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Simple Summary: Diverse motor neuron diseases (MNDs) are associated with distinct survival rates,
so their early differentiation is pivotal to gain a more reliable prognosis estimation in clinical and
research settings. In this study, we therefore evaluated whether a multimodal characterization ap-
proach embedding clinical, cognitive/behavioral, genetic, and neurophysiological data may improve
the discrimination of pure/predominant upper motor neuron (pUMN) and pure/predominant lower
motor neuron (pLMN) disease forms from classic amyotrophic lateral sclerosis (ALS) already by the
time of diagnosis. Our results suggest common cognitive and genetic features across the distinct
MND phenotypes, but also demonstrate that highly specific clinical and neurophysiological mea-
sures provide valuable tools for an early discrimination between more benign and more aggressive
disease forms.

Abstract: Pure/predominant upper motor neuron (pUMN) and lower motor neuron (pLMN) dis-
eases have significantly better prognosis compared to amyotrophic lateral sclerosis (ALS), but their
early differentiation is often challenging. We therefore tested whether a multimodal characterization
approach embedding clinical, cognitive/behavioral, genetic, and neurophysiological data may im-
prove the differentiation of pUMN and pLMN from ALS already by the time of diagnosis. Dunn’s
and chi-squared tests were used to compare data from 41 ALS, 34 pLMN, and 19 pUMN cases with
diagnoses confirmed throughout a 2-year observation period. Area under the curve (AUC) analyses
were implemented to identify the finest tools for phenotypes discrimination. Relative to ALS, pLMN
showed greater lower limbs weakness, lower UMN burden, and progression rate (p < 0.001–0.04).
PUMN showed a greater frequency of lower limbs onset, higher UMN burden, lower ALSFRS-r and
MRC progression rates (p < 0.001–0.03), and greater ulnar compound muscle action potential (CMAP)
amplitude and tibial central motor conduction time (CMCT) (p = 0.05–0.03). The UMN progression
rate was the finest measure to identify pLMN cases (AUC = 90%), while the MRC progression rate was
the finest tool to identify pUMN (AUC = 82%). Detailed clinical and neurophysiological examinations
may significantly improve MNDs differentiation, facilitating prognosis estimation and ameliorating
stratification strategies for clinical trials enrollment.

Keywords: motor neuron diseases; differential diagnosis; multimodal characterization; amyotrophic
lateral sclerosis
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1. Introduction

Motor neuron diseases (MNDs) are a group of heterogeneous neurodegenerative
syndromes characterized by the progressive deterioration of upper (UMN) and/or lower
motor neurons (LMN), leading to advancing muscular paralysis and death [1].

It is now widely accepted that the clinical spectrum of MNDs is extremely vari-
able, ranging from classic amyotrophic lateral sclerosis (ALS) to pure/predominant LMN
(pLMN) disease forms, such as progressive muscular atrophy (PMA), flail arm and flail leg
phenotypes, and pure/predominant UMN syndromes, including primary lateral sclerosis
(PLS) and pyramidal phenotypes [2].

Notably, while detailed clinical studies of these diverse syndromes are still rare, it
has been recently shown that pUMN and pLMN phenotypes exhibit significantly longer
survival compared to classic ALS [3], suggesting that the early identification of these
syndromes may have remarkable prognostic relevance.

On the other hand, accurate MNDs differentiation at the time of diagnosis might be
particularly challenging for multiple reasons: the initial clinical manifestations are often
subtle and heterogenous [4], and additionally, by definition, confirmed diagnoses of more
benign syndromes require long observation periods; flail arm and flail leg syndromes, for
example, are characterized by functional involvement confined to the onset limbs for at
least 12 months [2,3], and PLS and PMA are defined by the absence, respectively, of LMN
and UMN degeneration for up to 4 years from symptom onset [5,6].

In light of all the aforementioned observations, it becomes clear why a considerable
diagnostic delay is frequently observed in benign MND phenotypes, with negative effects
on reliable prognosis estimation, patient management, and clinical trials stratification
strategies.

