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Abstract
Acute inflammation can exacerbate brain injury after ischemic stroke. Beyond its well-characterized role in calcium metabo-
lism, it is becoming increasingly appreciated that the active form of vitamin D, 1,25-dihydroxyvitamin  D3 (1,25-VitD3), 
has potent immunomodulatory properties. Here, we aimed to determine whether 1,25-VitD3 supplementation could reduce 
subsequent brain injury and associated inflammation after ischemic stroke. Male C57Bl6 mice were randomly assigned to 
be administered either 1,25-VitD3 (100 ng/kg/day) or vehicle i.p. for 5 day prior to stroke. Stroke was induced via middle 
cerebral artery occlusion for 1 h followed by 23 h reperfusion. At 24 h post-stroke, we assessed infarct volume, functional 
deficit, expression of inflammatory mediators and numbers of infiltrating immune cells. Supplementation with 1,25-VitD3 
reduced infarct volume by 50% compared to vehicle. Expression of pro-inflammatory mediators IL-6, IL-1β, IL-23a, TGF-β 
and NADPH oxidase-2 was reduced in brains of mice that received 1,25-VitD3 versus vehicle. Brain expression of the T 
regulatory cell marker, Foxp3, was higher in mice supplemented with 1,25-VitD3 versus vehicle, while expression of the 
transcription factor, ROR-γ, was decreased, suggestive of a reduced Th17/γδ T cell response. Immunohistochemistry indi-
cated that similar numbers of neutrophils and T cells were present in the ischemic hemispheres of 1,25-VitD3- and vehicle-
supplemented mice. At this early time point, there were also no differences in the impairment of motor function. These data 
indicate that prior administration of exogenous vitamin D, even to vitamin D-replete mice, can attenuate infarct development 
and exert acute anti-inflammatory actions in the ischemic and reperfused brain.
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Introduction

Stroke is the world’s second leading cause of death, con-
tributing to 6.7 million deaths annually (Mozaffarian et al. 
2016). It is also the most frequent cause of permanent Electronic supplementary material The online version of this 
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disability in adults, with half of all survivors discharged into 
care (Mozaffarian et al. 2016). Currently, there is only one 
approved pharmacological agent available to treat stroke, 
recombinant tissue plasminogen activator (rtPA), which 
must be administered within a 4.5-h window of stroke onset 
and only after a CT scan has diagnosed a thrombotic cause 
(Del Zoppo et al. 2009). Due to these strict limitations, 
< 10% of stroke patients are eligible to receive rtPA (Reeves 
et al. 2005; Kleindorfer et al. 2008). Consequently, there is 
a desperate need to identify modifiable mechanisms capable 
of limiting the impact of acute stroke.

Secondary brain injury following stroke is driven by local 
inflammation, production of reactive oxygen species and the 
infiltration of circulating immune cells (Anrather and Iade-
cola 2016). Thus, targeting these inflammatory processes 
has been of intense interest to stroke researchers. However, 
one immunomodulatory molecule that has received very 
little attention as a potential stroke therapy is vitamin D, 
a fat-soluble vitamin that functions as a steroid hormone. 
Vitamin D is synthesized predominantly from 7-dehydro-
cholesterol in response to skin exposure to ultraviolet light, 
but can also be obtained through dietary supplementation 
(Holick 2007). To become biologically active, vitamin D 
must first be converted to 1,25-dihydroxyvitamin  D3 (1,25-
VitD3) via two hydroxylation steps. This occurs firstly in 
the liver by 25-hydroxylase and then typically in the kidney 
by 1-α-hydroxylase (CYP27B) (Holick 2007). The latter 
hydroxylation step can also occur in macrophages, T cells 
and neurons, which also express 1-α-hydroxylase (Lugg 
et al. 2015). Once in this active form, vitamin D can engage 
with the vitamin D receptor (VDR) which is located on a 
number of cell types including leukocytes, endothelial cells, 
astrocytes and neurons (Provvedini et al. 1983; Merke et al. 
1989; Langub et al. 2001; Lee et al. 2008). Vitamin D is 
best characterized to promote calcium absorption from the 
small intestine, but recent findings indicate that it may also 
control expression of a large number of genes, particularly 
those involved in inflammatory processes (Lugg et al. 2015).

