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Abstract 

Background:  Necroptosis is a new form of programmed cell death that is associated with cancer initiation, progres-
sion, immunity, and chemoresistance. However, the roles of necroptosis-related genes (NRGs) in colorectal cancer 
(CRC) have not been explored comprehensively.

Methods:  In this study, we obtained NRGs and performed consensus molecular subtyping by “ConsensusClusterPlus” 
to determine necroptosis-related subtypes in CRC bulk transcriptomic data. The ssGSEA and CIBERSORT algorithms 
were used to evaluate the relative infiltration levels of different cell types in the tumor microenvironment (TME). 
Single-cell transcriptomic analysis was performed to confirm classification related to NRGs. NRG_score was developed 
to predict patients’ survival outcomes with low-throughput validation in a patients’ cohort from Fudan University 
Shanghai Cancer Center.

Results:  We identified three distinct necroptosis-related classifications (NRCs) with discrepant clinical outcomes and 
biological functions. Characterization of TME revealed that there were two stable necroptosis-related phenotypes 
in CRC: a phenotype characterized by few TME cells infiltration but with EMT/TGF-pathways activation, and another 
phenotype recognized as immune-excluded. NRG_score for predicting survival outcomes was established and its pre-
dictive capability was verified. In addition, we found NRCs and NRG_score could be used for patient or drug selection 
when considering immunotherapy and chemotherapy.

Conclusions:  Based on comprehensive analysis, we revealed the potential roles of NRGs in the TME, and their 
correlations with clinicopathological parameters and patients’ prognosis in CRC. These findings could enhance our 
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Background
Necroptosis is a novel form of regulated necrotic cell 
death mechanistically mimicking apoptosis and morpho-
logically resembling necrosis [1, 2]. It is mainly regulated 
by the key proteins such as RIPK1, RIPK3, and their sub-
strate, mixed-lineage kinase domain-like protein (MLKL) 
[3–5]. Previous researches have reported the relevance of 
necroptosis in many human diseases, including inflam-
matory diseases, neurodegenerative diseases, and can-
cer etc. [6–8]. In addition, it has been suggested to be 
involved in cancer initiation, progression, immunity, 
and chemoresistance, providing novel perspectives and 
potential targets for cancer therapy, for which several 
therapeutic agents aiming to treat cancer by inducing or 
manipulating necroptosis are under investigation [6, 9].

Colorectal cancer (CRC) is a major lethal malignancy 
worldwide [10, 11]. Like other malignancies, tumor 
microenvironment (TME) plays an indispensable role in 
CRC tumorigenesis [12]. Previous reports indicated that 
myeloid-derived suppressive cell (MDSC), an anti-tumor 
immune suppressor, accumulates in CRC tissue and pro-
motes cancer metastasis [13, 14]. In advanced stage CRC, 
the well-known immune-activated effectors, CD8+ T 
cells can be suppressed by IL-17A secretion from Th17 
cells [15]. As the most exciting breakthrough in cancer 
treatment, immune-checkpoint blockade (ICB) therapy 
based on CTLA-4 and PD-1, has demonstrated prom-
ising efficacy in CRC patients [16–18]. However, only 
some of those with microsatellite instability high (MSI-
H) or mismatch repair deficient (dMMR) status could 
benefit from ICB therapy [19]. Therefore, it is necessary 
and urgent to further investigate the TME characteristics 
in CRC to identify more effective immunotherapeutic 
targets.

The involvement of necroptosis has been reported not 
only in cancer cells but also in other components in the 
TME [20, 21]. For example, necroptosis could promote 
pancreatic tumorigenesis by inducing the expression of 
CXCL1, a potent chemoattractant for myeloid cells that 
was highly expressed in a RIP1- and RIP3-dependent 
manner, which could shape the immune suppressing 
environment [22]. Therefore, further exploring the corre-
lation between TME cells infiltration and necroptosis can 
provide new perspectives for understanding underlying 
mechanisms and developing cancer therapeutics, such as 

combination treatment of necroptosis-based therapy and 
immunotherapy.