In this context, the aim of our study was to retrospectively analyze a large sample of
MND patients with ALS, pLMN, and pUMN diagnoses confirmed throughout a 2-year
observation period in order to: (a) better depict the diverse MND phenotypes using a
multimodal characterization approach embedding clinical, cognitive/behavioral, genetic,
and neurophysiological features, and (b) test whether the information derived from such
an approach would have been able to improve the discrimination of pLMN and pUMN
cases from classic ALS patients already at the time of diagnosis.

2. Materials and Methods
2.1. Participants

As part of a larger study established in 2019 and still in operation, all patients diag-
nosed with MND at our center, who agree to participate, undergo a thorough battery of
baseline evaluations including: neurological history, neurophysiological exams, clinical
assessments, extra-motor symptoms examinations, and genetic screening.

Neurophysiological data are obtained using Synergy Software. Compound muscle
action potentials (CMAPs) are acquired from the upper limbs’ median and ulnar nerves and
from the lower limbs’ peroneal and tibialis posterior nerves, both proximally and distally.
Motor-evoked potentials (MEPs) are elicited through a magnetic stimulator (Magstim) and,
from the bilateral abductor pollicis brevis and tibialis anterior muscles, the central motor
conduction time (CMCT) is calculated.

Experienced neurologists perform all the clinical assessments. Onset site (bulbar vs.
spinal), limbs (upper vs. lower), side (right vs. left vs. bilateral), and muscles involvement
(proximal vs. distal), as well as disease duration, are recorded.

Disease severity is assessed using the ALS Functional Rating Scale-revised (ALSFRS-
r) [7], muscular weakness is evaluated using the Medical Research Council (MRC) scale [8],
and the severity of UMN involvement is graded using the UMN score [9]. For each
scale an additional baseline rate of progression is calculated as follows: (maximum score
of the scale—actual patient score at the time of examination)/months from symptom
onset to examination.
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Experienced neuropsychologists perform all the extra-motor symptoms examina-
tions. Cognitive and behavioral alterations are evaluated using the Italian version of the
Edinburgh Cognitive and Behavioral ALS Screen (ECAS) [10]. Anxiety and depressive
symptoms are assessed using the Hospital Anxiety and Depression Scale [11].

Genetic screening includes both C9orf72 GGGGCC repeat length analysis and next-
generation sequencing (NGS) analysis with two multiple gene panels including, respec-
tively, 23 and 27 genes known to be associated or possibly associated with ALS. The genes
included in the panels are given in Supplementary Table S1.

Patients are then followed longitudinally with clinical and behavioral/mood examina-
tions approximately every 3 months, and with cognitive evaluations approximately every
6 months.

From this large dataset, the present retrospective study selected all the MND cases
fulfilling, both at first examination and during a 2-year observation period, current criteria
for the following phenotypes: classic ALS, pLMN (flail arm, flail leg, and pure LMN), and
pUMN (pyramidal and pure UMN) [3].

2.2. Statistical Analyses

All data were analyzed using CRAN R Version 3.4.1 (https://cran.r-project.org/,
accessed on 16 May 2022), and the statistical significance threshold was set to p ≤ 0.05.

Continuous variables were compared between ALS, pLMN, and pUMN groups using
the Kruskal–Wallis test and nonparametric pairwise multiple comparisons between ALS
patients and pLMN patients, as well as between ALS patients and pUMN patients’ were
subsequently run using the Dunn’s test with Bonferroni adjustment to control for the
familywise error rate. Categorical variables were compared between patient groups using
the chi-squared test.

Afterwards, receiver operating characteristics (ROC) curve and area under the curve
(AUC) analyses were implemented to evaluate the sensitivity and specificity of differentiat-
ing features in the discrimination between pLMN and pUMN phenotypes and classic ALS.

According to current references [12], AUC values lower than 0.7 suggested no discrim-
ination, AUC values from 0.7 to 0.8 were considered acceptable, AUC values from 0.8 to 0.9
were considered excellent, and AUC values greater than 0.9 were considered outstanding.

Finally, in order to explore whether features discriminating pLMN and pUMN patients
from classic ALS would have been further associated with a more stable clinical course,
linear regression models were applied to test the role of those measures in predicting the
degree of functional impairment at the end of the observation period (evaluated using the
ALFRS-r score).

3. Results
3.1. Demographic, Onset, Clinical, Neurophysiological, Extra-Motor, and Genetic Data Comparisons

Demographic, onset, clinical, neurophysiological, extra-motor, and genetic features of
ALS, pLMN, and pUMN patients are summarized in Table 1.