1,25-VitD3 exerts such immunomodulatory actions 
through a variety of cellular and molecular mechanisms. 
Firstly, 1,25-VitD3 can prevent the development of patho-
genic T helper (Th) 1, Th17 and γδ T cells, and can promote 
the formation of anti-inflammatory Th2 and T regulatory 
cells (Zeitelhofer et al. 2017; Chang et al. 2010a; Gregori 
et al. 2002; Joshi et al. 2011; Nashold et al. 2013; Sloka 
et al. 2011; Cantorna et al. 2004; Hart et al. 2011; Chen et al. 
2005). Studies have also shown that 1,25-VitD3 promotes 
the generation of tolerogenic dendritic cells (Takeda et al. 
2010; Gorman et al. 2010) and can prevent the release of 
pro-inflammatory cytokines from monocytes and microglia 
(Korf et al. 2012; Zhang et al. 2012; Boontanrart et al. 2016; 
Verma and Kim 2016). Further, 1,25-VitD3 may inhibit 
the production of reactive oxygen species by decreasing 

expression of NADPH oxidase (NOX) enzymes (Dong 
et al. 2012) and enhancing expression of antioxidants such 
as superoxide dismutase and glutathione (Jain and Micinski 
2013; Dong et al. 2012).

Observational studies have documented that patients with 
lower serum levels of vitamin D experience larger infarct 
volumes and worse functional outcomes following stroke 
(Tu et al. 2014; Wang et al. 2014; Turetsky et al. 2015; 
Daubail et al. 2013; Park et al. 2015), suggesting that vita-
min D may play a protective role during cerebral ischemia. 
We recently reported that low baseline levels of vitamin D, 
resulting from a vitamin D-deficient diet, had no discern-
ible impact on selected outcome measures within 24 h of 
large vessel occlusion stroke (Evans et al. 2017). Here, we 
have instead examined the effect of elevated baseline levels 
of vitamin D achieved by supraphysiological doses of vita-
min D given to vitamin D-replete animals during the 5 days 
prior to stroke, in an analogous manner to high dose supple-
mentation regimes in humans (Wong et al. 2014; Sotirchos 
et al. 2016). For this, we adopted a similar supplementa-
tion regime that was found to reduce vascular injury in mice 
following hindlimb ischemia (Wong et al. 2014). Indeed, 
we report that 1,25-VitD3 supplementation can reduce post-
stroke brain injury, reduce expression of pro-inflammatory 
cytokines, modulate the phenotype of T cells and increase 
the number of M2-polarized (anti-inflammatory) mac-
rophages/microglia in the brain.

Materials and Methods

Animals

A total of 92 male C57Bl6 mice (7–10 week old; 21–30 g) 
were used for this study. Mice were housed under a 12-h 
light/dark cycle and had free access to water and food pel-
lets. Mice were excluded from the study if during the surgi-
cal procedure to induce middle cerebral artery occlusion: 
[1] > 0.2 ml of blood was lost (n = 1); [2] subarachnoid 
hemorrhage occurred (n = 2); [3] death occurred during 
ischemia (n = 2); [4] cerebral blood flow failed to reach 
≥ 80% pre-ischemic levels upon reperfusion (n = 1) and [5] 
death occurred after reperfusion and prior to the designated 
time for euthanasia (n = 7). All animals were randomly 
assigned to groups, and the investigator performing the 
surgical procedure or data analysis was, wherever possible, 
blinded to the treatment group.

Administration of 1‑25,Dihydroxyvitamin  D3

Vitamin  D3 was administered as its active form, 1α, 25-dihy-
droxyvitamin  D3 (1,25-VitD3; Sigma; 100 ng/kg/day) which 
was dissolved in a solvent mixture of sterile water, propylene 
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glycol and ethanol in a 5:4:1 ratio. Animals were injected 
i.p. for 5 consecutive days prior to experimental stroke and 
again on the day of the procedure, as previously described 
(Wong et al. 2014).

