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Among non-motor manifestations of Parkinson’s Disease (PD), peripheral, sensory

symptoms are particularly relevant. Smell dysfunction starts very early and frequently

precedes the PD motor symptoms by years (being often a cue to the diagnosis).

Moreover, olfactory system could be, together with gut, one of those peripheral sites

where PD pathology first develops. Unlike smell loss, the relationship between PD

and taste impairment is far less established. It can start early in the course of the

disease but more frequently appears in advanced stages, in parallel with the advent of

MCI, likely reflecting cortical involvement. Among PD patients has been demonstrated

an increase in the frequency of the non-tasters for PROP (prototypical gustatory

stimulus, 6- n-propylthiouracil), a genetically determined bitter taste which is mediated

by TAS2RS38 receptor, and a significant increase of the recessive non-testing variant

of this receptor. TAS2R38 receptors are expressed also in other tissues, such as in the

epithelia of the gut and nasal cavities, where they can influence epithelial immunity ad its

interaction with microbiota. Those pieces of evidence suggest that not only systematic

assessment of taste and smell can be of a remarkable help for clinicians in the early

diagnosis, but also that understanding the mechanisms of sensory involvement in PD

could increase the knowledge of the pathophysiology of the disease.
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INTRODUCTION

The clinical diagnosis of Parkinson’s disease (PD) is straightforward when the visible motor signs
are present, yet the sensory symptoms may precede or go together with the development of
parkinsonism and are an integral part of neurodegeneration. Their systematic assessment can
be of remarkable help for clinicians in the early diagnosis or for a better understanding of the
disorder pathophysiology. Smell has been extensively studied in PD and prospective studies clearly
demonstrated that olfactory impairment is associated with a higher risk in the disease development
(Haehner et al., 2007).

Taste impairment, i.e., defective sweet, sour, bitter and salty perception, has also been
demonstrated in PD (Cecchini et al., 2014), though it has received much less scientific attention
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than smell, probably also because the impact of these symptoms
on quality of life was considered modest. In this review, we assess
the current knowledge about smell and taste disorders in PD,
seeking to understand their pathologic underpinnings.

SMELL

Physiology
The olfactory mucosa represents a proportion (∼1.25%) of the
nasal mucosa in humans (Godoy et al., 2015). The about 10
million of dendrites of olfactory receptor neurons in the olfactory
bulb project to the mucosa. Olfactory sensory neurons send
their axons to olfactory glomeruli. Here they make synapses with
mitral and tufted cells that have varies projections, through the
olfactory tract, to primary olfactory cortex, amygdala, entorhinal
cortex, and many cortical projections (Patel and Pinto, 2014).
In humans there are ∼350 functional odorant receptor genes
each coding to the specific receptor sensing its own individual
subset of chemicals or substances and leading to the complex
mechanism of smell identification (Garcia-Esparcia et al., 2013).

Smell and PD
It is well-known that olfactory impairment is a common finding
in Parkinson’s Disease (PD) and it occurs generally early in
the course of the disease. Reported rates of smell impairment
in PD patients range from 75 to 95% (Haehner et al., 2009,
2019; Doty, 2012; Haugen et al., 2016) in comparison with
25% in normal population (Murphy et al., 2002). Olfactory
impairment can be associated with a 10% increased risk of future
PD (Ponsen et al., 2004) and, in healthy subjects, hyposmia
together with impaired DAT scan is highly predictive of PD
(Jennings et al., 2017). Moreover, smell impairment is reliable in
differentiating early-stage PD from age-matched controls (Doty
et al., 1995) and the olfaction assessment can be useful to
differentiate PD from other conditions related to PD, but without
a strong association with smell impairment: Essential Tremor
(ET) (Busenbark et al., 1992) and atypical parkinsonian disorders
like Multiple System Atrophy (MSA), Progressive Nuclear Palsy
(PSP), and Corticobasal Degeneration (CBD) (Doty et al., 1993;
Wenning et al., 1995; Krismer et al., 2017). Olfactory loss is
therefore considered a supportive criterion for PD diagnosis
(Postuma et al., 2015).