No significant differences were observed between pLMN and ALS cases in terms of
demographic, onset, and neurophysiological characteristics.

As regards clinical features, as expected, pLMN cases showed a lower frequency of
clinically probable (p < 0.001) and clinically probable–laboratory supported (p = 0.007) El
Escorial diagnoses, and a greater frequency of suspected El Escorial categories (p < 0.001)
compared to ALS patients. Additionally, pLMN cases exhibited greater right lower limb
muscular weakness (lower MRC scores, p = 0.04) and inferior total and regional UMN
burden (lower total UMN score p < 0.001, upper limbs UMN score p < 0.001, and lower
limbs UMN score p < 0.001), as well as lower UMN rate of progression (p < 0.001) (Table 1).

No significant differences were observed between pUMN and ALS cases in terms
of demographic variables. As regards onset characteristics, pUMN patients exhibited a
greater frequency of symptom onset in the lower limbs (p = 0.02) (Table 1).

https://cran.r-project.org/
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Concerning clinical features, by definition, pUMN cases showed a greater frequency of
possible El Escorial diagnoses (p < 0.001). Furthermore, they manifested less severe overall
functional and muscular weakness worsening (lower ALSFRS-r rate of progression p = 0.01,
lower MRC rate of progression p < 0.001) as well as greater total and regional UMN burden
(higher total UMN score p = 0.03, upper limbs UMN score p = 0.04, lower limbs UMN score
p = 0.01, cranial UMN score p = 0.03). In terms of neurophysiological features, pUMN cases
exhibited higher right ulnar nerve CMAP amplitude (p = 0.05) as well as increased right
tibialis anterior CMCT (p = 0.03).

Table 1. Demographic, onset, clinical, neurophysiological, extra-motor, and genetic features of classic
ALS, pLMN, and pUMN patients.

ALS (n = 41) pLMN (n = 34) pUMN (n = 19)

Demographic features

Age (years) 65.41 (11.60) 67.44 (12.66) 63.16 (12.18)
Gender (M/F) 25/16 24/10 9/10

Education (years) 11.33 (3.45) 10.53 (4.62) 14.35 (4.27)

Onset features

Onset side (left/right/bilateral) 21/17/3 13/14/7 6/10/3
Onset limbs (upper/lower) 23/18 17/17 4/15 *

Onset involvement (proximal/distal) 5/36 7/27 5/14

Clinical features

Disease duration (months) 13.14 (8.95) 23.85 (30.82) 25.68 (26.94)
El Escorial Category (D/CP/

CP-LS/P/S) 9/19/12/1/0 0/2/1/1/30 ** 1/4/5/9/0 **

ALSFRS-r total score (0–48) 38.04 (7.32) 36.48 (7.37) 37.00 (8.12)
ALSFRS-r rate of progression

(points/month) 0.72 (0.68) 0.46 (0.43) 0.33 (0.43) *

ALSFRS-r bulbar score (0–12) 10.90 (1.85) 11.12 (1.60) 9.88 (3.01)
ALSFRS-r fine motor score (0–12) 8.07 (3.08) 7.58 (3.69) 9.35 (3.31)

ALSFRS-r gross motor score (0–12) 7.60 (3.27) 6.74 (3.08) 6.70 (2.51)
ALSFRS-r respiratory score (0–12) 11.46 (1.68) 11.03 (2.04) 11.05 (2.10)

MRC total score (0–150) 124.52 (24.28) 112.16 (24.98) 128.40 (27.82)
MRC rate of progression (points/month) 1.81 (1.69) 2.01 (2.63) 0.62 (1.27) **

MRC R UL score (0–40) 32.35 (9.17) 30.25 (10.10) 35.84 (7.10)
MRC L UL score (0–40) 32.78 (7.49) 31.25 (9.25) 33.50 (11.05)
MRC R LL score (0–35) 30.58 (6.73) 24.46 (9.11) * 30.40 (8.34)
MRC L LL score (0–35) 28.81 (8.24) 25.33 (9.18) 28.65 (9.88)
UMN total score (0–16) 7.31 (4.45) 1.37 (2.62) ** 12.20 (3.29) *