Middle Cerebral Artery Occlusion

Mice underwent either sham surgery or focal cerebral 
ischemia as previously described (Evans et al. 2017). Cere-
bral ischemia was produced in anesthetized mice (ketamine: 
80 mg/kg plus xylazine: 10 mg/kg i.p.) by occlusion of the 
middle cerebral artery (MCA) using a 6.0 silicone-coated 
monofilament (Doccol Corporation). Rectal temperature was 
monitored and maintained at 37.0 ± 0.5 °C. MCA occlusion 
(MCAO) was sustained for 60 min, and the filament then 
retracted to allow reperfusion. Both successful occlusion 
(> 70% reduction in cerebral blood flow; CBF) and reperfu-
sion (≥ 80% return of CBF to the pre-ischemic level) were 
confirmed by transcranial laser-Doppler flowmetry (Per-
iMed). Sham-operated mice were anesthetized and the right 
carotid bifurcation exposed, but no filament was inserted. 
Neck wounds were then closed with sutures and covered 
with  Betadine® (Sanofi) and spray dressing. Head wounds 
were closed with superglue, and mice were returned to their 
cages after regaining consciousness.

Functional Assessment

Mice were assessed for functional deficits at approximately 
30 min prior to euthanasia. This comprised a 6-point scoring 
system for neurological deficits: 0 = normal motor function, 
1 = flexion of torso and contralateral forelimb when lifted by 
the tail, 2 = circling to the contralateral side when held by 
the tail on a flat surface but normal posture at rest, 3 = lean-
ing to the contralateral side at rest, 4 = no spontaneous 
motor activity, 5 = death. A hanging grip test was performed 
as a measure of grasping ability and forelimb strength in 
which mice were suspended by their forelimbs on a wire 
between 2 posts 60 cm above a soft pillow for up to 60 s. The 
time until the animal fell was recorded (a score of 0 s was 
assigned to animals that fell immediately and a score of 60 s 
was assigned to animals that did not fall), and the average 
time of 3 trials with 5 min rests in between was calculated. 
Spontaneous locomotor activity was assessed using a paral-
lel rod floor apparatus using ANY-maze software coupled to 
an automated video-tracking system as previously described 
(Lee et al. 2015).

Assessment of Infarct Volume

Cerebral infarct volumes were determined as previ-
ously described (Evans et al. 2017). At 24 h post-stroke, 
mice were killed by inhalation of isoflurane followed by 

decapitation. Brains were immediately removed, snap-
frozen in liquid nitrogen and stored at − 80 °C. Evenly 
spread (separated by ~ 420 μm) coronal sections (30 μm) 
spanning the infarct were cut, thaw-mounted onto poly-
l-lysine coated glass slides and stained with 0.1% thionin 
(Sigma) to delineate the infarct area. Infarct volume was 
quantified using image analysis software (ImageJ, NIH), 
correcting for brain edema, according to the following for-
mula: CIV = (LHA − (RHA − RIA)) × (thickness of sec-
tion + distance between sections); where CIV is corrected 
infarct volume, LHA is left hemisphere area, RHA is right 
hemisphere area and RIA is right hemisphere infarct area. 
Edema-corrected infarct volumes of individual brain sec-
tions were then added, giving an approximation of the total 
infarct volume.

Real‑Time Polymerase Chain Reaction (rt‑PCR)

At 24 h following stroke or sham surgery, mice were eutha-
nized by isoflurane overdose and perfused with RNase-free 
phosphate-buffered saline (PBS). After removing the cer-
ebellum and olfactory bulbs, the brain was separated into 
left and right hemispheres and snap-frozen in liquid nitro-
gen for RNA extraction. Spleens were also removed, cut in 
half and snap-frozen in liquid nitrogen. Tissues were stored 
at − 80 °C until required. Total RNA was extracted using 
 Qiazol® reagent (Qiagen) and the RNeasy Mini Kit with 
on-column DNase step (Qiagen) followed by cDNA con-
version using the Quantitect Reverse Transcription kit (for 
 Taqman® gene expression assays; Qiagen). The cDNA was 
then used as a template in real-time PCR to measure mRNA 
expression of Vdr, Cyp27b, Cyp24a, Cxcl12, Tbx21, Stat4, 
Rorc, Gata3, Stat6, Foxp3, Tnfα, Il1β, Il6, Il21, Il23a, Tgfβ1, 
Ccl2, Ccl5, Gp91phox, Mrc1, Il10 and Icam1. Gapdh and 
β-actin were assessed as housekeeping genes for brain and 
spleen tissue, respectively. Assays were performed accord-
ing to the manufacturer’s instructions using the Bio-Rad 
CFX96TM real-time PCR machine (Bio-Rad). Data were 
normalized to the housekeeping gene and calculated as 
change in fold expression relative to sham using the formula: 
fold-change = 2−ΔΔCt.