Differently from general population, where smoking is related
with impairment of olfactory function (Katotomichelakis et al.,
2007), patients smokers among PD patients have less decline
in their olfactory function when compared to those who do
not smoke (Sharer et al., 2015). Among PD patients anosmia
has been associated with worse performance on cognitive tests
and it may be a predictor of emergent PD-related dementia
(Baba et al., 2012). Interestingly, smell impairment in PD
has been linked to impairment of cholinergic transmission.
In fact, cholinergic denervation of the limbic archicortex
(assessed through [(11)C]methyl-4-piperidinyl propionate
acetylcholinesterase brain positron emission tomography)
was found to be a more robust determinant of hyposmia
than nigrostriatal dopaminergic denervation in patients with
moderately severe PD without dementia (Bohnen et al., 2010).

These data are in line with the observation that hyposmia
does not improve with levodopa (Tarakad and Jankovic, 2017),
while some evidences suggest that rasagiline is associated with
significantly better odor discrimination abilities in early-PD
patients (Haehner et al., 2015).

Smell impairment is more frequent in male patients (Picillo
et al., 2013) and is more severe in those subtypes of PD
associated with postural instability and gait disorder (PIGD)
(Stern et al., 1994), and has been found to be more prevalent
in rigid-akinetic PD than in tremor-dominant type (Iijima et al.,
2011). So, different degrees of smell disorder could be related
to a different extent of neurodegeneration of the nigrostriatal
dopaminergic neurons, implying a worse prognosis in patients
with more marked hyposmia (Iijima et al., 2011). According to
this observation, worse olfactory performance was recently found
in patients with higher Hoehn and Yahr stage (Jalali et al., 2019).

Most patients have asymptomatic smell loss that does not
progress with time, because the maximum impairment appears
to be reached early on (Katzenschlager et al., 2004).

Smell impairment has a not negligible impact on quality of life.
In the general population, hyposmic older adults are more likely
to experience depressive symptoms, due to impairment of food
and drink enjoyment and socializing (Gopinath et al., 2011).

Nonetheless, smell impairment is often poorly perceived: PD
patients are often unaware of it (White et al., 2016), this possibly
leading to its under recognition.

As a non-dopaminergic PD manifestation, there are no
effective pharmacological treatments for smell impairment,
although some data point to a small benefit of rasagiline on smell
impairment in early PD (Haehner et al., 2015). Among non-
pharmacological treatments, olfactory training has been proven
capable to improve smell sensitivity in a small cohort of PD
patients (Haehner et al., 2013).

Smell impairment often predates onset of motor features by at
least 4 years (Ross et al., 2008), being probably the earliest sign of
central nervous system pathology in PD. Parkinsonism is in fact
associated with abnormalities in several central regions involved
in odor perception (Tarakad and Jankovic, 2017): (1) olfactory
bulb volume is decreased in PD patients (Pearce et al., 1995;
Wang et al., 2011); (2) Increased diffusivity on MRI diffusion
weighted imaging was found in the region of both olfactory tracts
in patients with PD compared to controls (Scherfler et al., 2006);
(3) α-synuclein deposition in the olfactory tract and anterior
olfactory nucleus was demonstrated on pathological examination
of patients even in the earliest stages of PD (Braak et al., 2003a),
and also in the olfactory bulb (Pearce et al., 1995), while Lewy
neurites were identified in the olfactory mucosa (Funabe et al.,
2013). Individual variations of olfactory performance of PD
patients have been associated with gender (Doty et al., 1995;
Morley et al., 2018; Melis et al., 2019) and with a polymorphism
of genes coding for odorant-binding protein OBPIIa (Melis
et al., 2019), as already shown in healthy subjects (Tepper et al.,
2017; Tomassini Barbarossa et al., 2017; Sollai et al., 2019). The
genotype AA in the locus in OBPIIa seems to preserve the
olfactory function in PD women (Melis et al., 2019).

The main aspects associated with smell impairment in PD are
summarized in Table 1.
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TABLE 1 | Summarizes the main PD clinical and demographic features

associated with smell and taste impairment.