UMN rate of progression (points/month) 0.65 (0.59) 0.07 (0.24) ** 0.66 (0.77)
UMN UL score (0–8) 4.48 (2.77) 0.93 (2.26) ** 6.93 (1.48) *
UML LL score (0–6) 2.45 (1.97) 0.41 (1.21) ** 4.46 (1.40) *

UMN cranial score (0–2) 0.37 (0.68) 0.03 (0.18) 0.80 (0.77) *

Cognitive, behavioral, and mood features

Cognitive phenotype (motor/MND-CBI) 24/11 21/8 10/4
Total ECAS score (0–136) 105.73 (16.56) 99.93 (19.76) 110.84 (9.09)

ALS specific functions (0–100) 79.61 (13.42) 74.56 (16.19) 83.30 (7.59)
Executive functions (0–48) 36.76 (6.95) 33.25 (9.83) 37.23 (5.47)
Language functions (0–28) 24.34 (3.70) 22.87 (4.24) 26.07 (1.75)

Verbal fluency (0–24) 18.40 (5.12) 18.43 (4.33) 20.00 (2.82)
ALS non-specific functions (0–36) 26.20 (4.62) 25.37 (5.73) 27.53 (2.96)

Memory functions (0–24) 14.54 (4.38) 14.09 (5.25) 15.84 (2.99)
Visuospatial functions (0–12) 11.65 (0.72) 11.28 (1.19) 11.69 (0.63)

ECAS carer behavior screen (0–10) 0.38 (0.65) 0.37 (0.56) 0.58 (1.16)
HADS total score (0–42) 6.51 (5.66) 5.85 (4.06) 11.25 (5.15) *

HADS depression score (0–21) 2.82 (2.95) 2.81 (2.11) 5.58 (3.08) *
HADS anxiety score (0–21) 3.68 (3.30) 3.03 (2.48) 5.66 (3.02)
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Table 1. Cont.

ALS (n = 41) pLMN (n = 34) pUMN (n = 19)

Familiarity and genetic features

Familiarity (no/yes) 31/10 26/8 10/9
Genetic mutations (no/yes) 13/6 15/5 7/1

Neurophysiological features

CMAP amplitude R median nerve (µV) 2.25 (2.36) 2.25 (2.05) NA
CMAP amplitude L median nerve (µV) 1.44 (1.78) 3.10 (4.10) NA
CMAP amplitude R ulnar nerve (µV) 5.07 (1.85) 6.25 (3.21) 8.10 (1.95) *
CMAP amplitude L ulnar nerve (µV) 4.99 (2.82) 5.31 (3.19) 5.76 (1.68)

CMAP amplitude R peroneal nerve (µV) 3.26 (2.23) 2.09 (2.12) 3.61 (1.59)
CMAP amplitude L peroneal nerve (µV) 2.56 (2.27) 1.85 (1.67) 4.22 (1.62)

CMAP amplitude R tibial nerve (µV) 4.00 (4.60) 1.80 (0.96) 6.95 (3.60)
CMAP amplitude L tibial nerve (µV) 1.93 (1.45) 4.01 (4.93) 8.90 (3.95)

MEP CMCT R abductor pollicis brevis
(ms) 9.39 (1.41) 8.35 (2.63) 10.27 (1.88)

MEP CMCT L abductor pollicis brevis
(ms) 7.64 (1.52) 7.48 (1.53) 7.99 (1.40)

MEP CMCT R tibialis anterior (ms) 15.23 (5.65) 15.19 (2.25) 30.66 (22.88) *
MEP CMCT L tibialis anterior (ms) 16.54 (6.65) 13.84 (2.16) 17.99 (4.43)

** p < 0.001, * p ≤ 0.05 relative to classic ALS. Abbreviations: ALS = classic amyotrophic lateral sclerosis;
ALSFRS-r = ALS Functional Rating Scale-revised; CMCT = central motor conduction time; CMAP = compound
muscle action potential; CP = clinically probable; CP-LS = clinically probable–laboratory supported; D = definite;
ECAS = Edinburgh Cognitive and Behavioral ALS screen; F = females; HADS = Hospital Anxiety and Depression
Scale; L = left; LL = lower limbs; M = males; MEP = motor-evoked potential; MRC = Medical Research Council;
P = possible; pLMN = pure/predominant lower motor neuron; pUMN = pure/predominant upper motor neuron;
R = right; S = suspected; UL = upper limbs.