Immunofluorescence

Six serial coronal sections (10 μm thick) per animal were 
collected at six regions: bregma + 0.06, − 0.78, − 1.2, 
− 1.62, − 2.04, − 2.46 mm. Frozen brain sections (10 μm) 
were fixed in 4% paraformaldehyde for 15 min and washed 
in 0.01 M PBS (3 × 10 min). Sections were then blocked 
with 10% goat serum (Sigma) for 60 min to block non-spe-
cific binding of the secondary antibody. Sections were then 
incubated overnight at 4 °C with either rabbit anti-CD3 
(1:200; Abcam) or rabbit anti-CD206 (1:500; Abcam). On 
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the following day, they were washed (PBS; 3 × 10 min) 
and incubated for a maximum of 2 h with either goat anti-
rabbit Alexa Fluor 594 (1:500; Thermofisher Scientific) 
or goat anti-rabbit Alexa Fluor 488 (1:500; Thermofisher 
Scientific). Finally, sections were again washed and then 
mounted with Vectashield medium containing 4,6-diami-
dino-2-phenylindole (DAPI) (Vector Laboratories), and 
a coverslip was applied. All tissue-mounted slides were 
viewed, analyzed and photographed with an Olympus fluo-
rescence microscope. Numbers of immunoreactive cells 
were counted manually per whole ischemic hemisphere 
and then averaged across the six regions, as indicated 
above.

3,3′‑Diaminobenzidine (DAB) 
Immunohistochemistry

Frozen brain sections (at the regions indicated for immu-
nofluorescence) were fixed in 4% paraformaldehyde for 
15 min, washed in PBS and then incubated in peroxidase 
blocking solution (Dako) for 10 min to block endogenous 
peroxidases followed by 10% goat serum for 60  min. 
They were then incubated overnight at room temperature 
in rabbit anti-myeloperoxidase (1:100; Abcam). The fol-
lowing day, sections were washed and incubated for 2 h in 
anti-rabbit IgG horse-radish peroxidase conjugate (1:200; 
Dako), washed again, and DAB (Dako) was then applied 
for 5–10 min. Sections were then rinsed in  dH2O, dehy-
drated in increasing concentrations of ethanol (70 and 
100% vol/vol), cleared in xylene and mounted in DPX. 
Tissue-mounted slides were viewed, analyzed and photo-
graphed using an Olympus light microscope. Numbers of 
immunoreactive cells were counted manually per whole 
ischemic hemisphere and then averaged across the six 
regions, as indicated above.

Statistical Analysis

Data are presented as mean  ± standard error  of the 
mean  (SEM), with the exception of neurological deficit 
scores, which are presented as median. Statistical analyses 
were performed using GraphPad Prism version 6.0 (GraphPad 
Software Inc. San Diego, CA, USA). Between-group com-
parisons were compared using one-way ANOVA, or Student’s 
unpaired t test, as appropriate. If differences were detected 
by ANOVA, individual groups were compared with Tukey’s 
multiple comparisons test, where indicated. Neurological 
deficit scores were compared using a Kruskal–Wallis test fol-
lowed by Dunn’s multiple comparisons test. If there were two 
independent variables, data were compared using a two-way 
ANOVA. Statistical significance was accepted if P < 0.05.

Results

Effect of Cerebral Ischemia on Vitamin D‑Associated 
Genes in Brain and Spleen

The effect of stroke was first assessed on the expression of 
VDR and metabolizing enzymes in the brain and spleen 
at 24 h in otherwise untreated animals. Stroke increased 
expression of the VDR by ~twofold in both organs (Fig. 1a, 
b). The vitamin D-activating enzyme, Cyp27b, was reduced 
by ~ 30% in the brain, but was unchanged in the spleen fol-
lowing stroke (Fig. 1a, b). Expression of the inactivating 
enzyme, Cyp24a, was increased by ~ 2.5 fold in the brain, 
but was undetectable in spleen (Fig. 1a, b).

