceptors, RPE, and Müller
glia).47 One prominent landmark is the hyperreflec-
tive EZ, which in commercial SD-OCT represents
the mitochondria-rich ellipsoid of photoreceptor inner
segments. In Figure 3, the EZ is flanked above and
below with hyporeflective bands that are predictive of
RIT. The upper of these hyporeflective bands identi-
fied in this study represents the myoid portion of
photoreceptor inner segments, and is identified as the
“myoid zone of the photoreceptors” in the SD-OCT
clinical lexicon.37 This part of the cell contains Golgi
apparatus and ribosomes and is known to shorten in
AMD.48 The lower of the two hyporeflective bands
(visible in Fig. 3 but not in Fig. 4) is unnamed in
the clinical lexicon, but is located below the EZ and
above the IZ, between the outer segment tips and the
RPE apical processes. The IZ is a hyper-reflective band
that involves photoreceptor outer segments and the
delicate apical processes of the RPE, which contain
melanosomes.49 The difference between Figures 3 and 4
suggests that in many eyes with longer RIT, the region
between the EZ and RPE-Bruch’s membrane bands
(containing both this unnamed hyporeflective region of
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Figure 3. Visualization of deep learning features from the test set. The original spectral domain optical coherence tomography (SD-OCT)
scan in mm used by the deep learning model to predict rod intercept time (RIT) are shown in (A, D, G). Panels (B, E, H) show the magnitude
of the difference between the perturbed and baseline predictions caused by occlusion of each possible pixel position, with red showing
elongation and blue showing shortening of the RIT. The corresponding overlays are shown in (C, F, I) in relation to the ellipsoid zone (EZ).

Figure 4. Correlation of hyporeflective bands with rod intercept time (RIT). Panel (A) shows a reference image of the external limiting
membrane (ELM), the ellipsoid zone (EZ), the interdigitation zone (IZ), and the retinal pigment epithelium-Bruch’s membrane (RPE-BrM) on
spectral domain optical coherence tomography (SD-OCT). Three examples of lowRIT (B),mediumRIT (C), andhighRIT (D) sampled randomly
from the test set are shown with high resolution insets (red boxes) and the RIT in minutes. The IZ, which is apparent in the reference figure
(also from this population), is not apparent in any of the randomly sampled figures. Further the gap between the RPE-BrM and the EZ ismore
hyper-reflective in C, D than in B. Blurring of hyporeflective bands superficial and deep to the EZ correlates with RIT.

interest and the IZ) becomes variably reflective, shorter,
or both, thus blunting distinctions between the EZ
and the apical RPE on OCT imaging. Whether this
is due to altered apical processes or outer segments
or both cannot be determined with the resolution of
these SD-OCT images. Other OCT technologies with
greater axial resolution50 may be useful in addressing
this question.

The regional specificity of the discovered biomarker
near the fovea deserves comment, in two ways. First,
the SD-OCT B-scan used for training did not pass
through the retinal location used for RMDA testing (5
degrees or 1.44mm superior to the fovea, on the vertical
meridian). Second, the most accurate anatomic corre-
lates for rod-mediated vision included the fovea, an
area containing only cones, and extended to the adjoin-
ing rod-dominant parafovea. These seeming contra-
dictions occur, because rods at the RMDA testing

location are impacted by pathologic changes in the
central macular region identified by the model.

RMDA is a readout of age-related changes and
pathology in the underlying choriocapillaris endothe-
lium and Bruch’s membrane, representing the retinoid
resupply route from the circulation. A sequence of
age-related changes in these support tissues leading
to soft drusen and advanced AMD pathology have
been elucidated by ultrastructural studies, histochem-
istry, lipid profiling, gene expression, cell biology,
and in vivo clinical imaging. This sequence is most
prominent under the fovea, with a spread within the
central 3 mm diameter of the macula that includes
precisely the area identified by the deep learningmodel.
In fact, compared with other retinal locations, the
presence and growth of drusen concentrated under
the fovea have the greatest effect size in predicting
10-year risk of neovascularization or atrophy (relative
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risk at 10 years = 26.5 for baseline drusen in central
1 mm; 8.6 for drusen at 0.5–1.5 mm eccentricity).51
An Oil Spill model of drusen formation has been
recently proposed52,53 as a late-life sequela of plasma
high density lipoproteins (HDLs) delivering xantho-
phyll carotenoid pigments (lutein and zeaxanthin) to
foveal cells, in particular the Müller glia that extend
processes laterally within the inner and outer plexi-
form layers.54 Cones themselves are sustained by these
Müller glia, which are in turn supported by retinal
capillaries at the edge of the avascular zone. The rods
are relatively vulnerable, because they are more depen-
dent on the choriocapillaris Bruch’s RPE than are the
cones. This hypothesis integrating drusen biology with
retinal neuroscience52,55 to explain both rod vulnerabil-
ity and cone resilience9 incorporates multiple evidence
lines from human biology, including sequence variants
inAMD-associatedHDLgenes.46 Parts of this hypoth-
esis remain to be confirmed, and it does not exclude
mechanisms with pan-retinal or systemic underpin-
nings (e.g. inflammation). It does emphasize a local-
ness of AMD dysfunction that is best explained by
heretofore unrecognized aspects of outer retinal cell
physiology.