Information regarding family history was available in all patients, while genetic
screening was performed, respectively, in 46.34% of ALS, 58.82% of pLMN, and 42.10%
of pUMN cases. No differences were observed between, respectively, pLMN and ALS
cases, as well as between pUMN and ALS cases, in the frequency of either positive family
histories for ALS and/or other neurodegenerative diseases and known genetic mutations.

Extra-motor symptom evaluations were available in 85.36% of ALS, 85.29% of pLMN,
and 73.68% of pUMN cases. No significant differences were observed between pLMN
and ALS cases in terms of extra-motor features, while pUMN cases exhibited more severe
depressive symptoms (higher total HADS score p = 0.01 and depression HADS score
p = 0.005) compared to ALS patients.

3.2. ROC Analysis

The ROC analysis demonstrated the UMN rate of progression to be the finest tool
to differentiate pLMN from ALS patients, with AUC = 90%, sensitivity = 83%, and
specificity = 89% (Figure 1, Table 2).

Table 2. Sensitivity and specificity in differentiating between ALS and pLMN patients.

Measure AUC
(%)

AUC
Category Cut-Off Sensitivity

(%)
Specificity

(%)

MRC R LL 67 ND 28.00 61 84
UMN total score 89 E 0.50 72 97

UMN rate of
progression 90 * E 0.05 83 89

UMN UL 84 E 0.50 83 86
UMN LL 81 E 1.50 90 69

* The finest tool to discriminate between ALS and pLMN. Abbreviations. A = acceptable; AUC = area under curve;
E = excellent; LL = lower limbs; MRC = Medical Research Council; ND = no discrimination; R = right; UL = upper
limbs; UMN = upper motor neuron.
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Total, upper limbs and lower limbs UMN scores exhibited excellent AUC values
ranging from 81% to 89%, with sensitivity values ranging from 72% to 90% and specificity
values ranging from 69% to 97%, while right lower limb weakness showed no acceptable
discriminatory values, with AUC = 67%, sensitivity = 61%, and specificity = 84%.

Similarly, the ROC analysis revealed the MRC rate of progression to be the most
accurate tool for the discrimination between pUMN and ALS patients, with AUC = 82%,
sensitivity = 69%, and specificity = 86% (Figure 2, Table 3).
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Table 3. Sensitivity and specificity in differentiating between ALS and pUMN patients.

Measure AUC
(%)

AUC
Category Cut-Off Sensitivity

(%)
Specificity

(%)

ALSFRS-r rate of
progression 74 A 0.31 82 68

MRC rate of progression 82 * E 0.38 69 86
UMN total score 81 E 10.50 73 77

UMN UL 77 A 7.50 60 80
UMN LL 78 A 2.50 93 60

UMN cranial 66 ND 0.50 60 74
HADS depression score 80 E 2.50 100 59

HADS total score 76 A 7.50 83 66
CMAP amplitude R

ulnar nerve 79 A 8.95 60 94

MEP CMCT R tibialis
anterior 75 A 17.46 88 64

* The finest tool to discriminate between ALS and pUMN. Abbreviations. A = acceptable; ALSFRS-r = ALS
Functional Rating Scale-revised; AUC = area under curve; CMCT = central motor conduction time; CMAP =
compound muscle action potential; E = excellent; HADS = Hospital Anxiety and Depression Scale; LL = lower
limbs; MEP = motor-evoked potential; MRC = Medical Research Council; ND = no discrimination; R = right; UL =
upper limbs; UMN = upper motor neuron.

Total UMN and HADS Depression scores showed excellent AUC values ranging from
80% to 81%, with sensitivity values ranging from 73% to 100% and specificity values ranging
from 77% to 59%. Acceptable AUC values, ranging from 74% to 79%, were observed for the
ALSFRS-r rate of progression, upper limbs, and lower limbs UMN scores, as well as for the
HADS total score, CMAP amplitude of the right ulnar nerve, and CMCT of the right tibialis
anterior, with sensitivity values ranging from 60% to 93% and specificity values ranging
from 60% to 94%. Cranial UMN score showed no acceptable discriminatory values, with
AUC = 66%, sensitivity = 60%, and specificity = 74%.