Effects of Vitamin  D3 Supplementation on Infarct 
Volume and Functional Deficits Following Stroke

To determine the effect of elevated baseline vitamin D 
prior to stroke on the extent of subsequent infarct develop-
ment, mice were treated with 1,25-VitD3 (100 ng/kg/day) 
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Fig. 1  Post-stroke expression of vitamin D-associated genes. 
mRNA expression of the vitamin D receptor (Vdr), 1-α-hydroxylase 
(Cyp27b) and 24-hydroxylase (Cyp24a) was examined in a the brain 
and b the spleen at 24 h after either stroke or sham surgery. Sham: 
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for 5 days and then subjected to focal cerebral ischemia. At 
24 h post-stroke, we found that mice which received 1,25-
VitD3 supplementation had ~ 50% smaller infarct volume 
than those which received vehicle (Fig. 2a, b). This find-
ing was not associated with any differences in the level 
of cerebral blood flow during, or immediately after, cer-
ebral ischemia (Fig. S1). Examining the distribution of the 
infarcts, 1,25-VitD3-supplemented animals tended to have 
a reduced infarct area in most coronal sections (Fig. 2c). 

However, mice in both groups displayed similar functional 
deficits at this early time point (Fig. 3a–e). 

Effect of Vitamin  D3 Supplementation on T Cell 
Phenotype in the Brain and Spleen After Stroke

Previous reports suggest that Th1 and γδ T cells exacerbate 
brain injury following stroke while Th2 and T regulatory 
cells play a protective role by dampening excessive inflam-
mation (Gu et al. 2012; Gelderblom et al. 2012; Benakis 
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et al. 2016; Liesz et al. 2009). It has been shown that vitamin 
D can modulate the immune response to injury by polarizing 
T cells toward an anti-inflammatory phenotype (Hart et al. 

2011). We found no effect of stroke or 1,25-VitD3 on mRNA 
expression of Th1 transcription factors, Tbx21 or Stat4, 
or Th2 transcription factors, Gata3 or Stat6 in the brain 

Fig. 4  1,25-Dihydroxyvitamin 
 D3  (VitD3) supplementation 
alters mRNA expression of 
T cell transcription factors in 
the brain and spleen following 
stroke. a Expression of Th1 
transcription factors, Tbx21 
and Stat4, and Th17 transcrip-
tion factor, Rorc, within the 
brain of sham, vehicle- (Veh) 
and  VitD3-treated mice at 24 h 
post-surgery. b Expression of 
Th2 transcription factors, Gata3 
and Stat6, and T regulatory 
cell transcription factor, Foxp3, 
within the brain of sham, 
vehicle- and  VitD3-treated 
mice at 24 h post-surgery. c 
Expression of Tbx21, Stat4, and 
Rorc within the spleen of sham, 
vehicle- and  VitD3-treated mice 
at 24 h post-surgery. d Expres-
sion of Gata3, Stat6 and Foxp3 
within the spleen of sham, vehi-
cle- and  VitD3-treated mice 24 h 
post-surgery. Sham: n = 6–9 per 
group, vehicle: n = 11–13 per 
group,  VitD3: n = 10–12 per 
group. *P < 0.05, **P < 0.01, 
***P < 0.001, one-way 
ANOVA followed by Tukey’s 
multiple comparisons test. Data 
are presented as mean ± SEM
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(Fig. 4a, b). However, stroke resulted in an elevation of the 
Th17/γδ T cell transcription factor, Rorc, and this effect was 
mitigated by 1,25-VitD3 treatment (Fig. 4a). Moreover, we 
noted an increase in the T regulatory cell transcription factor, 
Foxp3, after stroke, and this was augmented in 1,25-VitD3-
supplemented animals (Fig. 4b). In the spleen, 1,25-VitD3 
had no effect on expression of Tbx21, Stat4, Gata3, Stat6 or 
Rorc (Fig. 4c, d). However, Foxp3 expression was slightly 
higher after stroke in 1,25-VitD3-treated mice than in sham 
mice or in those treated with vehicle (Fig. 4d).