By using bulk and single-cell transcriptomic data analy-
sis, we identified two stable necroptosis-related pheno-
types in CRC: a phenotype characterized by few TME 
cells infiltration but with EMT/TGF-β pathways activa-
tion, and another recognized as an immune-excluded 
phenotype [23]. We further established a scoring sys-
tem, which could reveal TME characteristics, help accu-
rately determine patients’ survival outcomes, and predict 
responses to immunotherapy and chemotherapy.

Materials and methods
Preparation of bulk RNA expression datasets
A total of 1003 patients from Gene Expression Omni-
bus (GEO) database (including GSE33113, GSE39582, 
GSE14333, and GSE37892) were recruited in this study. 
We corrected the batch effects of GEO datasets using 
combat method [24] and integrated them into a meta-
GEO cohort.

A total 626 patients (578 tumors and 48 normal) in 
the TCGA cohort were obtained from the UCSC Xena 
(https://​xenab​rowser.​net/​datap​ages/​TCGA-​COAD/​
READ). Somatic mutation data were downloaded from 
https://​portal.​gdc.​cancer.​gov/​repos​itory. Copy number 
variation information was extracted from UCSC Xena. 
The basic information of these datasets was shown in 
Additional file 10: Table S1.

Analysis of single‑cell RNA data
Single-cell RNA (scRNA) datasets were downloaded from 
GEO database (including CRC datasets from GSE144735, 
GSE178318, LUAD datasets from GSE131907). We cal-
culated the score of single-cell using ‘AddModuleScore’ 
function via signature α and β.

To calculate the risk score of single-cell data, we first 
averaged gene expression of each patient to represent 
their bulk gene expression level. Then we calculated 
their risk score as follows: risk score = Σ (Expi × coefi), 
according to methods in necroptosis-related gene score 
(NRG_score).

Necroptosis‑related genes used for analysis
Thirty-three necroptosis-related genes (NRGs) were 
retrieved from previous publications [4, 8]. The details of 
NRGs are shown in Additional file 11: Table S2.

understanding of the biological functions of necroptosis, which thus may aid in prognosis prediction, drug selection, 
and therapeutics development.
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Consensus molecular clustering by “ConsensusClusterPlus”
We performed consensus clustering with “Consensus-
ClusterPlus” to identify classifications in CRC patients 
based on the expression of necroptosis-related genes 
(NRGs). The final number of clusters was determined by 
cumulative distribution function (CDF). K = 3 was finally 
set as the number of clusters. The annotation of clusters 
of all datasets was shown in Additional file 10: Table S1.

Gene set variation analysis (GSVA) and single‑sample gene 
set enrichment (ssGSEA) analysis
We calculated pathway activities of tumor samples 
(Fig.  2E and Additional file  3: Fig. S3C) using GSVA R 
package. The gene-signatures included for analyzing were 
downloaded from Hallmark gene sets and C2 curated 
gene sets (MSigDB database v7.4) [25].

We evaluated immune cell types signature scores using 
ssGSEA analysis. The immune cell types signature was 
extracted from the study of Charoentong [26].

CMS classification for bulk RNA‑seq
We utilized CMSclassifier [27] to classify TCGA-COAD/
READ tumor samples. The CMS subtypes of TCGA and 
GEO databases were shown in Additional file 10: Table S1.

TME infiltration evaluation using ssGSEA, CIBERSORT 
and ESTIMATE
We adopted the CIBERSORT [28] deconvolution approach 
to evaluating the relative abundance of 22 tumor-infiltrat-
ing immune cells (TIICs). To confirm the stable TME infil-
tration patterns of necroptosis-related clusters, we also 
evaluated immune cell infiltration with cell types from 
the study of Charoentong [26] using ssGESA analysis [29]. 
In addition, we used ESTIMATE algorithm to calculate 
tumor purity, immune and stromal scores of each patient.