3.3. Regression Analysis with Longitudinal Data

In pLMN patients, less severe right lower limb weakness at the time of diagnosis was a
significant predictor of higher ALSFRS-r scores at 2 years (p = 0.05), while the other features
did not show a significant effect (Table 4).

In pUMN patients, lower ALSFRS-r and MRC rates of progression at the time of
diagnosis were significant predictors of higher ALSFRS-r scores at 2 years (p = 0.01 and p =
0.02, respectively), while the other features did not show a significant effect (Table 4).

Table 4. Regression analyses linking baseline differentiating measures to ALSFRS-r scores at the end
of the study period.

pLMN Patients

ALSFRS-r at 2 Years Tested Predictor Estimate T Value p Value

31.38 ± 9.15

MRC R LL 0.38 1.94 0.05 *

UMN total score −0.05 −0.05 0.95

UMN rate of
progression −3.78 −0.06 0.95

UMN UL −0.53 −0.43 0.66

UMN LL −0.50 −0.33 0.74
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Table 4. Cont.

pUMN Patients

ALSFRS-r at 2 Years Tested predictor Estimate T Value p Value

29.91 ± 6.80

ALSFRS-r rate of
progression −9.10 −2.82 0.01 *

MRC rate of
progression −2.95 −2.78 0.02 *

UMN total score 0.53 0.72 0.49

UMN UL 1.16 0.67 0.51

UMN LL 1.05 0.64 0.53

UMN cranial 2.50 0.68 0.51

HADS depression score 1.13 1.58 0.15

HADS total score 0.25 0.52 0.61

CMAP amplitude R
ulnar nerve 1.63 0.55 0.68

MEP CMCT R tibialis
anterior −0.03 −7.55 0.08

* p ≤ 0.05. Abbreviations: ALSFRS = ALS Functional Rating Scale-revised; CMCT = central motor
conduction time; CMAP = compound muscle action potential; HADS = Hospital Anxiety and Depres-
sion Scale; L = left; LL = lower limbs; MEP = motor-evoked potential; MRC = Medical Research Council;
pLMN = pure/predominant lower motor neuron; pUMN = pure/predominant upper motor neuron; R = right;
UL = upper limbs.

4. Discussion

To our knowledge, this is the first study embedding detailed clinical and neuro-
physiological assessments, extra-motor symptoms evaluations, and genetic information
to better characterize the whole spectrum of the diverse MND phenotypes as currently
classified [2,3] and, more importantly, the first one testing the added value of a multimodal
characterization approach for the early discrimination between more benign and more
aggressive MND forms.

We observed that, while onset, extra-motor and genetic features were largely overlap-
ping between the diverse phenotypes, and highly specific clinical and neurophysiological
measures were able, already at the time of diagnosis, to discriminate pLMN and pUMN
from ALS cases with significantly accurate performances. A detailed discussion of the
obtained findings is provided below.

4.1. Findings in pLMN Patients

Similarly to previous reports [13–15], we did not observe significant demographic
and disease onset differences between pLMN and ALS patients, a finding which may
contribute to explaining why the differential diagnosis between these two conditions can
be so challenging at the time of first evaluation.

In accordance with the observation of similar onset features, we further found similar
degrees of overall functional impairment (ALSFRS-r scores) in pLMN and ALS cases, a
result which is largely in line with previous studies of both flail limb and PMA pheno-
types [13,16].

Notably, neurophysiological measures were also largely overlapping across pLMN
and ALS patients. While the similar observed CMAP amplitudes suggest common patterns
of motor units’ loss and reinnervation during the initial stages of the disease, the absence of
significant differences in MEP CMCT measures might be related to the composition of the
pLMN group, since not only pure but also predominant LMN disease forms were included.

Conversely, compared to ALS, pLMN cases exhibited greater right lower limb muscu-
lar weakness as well as less severe total and regional UMN burden. One factor possibly
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accounting for the severe lower limbs involvement observed in pLMN cases is the so-called
split-leg phenomenon, an uneven atrophy recently found to be more prominent in PMA
than in ALS cases [16] and postulated to be largely influenced by peripheral pathophysio-
logical mechanisms. Notably, this measure was further predictive of more severe functional
impairment at the end of the study period, suggesting either a potential role of this feature
in identifying those pLMN cases more likely to convert to classic ALS phenotypes, or
simply a significant impact of lower limb muscular weakness on the course of functional
status in pLMN syndromes.