Effect of Vitamin  D3 Supplementation on Expression 
of Pro‑inflammatory Mediators in the Brain 
Following Stroke

As vitamin  D3 has immunomodulatory actions, we also 
examined mRNA expression of various inflammatory medi-
ators known to be involved in ischemic brain injury. Indeed, 
1,25-VitD3-treated animals had lower expression of Ilβ, Il6, 
Il23a, Tgfβ1 and Gp91phox (NOX-2) than vehicle-treated 
animals (Fig. 5b, c, e, f, i). However, there was no effect of 

Fig. 5  1,25-Dihydroxyvitamin 
 D3  (VitD3) supplementation 
alters mRNA expression of 
inflammatory mediators in the 
brain following stroke. mRNA 
expression of a Tnfα, b Il1β, 
c Il6, d Il21, e Il23a, f Tgfβ1, 
g Ccl2, h Ccl5, i Gp91phox, j 
Mrc1, k Icam1 and l Il10 within 
the brains of sham, vehicle 
(Veh)- and  VitD3-treated mice 
at 24 h post-surgery. Sham: 
n = 6–7 per group, vehicle: 
n = 12 per group and  VitD3: 
n = 9–11 per group. *P < 0.05, 
**P < 0.01, ***P < 0.001, 
one-way ANOVA followed by 
Tukey’s multiple comparisons 
test. Data are presented as 
mean ± SEM
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1,25-VitD3 on Tnfα, Il21, Ccl2, Ccl5, Mrc1, Icam1 or Il10 
(Fig. 5a, d, g, h, j, k, l).

Effect of Vitamin  D3 Supplementation on Numbers 
of Infiltrating Leukocytes and M2‑Polarized 
Macrophages/Microglia in the Brain Following 
Stroke

We tested for any effect of vitamin D on migration of 
immune cells toward the site of injury, by quantifying leuko-
cyte infiltration into the ischemic hemisphere using immuno-
histochemistry. We noted a tendency for 1,25-VitD3-treated 
animals to have fewer  MPO+ neutrophils in the brain at 24 h 
post-stroke, whereas there was no effect on  CD3+ T cells 
(Fig. 6a, b). Additionally, there was a trend for greater num-
bers of “M2” polarized microglia/macrophages (defined as 
 CD206+) after stroke in 1,25-VitD3-treated animals (Fig. 6c).

Discussion

Inflammation is a major contributor to secondary brain 
injury after ischemic stroke and thus represents a potential 
target for therapy (Anrather and Iadecola 2016). Beyond 
its well-characterized role in calcium metabolism, vita-
min D has potent immunomodulatory properties and can 
alter the immune response to injury in various disease set-
tings (Nashold et al. 2013; Takeda et al. 2010; Martorell 
et al. 2016; Schedel et al. 2016). If vitamin D was found 
to exert such effects in post-stroke brain injury, it could 
represent a novel direction for acute therapy. Indeed, here 
we report data supporting this concept. This neuroprotec-
tive effect appears to occur in association with reduced 
expression of pro-inflammatory mediators in the brain. 
Moreover, our data suggest that 1,25-VitD3 supplementa-
tion alters the phenotype of T cells and increases numbers 

Fig. 6  Quantification of leuko-
cytes in the brain post-stroke. 
Immunohistochemistry was 
used to determine the num-
bers of a myeloperoxidase 
(MPO)+ cells, b  CD3+ cells 
and c  CD206+ cells per right 
(ischemic) hemisphere in vehi-
cle- and 1,25-dihydroxyvitamin 
 D3  (VitD3)-treated animals 
at 24-h post-stroke. Vehicle: 
n = 9–11 per group and  VitD3: 
n = 9–10 per group. Student’s 
unpaired t test. Data are pre-
sented as mean ± SEM. Arrows 
on representative images indi-
cate examples of positive cells, 
and scale bars represent either 
20 μm (b) or 50 μm (a, c)
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of M2 macrophages/microglia in the ischemic brain, both 
of which may contribute to the neuroprotection by 1,25-
VitD3 treatment.