Factors associated with

sense impairment in PD

Sense

Smell Taste

Gender Male Male

Age Older age Older Age

Disease fenotype Rigid-Akinetic type, PIGD

type

No difference

Associated features Cognitive impairment

Higher H&Y stage

Cognitive impairment

Appearance at the stage of

illness

Early/Prodromic Intermediate/Late

Smoking habits Non smokers Not investigated

Prevalence 75–90% ≈10%

Treatment Olfactory training No specific treatment

Role of Smell in the PD Pathological
Process and Relationship With the
Microbiota
According to Braak’s model (Hawkes et al., 2007), the
pathological process of PD starts at the same time in two sites,
the olfactory bulb/anterior olfactory nucleus, and the enteric
nerve cell plexuses. This pathogenic explanation is known as
the “dual-hit” hypothesis. Constipation is actually another well-
characterized, early prodromal manifestation of PD.

The alfa-synuclein pathology spreads in a caudal-rostral
fashion from the lower brainstem through mid- and forebrain,
up to the cerebral cortex in the final stages. Always according to
this hypothesis (Braak et al., 2003b), a yet unknown pathogen
could be responsible for this stereotypical sequential damage of
the nervous system areas, accessing the Central Nervous System
(CNS) via the olfactory bulb and the myenteric plexus of the
enteric nervous system (ENS). Those two sites are especially
vulnerable due to their lack of a blood brain barrier (BBB),
that surrounds the CNS (Braak et al., 2003b; Hawkes et al.,
2007; Mori, 2015; Sampson et al., 2016). This alleged pathogen
could trigger neurodegeneration through a prion-like diffusion
of misfolded proteins along neural pathways, or by provoking
neuroinflammation leading to degeneration (Bell et al., 2019).

A growing body of evidence indicates a key role in this process
of components of humans’ tissue-resident micro-organisms, the
microbiota, 10–100 trillion symbiotic microbial cells harbored by
each person, primarily bacteria in the gut (Ursell et al., 2012).
While differences in composition of gut microbiota between PD
patients and healthy controls are well-established (Keshavarzian
et al., 2015; Scheperjans et al., 2015) and could influence
the phenotypical expression of the disease (Scheperjans et al.,
2015), it is less clear whether such differences exist for nasal
microbiota composition. Pereira et al. did not find any significant
differences in nasal microbiota composition of healthy controls
and PD patients (Pereira et al., 2017). They were though, as
they stated, unable to sample the olfactory mucosa nearest to the
olfactory bulb. It has been demonstrated that spatial variability
of microbial communities exists in the nasal cavity (Yan et al.,

2013). Another recent study did not find any consistent difference
in the nasal microbiota composition between PD patients and
healthy controls (Heintz-Buschart et al., 2018). Moreover, a high
interindividual variability was noted for the nasal microbiota,
with sex as the strongest grouping factor.

Interestingly, some components of the respiratory
microbial flora have been linked to neurodegenerative and
neuroinflammatory diseases: (1) Chlamydia Pneumoniae
infection is associated with a 5-fold increased incidence of
Alzheimer Disease (AD) (Maheshwari and Eslick, 2015) and C.
Pneumoniae DNA was found in 90% of brain tissue samples in
AD in comparison with 5% in controls (Balin et al., 1998); (2)
Multiple Sclerosis (MS) has been linked to overrepresentation
of nasal enterotoxin-A-producing S. Aureus (Brocke et al., 1993)
and staphylococcal-specific oligoclonal bands (OCBs) are also
identified in the cerebrospinal fluid of MS cases (Gay, 2013).

In conclusion, smell impairment is a widely represented and
early pre-motor sign of PD (Ross et al., 2008; Doty, 2012).
The olfactory system could be, together with gut, one of those
peripheral sites where PD pathology first develops (Braak et al.,
2003b; Hawkes et al., 2007). Unlike gut microbiota, consistent
differences in nasal microbiota of PD patients have not been
detected. Nevertheless, difficulties in sampling the area nearest to
the olfactory bulb, together with high interindividual variability
could be partially responsible for this result (Pereira et al., 2017;
Heintz-Buschart et al., 2018).

TASTE

Physiology
Taste is the body’s other major chemosensory system and acts as
the final arbiter of food acceptance or rejection behavior (Scott,
2005). Deficits in taste function has also been described in PD
(Cossu et al., 2018; Cecchini et al., 2019).