The observation of less severe UMN burden in pLMN patients is in line with their
clinical diagnoses; however, while previous studies have reported an absence of significant
differences in the frequency of UMN signs across bulbar, cervical, and lumbar regions
between flail limb and ALS cases [14], the application of more detailed and quantitative
UMN assessments in our study has conversely enabled to highlight significant differences
between the two phenotypes.

The ROC analysis further confirmed the relevance of UMN burden differences across
groups: the UMN total and regional scores exhibited excellent discriminatory performances,
yet the finest tool to differentiate pLMN from ALS cases was the baseline UMN rate of
progression, yielding sensitivity values of 83% and specificity values of 89%.

While this finding is largely in line with the general observation that progressive UMN
degeneration in pLMN phenotypes is associated with upcoming conversion to ALS, it also
provides unprecedented evidence that reliable proxies of such a phenomenon can be gained
already at the time of diagnosis, providing early excellent discriminatory tools.

4.2. Findings in pUMN Patients

No significant differences were observed between pUMN and ALS cases in terms
of demographic variables, a finding largely in line with recent reports showing a lack of
differences in both sex ratios [17] and age [18] between these two phenotypes.

Concerning disease onset features, we observed that pUMN patients exhibited a
greater frequency of symptom onset in the lower limbs, in accordance with previous
studies demonstrating that, compared to ALS, UMN cases are more likely to have a spinal
onset disease form [18], with preferential initial lower limbs involvement [19,20].

Accordingly, when neurophysiological measures were compared, pUMN cases further
presented increased CMCT of the tibialis anterior relative to ALS, in line with both their
defining greater pyramidal involvement and their preferential lower limbs onset site.

Additionally, the observation of higher CMAP amplitudes in pUMN, reaching statis-
tical significance for the ulnar nerve, further confirms the notion that near-normal sized
CMAP can be observed in more slowly progressing conditions, in which the effectiveness
of reinnervation is less limited [21].

As regards clinical features, pUMN cases showed less severe overall functional and
muscular weakness worsening, as revealed by their lower ALSFRS-r and MRC baseline
rates of progression. Additionally, when we examined the influence of such measures
on longitudinal clinical progression, we observed that they were both predictive of more
preserved functional status at the end of the study period, further confirming their potential
to differentiate pUMN patients less likely to convert to classic ALS phenotypes.

The lower ALSFRS-r progression rate observed in pUMN cases is in accordance with
a previous study from Gordon and colleagues showing milder ALSFRS-R decline across
visits in PLS and pyramidal phenotypes compared to ALS cases [18], and further confirm
initial reports suggesting that UMN patients exhibit the best prognosis among all the MND
classes [3].

The observed lower weakness progression rate, in the absence of noticeable MRC
score differences, argues in favor of a time-dependent effect, suggesting that pUMN cases
develop weakness symptoms of comparable severity relative to those observed in ALS
patients, but over a longer time period. Accordingly, previous studies have shown more
preserved muscular strength in UMN cases compared to classic ALS patients during early
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disease phases [18], while a similar frequency of weakness symptoms has been reported in
UMN and ALS patients evaluated later in the disease course [17]. Additionally, the lower
muscular strength decline observed in pUMN cases might be further explained when one
considers that limb wasting is rarer in UMN patients compared to ALS cases [17]. Finally, it
is noteworthy to highlight that similar MRC scores should not hinder different contributing
pathological mechanisms, namely, flaccid weakness in ALS and spastic weakness in PLS.

The greater total and regional UMN burden observed in pUMN cases compared to
ALS patients is largely in line with their clinical definition. However, as for the MRC
examinations, we found a dissociation between baseline scores and progression rates, so
that pUMN cases exhibited more severe UMN symptoms but with a rate of progression
comparable to that observed in ALS cases, suggesting similar trajectories of increasing
UMN burden across these phenotypes.

The ROC analysis further confirmed the relevance of such findings for the early
discrimination between pUMN and ALS groups: as observed in pLMN, the baseline
progression rate of symptoms related to the motor neuron system not involved at onset—in
this case, the MRC progression rate—provided the finest tool to differentiate pUMN from
ALS cases with specificity values of 86%.