Somatic mutation analysis
Varscan file format of somatic mutation data were down-
loaded from https://​portal.​gdc.​cancer.​gov/​repos​itory. 
Copy number variation information was curated from 
UCSC Xena online. Maftool R package was used to iden-
tify mutant genes and calculate TMB level.

Quantitative real‑time polymerase chain reaction 
(RT‑qPCR)
We collected 208 pairs of patients’ tissues (including CRC 
and adjacent non-tumor tissues) from Fudan University 
Shanghai Cancer Center (FUSCC) in this study. The writ-
ten informed consent was signed by all patients accord-
ing to the Institutional Review Boards of FUSCC, and the 
study was approved by the Ethical Committee of FUSCC.

RNA was extracted from these samples by using TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA), which was 
then reversed into complementary DNA (cDNA) with a 
PrimeScript RT reagent kit (Takara). Then RT-qPCR was 
performed using SYBR-Green assays (Takara). The data 
were calculated using the 2−ΔΔCt value, and normalized 
with 18 s rRNA. The primer sequences used in our study 
are shown in Additional file 15: Table S6.

Construction of the prognostic NRG_score
NRG_score was calculated to quantify the expression 
patterns of NRGs the individual samples. First, the dif-
ferentially expressed genes (DEGs) were subjected to uni-
variate Cox regression analysis to identify those linked to 
CRC overall survival. Second, the patients were classi-
fied into different necroptosis phenotype-related groups 
(gene-cluster A, gene-cluster B, and gene-cluster C) for 
deeper analysis using an unsupervised clustering method 
based on the expression of prognostic DEGs (Additional 
file 13: Table S4) and 33 NRGs. Finally, based on necrop-
tosis phenotype-related prognostic genes, the Lasso Cox 
regression algorithm was used to minimize the risk of 
over-fitting using the “glmnet” R package [30]. We ana-
lyzed the change trajectory of each independent vari-
able and then used tenfold cross-validation to establish a 
model. As previously reported [31], we totally performed 
1000 iterations and included 5 gene groups for further 
screening. A gene model with 13 genes showed the high-
est frequencies of 726 compared to other four-gene mod-
els (Fig.  5A). Thus, this 13-gene model was applied to 
generate the gene signature for calculating NRG_score, 
which was calculated as follows:

Based on the median risk score, a total of 578 patients 
in the training set were divided into low-risk and high-
risk groups in survival analysis. Similarly, the testing and 
all sets were divided into low- and high-risk groups, each 
of which was subjected to Kaplan–Meier survival analy-
sis and the generation of receiver operating characteristic 
(ROC) curves. The NRG_score of TCGA and GEO data-
sets were shown in Additional file 14: Table S5.

Drug susceptibility analysis
To explore the differences in the therapeutic effects of 
drugs in CRC patients, we calculated the drug imputed 
sensitivity score of drugs from Sanger’s Genomics of 
Drug Sensitivity in Cancer (GDSC) v2 using the “onco-
Predict” package [32].

NRG_score = �(Expi × coefi)

https://portal.gdc.cancer.gov/repository
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Kaplan–Meier survival analysis
We plotted the Kaplan–Meier (K-M) survival curve using 
R package ‘Survminer’ (0.4.6). We stratified samples into 
high and low gene expression subgroups using surv-cut-
point function.

Statistical analyses
Statistical analysis was performed using R (version 4.0.0) 
and GraphPad Prism (version 7.04). The Wilcox test, log 

rank test, Kruskal–Wallis H test, and Pearson’s Chi-square 
test were performed in this study. Detailed descriptions of 
statistical tests are specified in the figure legends.