There are five taste qualities (salty, sweet, bitter, sour, and
umami. Recently, the ability to taste fatty acids has been described
as a sixth taste quality Mattes, 2010. Sensory neurons project
from taste buds to the gustatory nucleus (solitary nucleus)
within the medulla oblongata via the cranial nerves VII, IX,
and X. From here, neurons project to the thalamus ventral
posteromedial nucleus to the primary gustatory cortical area
(insular cortex and frontal operculum) (Maheswaran et al., 2014).
Local projections from the solitary nucleus within the brainstem
mediate unconscious responses, such as those related to eating
behaviors (Tepper et al., 2014).

When patients report taste impairments it is difficult to
attribute these to taste or smell abnormalities with certainty,
given that during chewing and swallowing the two systems are
both activated for the genesis of the taste sensation.

However, taste, individually, is only a reflection of
perceptions originated from taste buds, i.e., sour, sweet,
salty, bitter, savory (umami), and possibly chalky or metallic
(Doty and Hawkes, 2019).

Taste and PD
A few studies did an evaluation of taste in PD but the results have
been not conclusive so far. The first report on the correlation
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between taste perception and PD is from 1993 (Travers et al.,
1993). However, this study only investigated taste preferences,
showing an increased preference for sucrose (sweet taste) in
PD compared to healthy controls. Most of the studies on this
topic published afterwards identified a reduced taste sensitivity
in PD (ageusia) with an estimated frequency of taste impairment
between 9 and 54% (Tarakad and Jankovic, 2017; Cossu et al.,
2018; Doty and Hawkes, 2019). Only two groups showed
higher sensitivity to taste stimuli in PD compared to controls
(Sienkiewicz-Jarosz et al., 2013; Doty et al., 2015).

These contradictory results may be due to the relatively small
sample and, most of all, may be due to the different measurement
methods, which can be important potential confounders. For
example, using small amounts of taste molecules through TST
(Taste Strips test) seems more sensitive compared to the WMT
(Whole Mouth Test), which investigates taste at a supra-
threshold level. This has been reported in one study (Cecchini
et al., 2014) where TST, but not WMT, showed a significant
reduction in taste among PD patients compared to controls.

Moreover, Doty et al. and Sienkiewicz-Jarosz et al., using
regional tests performed by placing the strip only on specific
parts of the tongue, showed that relative intensity ratings
had increased in the anterior tongue compared to the
posterior tongue. These interesting results are not identified
if the taste technique is limited to WMT. The authors
speculated that PD-related damage to CN IX may release
central inhibition on CN VII at the level of the brainstem,
resulting in the observed enhancement of taste intensity on
the anterior tongue (Sienkiewicz-Jarosz et al., 2013; Doty et al.,
2015).

Finally, in addition to the techniques based on administration
of chemicals on the tongue, electrogustometry (EGM) can be
performed in taste research. The latter has been employed as a
confirmative technique in a few studies on PD (Cecchini et al.,
2014; Doty et al., 2015).

Furthermore, some studies on taste perception in PD
showed a certain selectivity in its altered functions, interestingly
identifying a specific reduced perceptivity for salty and bitter
stimuli not reported for sweet and sour (Moberg et al.,
2007; Sienkiewicz-Jarosz et al., 2013; Cecchini et al., 2014;
Doty et al., 2015; Cossu et al., 2018). This is strenghtened
by the finding that taste-receptor-genes are dysregulated in
PD, particularly those accounting for the bitterness perception
(Cossu et al., 2018).

These conflicting reports suggest that evidence might be
too scarce to draw definitive conclusions about the effective
clinical relevance of taste impairment in PD. However, it is now
evident that taste can be affected in PD although less frequently
than smell.

In this respect, olfaction impairment is acknowledged as
an early biomarker of the disease, while taste impairment is
rarely found in studies enrolling patients in the early phase.
Moreover, taste impairment in PD has been preferentially
reported in older patients, in association with PD dementia,
psychosis and MCI (Lang et al., 2006; Cecchini et al., 2019).
Whereas, with respect to incidence of taste impairment in
different PD subtypes, no conclusive data are reported (Mun
et al., 2016).