Previous studies have demonstrated that the VDR and 
the vitamin D regulatory enzymes, 1-α-hydroxylase and 
24-hydroxylase, to be expressed in non-classical tissues 
such as the brain and activated immune cells, suggesting 
that vitamin D may exert paracrine functions (Penna et al. 
2007; Overbergh et al. 2000; Provvedini et al. 1983; Eyles 
et al. 2005). Additionally, studies have documented that the 
expression of the VDR and these enzymes can be altered 
during inflammation and disease (Luo et al. 2013; Yao et al. 
2015; von Essen et al. 2010; Yang et al. 2011; Liu et al. 
2006; Spanier et al. 2012). In the current study, we examined 
expression of the VDR (Vdr), 1-α-hydroxylase (Cyp27b) and 
24-hydroxylase (Cyp24a), in both the brain and spleen at 
24 h after stroke or sham surgery. We found that expres-
sion of the VDR was elevated in both organs after stroke. 
Interestingly, we observed that expression of the vitamin 
D-activating enzyme, 1-α-hydroxylase, was reduced in the 
brain after stroke, while expression of the vitamin D inacti-
vating enzyme, 24-hydroxylase, was increased. However, in 
the spleen, we observed that expression of 1-α-hydroxylase 
and 24-hydroxylase was unchanged and undetected, respec-
tively. These findings may imply that local levels of the 
active form of endogenous vitamin D may be reduced in the 
brain after stroke, raising the possibility that supplementa-
tion with exogenous 1,25-VitD3 may be of benefit.

Indeed, we found that 1,25-VitD3-supplemented animals 
developed a smaller infarct volume than vehicle-treated con-
trols by 24 h. However, at this time point, there were no 
apparent differences in functional outcome. While 24 h is 
a relatively early time point for examining outcomes after 
stroke, we know from our previous work that infarct size is 
fully developed within 24 h in this model of stroke (Evans 
et al. 2018). Therefore, in seeking to test whether vitamin D 
might exert a neuroprotective effect to limit infarct develop-
ment potentially by inhibiting inflammation, we chose to 
examine outcomes at 24 h. However, we do acknowledge 
the importance of evaluating the effect of 1,25-VitD3 at later 
time points after stroke, particularly on functional recovery. 
Our findings are analogous to those reported by two previous 
studies using rat models of stroke, whereby 1,25-VitD3 pre-
treatment reduced infarct volume (Fu et al. 2013; Oermann 
et al. 2004). However, neither of these studies examined 
functional outcome. Moreover, the precise mechanisms by 
which 1,25-VitD3 reduced brain injury in those studies were 
unclear.

To this end, we tested for evidence that 1,25-VitD3 may 
modulate the immune response to ischemic stroke. Vitamin 
D can modulate the phenotype of T cells (Hart et al. 2011; 
Cantorna et al. 1996). For instance, in mouse models of 
multiple sclerosis vitamin D can down-regulate signaling 

pathways essential for development of Th1 and Th17 cells 
(Zeitelhofer et al. 2017; Mattner et al. 2000; Muthian et al. 
2006; Chang et al. 2010b; Joshi et al. 2011). Moreover, vita-
min D can promote the formation of Th2 and T regulatory 
cells (Hart et al. 2011) and limit the development of γδ T 
cells (Chen et al. 2005). Several studies have revealed that 
Th1 and γδ T cells can aggravate brain injury after stroke, 
and that blocking their invasion may be neuroprotective (Gu 
et al. 2012; Yilmaz et al. 2006; Gelderblom et al. 2012; Shi-
chita et al. 2009). Th2 and T regulatory cells are thought to 
be injury-limiting in the setting of stroke (Gu et al. 2012; 
Liesz et al. 2009). We thus examined whether the neuropro-
tection by 1,25-VitD3 may be associated with modulation 
of T cell phenotypes. In the brain, we found that neither 
stroke nor 1,25-VitD3 had any effect on expression of Th1 
or Th2 transcription factors. However, 1,25-VitD3 blunted 
expression of the Th17/γδ T cell transcription factor, Rorc 
(ROR-γt), and enhanced expression of the T regulatory 
cell transcription factor, Foxp3. In the spleen 1,25-VitD3 
increased expression of Foxp3, but had no effect on Th1, 
Th2 or Th17/γδ transcription factors. Collectively, these data 
may indicate that 1,25-VitD3 promotes the formation of T 
regulatory cells while inhibiting development of Th17/γδ T 
cells, consistent with a neuroprotective profile.