Strengths of the current study include the use of a
functional training target with deep learning models
as opposed to human expert derived disease classifi-
cations, and a de novo, agnostic approach to image
analysis. The use of RIT from RMDA testing allowed
discovery of previously undescribed biomarkers rather
than simply recapitulating human understanding of
disease. The study patients were drawn from a carefully
selected cohort spanning aging and early AMD disease
severities allowing for investigations into the patho-
physiology of AMD. If there were no association
between eccentricity and the capacity of the deep learn-
ing models to predict RIT, a flat line would have been
observed in Figure 2B. Instead, a gradual increase in
predictability was found centrally, and the choice of the
foveal B-scan allowed for unbiased hypothesis testing
outside of the RMDA stimulus region. It is impor-
tant to note that our deep learning framework shows
for the first time in vivo the retinal area of interest
that precisely matches the topography of age-related
rod loss that was discovered histologically over several
decades ago.8 In addition, it also validates the idea
that rods near the fovea, which are not widely appre-
ciated, are sensitive indicators of their support system,
critical in diagnosing and understanding the patho-
physiology of early AMD.9 Testing existing theories
of disease are crucial for advancing our knowledge
of AMD and allowing future therapeutic options; the
agnostic nature of deep learning is particularly suitable
for this task.

Limitations of this study include the possibility that
more than one area is important in a single B-scan
through the fovea for predicting RIT. In the first step
of the analysis, the areas were restricted to narrow
windows of the foveal B-scan to allow deep learn-
ing models to have access to high-resolution infor-
mation. Although one way to circumvent this limita-
tion is to train models with the full B-scan image,
the current limitations in computer hardware prevent
using the full image at native resolution for training.
Aggressive downsampling may limit biomarker identi-
fication. In addition, the RMDA stimulus area was
set to an area outside of the foveal B-scan. As with
many biomarkers, the discovered features may corre-
late with the RIT instead of being directly indica-
tive of disease initiation in the choriocapillaris-Bruch’s
membrane complex. The deep learningmodel is limited
by the resolution of the input images and thereforemay
miss subtle changes to outer segments or RPE apical
processes in this early disease population. We chose
mean occlusion as the visualization method utilized
in this study, because many other methods developed
are designed for classification problems.56,57 Whereas
occlusion methods are sensitive to the window size and
occlusion value, we performed sensitivity analyses that
showed that the biomarker was robust to these choices.
Similarly, the discovered features do not correlate with
the location of subretinal drusenoid deposits, an extra-
cellular deposit most abundant at eccentricities only
partly captured by the SD-OCT volumes studied here
and associated with markedly increased vision loss at
more advanced disease stages than present in this study
population.33,58 The blue lines in Figure 3 are weaker
and less consistent than the red bands and they may
be more prominent in an image dataset derived from a
different study design. The scanning parameters used
for the data are another potential limitation, as models
are sensitive to the distribution of the training input
signal. Because the goal of this study was to identify
a biomarker internally within our dataset, the parame-
ters should not have affected our results. Future studies
may need to include a wider range of OCT scanning
parameters. Finally, although our model did not show
a performance that could be clinically useful, the model
predictions did showmoderately high correlation in the
test set and enabled uncovering new biomarkers.

Future work includes replication and longitudinal
validation of this biomarker in external datasets and
the application of this framework to other human
diseases. In conclusion, we have demonstrated a new
framework for discovery of biomarkers in human
diseases using deep learning and applied this frame-
work to AMDusing the RIT fromRMDA testing, and
discovered a novel biomarker de novo. This biomarker
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fits with current concepts of AMD pathophysiology
by highlighting both the topography and a structural
basis for a functional biomarker (RIT). Establishment
of biomarkers for the most common form of AMD
where currently limited therapy is available will lead
to more sensitive imaging-based clinical end points,
an acceleration of clinical trials, and new therapeutic
interventions. By confirming RMDA is closely linked
to processes in the choriocapillaris-Bruch’s membrane-
RPE complex that lead to advanced disease, its use as
an outcome measure is supported.
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