No specific treatment for taste impairment in PD exists
(Tarakad and Jankovic, 2017), although zinc supplementation
has been employed in treating taste disorders in the general
population (Yagi et al., 2013).

The main aspects associated with taste impairment in PD are
summarized in Table 1.

Role of Taste Receptors in the PD
Pathological Process
In the last few years some authors have focused their studies on
specific taste performances in PD, identifying an increase in the
frequency of the non-tasters for bitterness compared to healthy
controls (Moberg et al., 2007; Cossu et al., 2018). The ability to
perceive the bitter taste has gained considerable attention because
of its genetic substrate. In the family of receptors for bitter,
TAS2R38, a member of the T2R receptors, has been extensively
studied, since the allelic diversity of the gene is able to explain
much of the individual variability in the perception of the bitter
taste. In fact, polymorphisms of the gene give rise to variants
of the receptor with different affinity for the stimulus. T2R
bitter taste receptors are G-protein coupled receptors originally
identified on the tongue. Human nasal and bronchial airways
(as well as gut mucosa) express multiple T2Rs isoforms (T2R4,
T2R14, T2R16, and T2R38) (Janssen et al., 2011; Calvo and
Egan, 2015). These T2Rs recognize bacterial products and, when
activated, stimulate a signaling cascade involving calcium-driven
nitric oxide production increasing ciliary beating as well as
directly killing bacteria (Carey and Lee, 2019).

A cross-talk between signaling from T2Rs and toll-like
receptors (TLRs) has been proposed by several authors (Lee
and Cohen, 2015; Caputi and Giron, 2018; Maina et al., 2018).
TLRs are a major class of pattern recognition receptors (PRRs)
expressed in airway and intestinal cells that are able to activate
inflammation through the transcription factor NF-KB. TLRs
are strongly implicated in innate immunity by identifying
conserved patterns principally found in microorganisms and
their dysregulated signaling may play a role in α-synucleinopathy
(Kim et al., 2018; Kwon et al., 2019).

Future studies will have to indicate whether the altered T2R
observed in PD (Garcia-Esparcia et al., 2013; Lu et al., 2017;
Cossu et al., 2018) may play a specific role in the inflammatory
mechanisms associated with the initiation of misfolding of α-
synuclein cascade possibly by modulating the innate immunity
via TLR/T2R signaling.

CONCLUSION

Our review confirms the relevance of smell and taste in
the parkinsonian phenotype. Both hyposmia and hypogeusia
are non-motor manifestations of PD that may impair quality
of life.

Olfaction and taste impairment in PD are linked to different
anatomical pathways. While alfa-synuclein pathology involves
the olfactory tract and the anterior olfactory nucleus early in the
disease course and smell impairment is often detectable years
before the onset of motor symptoms of PD, the pathology at
the basis of ageusia is less well-understood and the solitary tract
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is usually not involved by Lewy body pathology even in latest
stages of the disease (Braak et al., 2003a). Nevertheless, typical PD
pathological findings can be found in the operculum / anterior
insular region, which is an important relay point for axons
connecting to the orbitofrontal cortex (Braak and Del Tredici,
2009; Doty and Hawkes, 2019). Consequently, the topographical
significance of taste impairment in PD most likely relies on
the involvement of the cortex in the neurodegenerative process.
Therefore, taste dysfunction can start early in the course of
the disease but more frequently appears in advanced stages, in
parallel with the advent ofMCI (Braak stage 5), possibly reflecting
a cognitive impairment (Cecchini et al., 2019).

These “chemosensory” symptoms are subject to ongoing
research particularly focused on the relationship between enteric
microbiota-derived factors and TLR/T2Rs engagement. The
consequent signaling deriving from the receptor-activation in
both the ENS and the CNS will provide novel insights into the
complex dialogue between the host and the microbiota in PD.
This research will perhaps, lead to prompt measures aimed at
shaping the gut microbiota, aimed at ameliorate the function of
intestinal epithelial barrier and restore a balance in the innate
immune response in PD, in order to intercept and try to interfere
with the early stages of the following neurodegenerative process.
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