1,25-VitD3 supplementation reduced mRNA expres-
sion of pro-inflammatory cytokines, Il1β (IL-1β), Il6 (IL-
6), Tgfβ1 (TGF-β) and Il23a (IL-23a). Interestingly, these 
cytokines are thought to play key roles in the function of 
both Th17 and γδ T cells (Vantourout and Hayday 2013). 
Treatment with 1,25-VitD3 had no effect on expression of 
Il10 (IL-10), an immunosuppressive cytokine often involved 
in T regulatory cell function (Taylor et al. 2006); however, 
T regulatory cells may limit injury and excessive inflam-
mation via other mechanisms (Sakaguchi et al. 2009). We 
also observed a reduction in gp91phox (NOX2) expression, 
a key producer of superoxide and mediator cellular damage 
following ischemic stroke (De Silva et al. 2011).

As 1,25-VitD3 can reduce leukocyte recruitment to 
injured tissues (Pedersen et al. 2007; Korf et al. 2012; Grish-
kan et al. 2013), we examined its effect on leukocyte infiltra-
tion into the brain following stroke. We observed a trend for 
1,25-VitD3-treated animals to have fewer infiltrating neutro-
phils but no apparent effect on T cells. It is also possible that 
1,25-VitD3 reduces recruitment of other types of immune 
cell subsets or that it modulates their functional phenotype 
rather than migration to the site of post-stroke injury. It 
is important to note that 24 h represents a relatively early 
pathological time point after stroke with significant immune 
cell infiltration continuing after this time point (Gelderblom 
et al. 2009; Benakis et al. 2016). We also examined the effect 
of 1,25-VitD3 on the numbers of M2-polarized macrophages/
microglia in the brain after stroke. Studies have reported that 
M2 macrophages/microglia are likely to be protective in the 
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setting of stroke by reducing inflammation and coordinating 
repair processes (Benakis et al. 2014; Chu et al. 2015; Hu 
et al. 2012). We observed a strong trend for 1,25-VitD3 to 
augment numbers of  CD206+ M2 macrophages/microglia 
in the brain after stroke.

As mentioned above, there is a strong rationale to gain 
a deeper understanding of how altered levels of vitamin 
D—prior and/or subsequent to stroke—might impact on 
the degree of ensuing brain injury. Following on from our 
previous finding that low baseline vitamin D levels did not 
impact on outcome measures at 24 h (Evans et al. 2017), 
here we have instead assessed the effect of increasing base-
line levels achieved by five daily supraphysiological doses 
of vitamin D prior to stroke. Indeed, the present data suggest 
that supplementing mice with the active form of vitamin D 
prior to stroke can reduce the extent of brain injury. With 
regard to therapeutic relevance for acute clinical stroke, our 
data are important in terms of proof-of-concept. However, 
a limitation is that 1,25-VitD3 was administered only prior 
to stroke induction, and clearly, studies are now required 
in which post-stroke treatment of 1,25-VitD3 is evaluated. 
While our data suggest that 1,25-VitD3 can also modulate the 
immune response to brain injury following stroke, at least 
part of this protection may occur via non-immune mecha-
nisms, such as inhibiting excitotoxicity (Taniura et al. 2006; 
Brewer et al. 2001), stimulating production of neurotrophic 
factors (Neveu et al. 1994; Naveilhan et al. 1996; Landel 
et al. 2016) or improving blood brain barrier integrity (Won 
et al. 2015). It is also noteworthy that we administered 1,25-
VitD3 to mice that were vitamin D replete. Whether a simi-
lar or greater level of neuroprotection might be achieved in 
vitamin D-deficient animals by 1,25-VitD3 therapy will be 
important to clarify.

In conclusion, these findings indicate that administration 
of vitamin D can attenuate infarct development following 
stroke possibly by modulating the inflammatory response 
to cerebral ischemia. Therefore, vitamin D supplementation 
may represent a novel direction for limiting the impact of 
acute stroke.
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