Moreover, the total and regional UMN burden measures exhibited excellent discrimi-
natory performances, with sensitivity values ranging from 60 to 93% and specificity values
ranging from 60 to 80%, strengthening the role of this clinical assessment tool for the early
discrimination of the diverse MND phenotypes.

4.3. Common Observations in pLMN and pUMN Phenotypes

Both pLMN and pUMN groups did not show significant differences in terms of
cognitive and behavioral features relative to ALS cases. In this context it is noteworthy to
mention that, while a greater pattern of cognitive dysfunction could be expected in MND
phenotypes with more prevalent cortical involvement (namely, in pUMN and ALS forms),
increasing evidence points towards the existence of common cognitive/behavioral profiles
in MNDs.

De Vries and colleagues have recently reported similar percentages of cognitive dys-
function in PLS, PMA, and ALS cases [22]; a finding further corroborated by the investiga-
tion of Sbrollini and colleagues, showing common language deficits in both atypical and
classic MNDs [23].

Almost equal frequencies of both cognitive and behavioral changes have also been
noticed and investigated across the diverse MND phenotypes [24], and specifically in pLMN
patients [25], strengthening the notion that, as for ALS, pLMN and pUMN phenotypes
should be reconsidered as multidomain diseases.

Intriguingly, we selectively observed in pUMN cases more severe depressive symp-
toms compared to classic ALS patients. This preliminary observation requires further
investigation. A pilot study from Huey and colleagues has shown a relevant prevalence
of depressive symptoms in PLS [26], consistent with the hypothesis that the psychosocial
stress associated with MND is an important risk factor for depression, but further studies
of psychiatric symptoms across the whole MND spectrum are warranted to confirm our
preliminary observations.

No significant differences were observed across the diverse phenotypes in the fre-
quency of either positive family histories for ALS and/or other neurodegenerative diseases
and known genetic mutations. Again, this finding strengthens the notion of a continuum
between the multiple MND classes and is further corroborated by recent studies in the field.

The mutation frequency of ALS-associated genes has been recently found to be similar
in sporadic PMA and ALS cases [27], and several minor ALS-associated genes such as
ALS2, SETX, FIG4, OPTN, UBQLN2, and SPG11 have been consistently associated with
UMN predominant phenotypes [28], suggesting a significant genetic overlap between these
clinically diverse syndromes.
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5. Conclusions

This study is not without limitations, and the first one concerns the sample size.
Overall, the analyzed MND sample was indeed relatively large, but not enough to allow
the finest analyses comparing individual phenotypes to be carried on. On the other hand,
the nature of the study itself required the selective inclusion of patients with confirmed
diagnoses over a 2-year observation period, a factor which has significantly limited the
number of eligible cases.

Another shortcoming concerns the relatively reduced availability of genetic data,
which was largely due to the refusal, in some patients, of the genetic screening exam.

Additionally, while the retrospective clinical charts review covered a relatively long-
term interval from diagnosis, we cannot rule out the possibility of future conversion to
classic disease forms in the examined pLMN and pUMN cases. In this context, while we
evaluated the degree of functional impairment at the end of the study period as a proxy of
the likelihood to convert to classic disease forms, additional investigations covering longer
observation periods will be helpful to widen our findings.

Finally, while out of the scope of the present work, it has to be outlined that the
inclusion of imaging biomarkers might be particularly useful to improve the current
discrimination of MNDs, so future studies embedding such data in larger case series
and with longer follow-up periods are warranted to further confirm our preliminary
observations.

Despite the aforementioned limitations, this is the first study applying a multimodal
characterization approach to decipher the heterogeneity of the diverse MND phenotypes
and to test the added value of such a strategy for the early differentiation between more
benign and more aggressive disease forms.

The obtained findings suggest that while the investigation of cognitive and genetic
features across MNDs may provide new leading evidence for a neurobiological continuum,
detailed clinical and neurophysiological assessments remain the elective tool to operate an
early and accurate discrimination between the diverse syndromes.

These findings have the potential to facilitate patient management and prognosis
estimation and to ameliorate stratification strategies for future clinical trials enrollment.
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