Results
Landscape of genetic variation of NRGs in CRC​
A flowchart of our research was shown in Fig. 1A. In this 
study, we investigated the roles of 33 NRGs (Additional 
file  11: Table  S2) in CRC. As expected, gene ontology 

Fig. 1  Landscape of genetic variation of necroptosis-related genes in colorectal cancer. A A flowchart of our study. B Gene ontology annotation 
of necroptosis-related genes. C Oncoplot show genetic alterations of 33 NRGs in CRC. The number on the right indicated the mutation frequency 
in each gene. Each column represented individual patients. D CNV frequency of 33 NRGs in CRC tumors. E Locations of CNV alterations in NRGs on 
23 chromosomes. F Principal component analysis of necroptosis-related genes to distinguish tumors from normal samples in TCGA-COAD/READ 
cohort. All samples: n = 626; tumor: n = 578; normal: n = 48. G Expression distributions of 33 NRGs between normal and CRC tissues
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(GO) enrichment analysis showed that these genes 
were characterized by the biological processes of cell 
death, especially necroptosis (Fig.  1B). Then, frequency 
of somatic mutations of NRGs in CRC was analyzed 
(Fig. 1C). A total of 111 out of 502 CRC samples in TCGA 
cohort showed genetic alterations of NRGs. Among 
them, CASP8 had the highest mutation rate (4%), while 
four NRGs (FADD, TRADD, TNF and AURKA) didn’t 
present any mutation. Further analysis of copy number 
variation (CNV) mutation revealed the prevalent copy 
number alterations in these NRGs (Fig.  1D). The loca-
tions of CNV alterations on chromosomes were shown in 
Fig. 1E. Based on paired tumor-normal sample data, prin-
cipal component analysis (PCA) was conducted, which 
showed that NRGs could distinguish CRC samples from 
normal ones (Fig.  1F). Afterwards, expression of NRGs 
between CRC and normal samples was compared, reveal-
ing that genes with CNV amplification were significantly 
enriched in tumor samples compared to the normal, such 
as MYC, FADD, AURKA, TRAF2 and PGAM5, while the 
expression of TLR3, CHUK, RIPK1, FAS, NFKB1 and 
AXL was markedly decreased in tumor samples, consist-
ent with that of CNV deletion (Fig. 1G). Taken together, 
the genetic landscape and expression levels of NRGs 
between CRC and normal samples were revealed to be 
significantly different, indicating that necroptosis might 
play an important role in regulating CRC tumorigenesis.

Identification of necroptosis‑related subtypes in CRC​
To comprehensively understand the expression pat-
terns of NRGs involved in tumorigenesis, 1581 patients 
from five available CRC cohorts (TCGA-COAD/READ, 
GSE14333, GSE33113, GSE37892 and GSE39582) were 
integrated in our study for further analyses. The land-
scape of NRGs interactions, regulator connections, and 
their prognostic value in CRC patients were demon-
strated in a necroptosis network (Fig.  2A). Univariate 
Cox regression and Kaplan–Meier analysis showed that 
some of them had prognostic value, and the details were 
shown in Additional file 10: Fig. S1 and Additional file 12: 
Table  S3. Based on these analyses, seven NRGs (TLR3, 
TLR4, BIRC2, TRAF2, CASP8, NFKB1 and TNFRSF10B) 
were identified as prognostic genes.

We next used a consensus clustering algorithm [33] to 
stratify CRC tumor samples based on the expression of 
the 33 NRGs (Fig. 2B, C; Additional file 2: Fig. S2A, B). 
Accordingly, we identified three distinct clusters and 
referred them as necroptosis-related clusters (NRCs), 
including 141 cases in NRC1, 204 in NRC2 and 233 in 
NRC3 (Fig.  2D–F, Additional file  10: Table  S1), among 
which NRC1 and NRC3 had the worse long-term prog-
nosis in TCGA-COAD/READ cohort (Fig.  2D; overall 
survival (OS), P = 0.0053; log-rank test). In addition, we 

combined four GEO datasets with available clinical data 
(GSE33113, GSE39582, GSE14333 and GSE37892) into 
a meta-GEO cohort and obtained the similar results of 
classification and prognosis (Additional file  3: Fig. S3B-
S3D; relapse-free survival (RFS), P < 0.0001, log-rank 
test). Moreover, further analysis revealed significantly dif-
ferent distribution of clinicopathological characteristics 
among different NRCs (Fig. 2E). For example, NRC1 had 
the most patients with advanced stage disease (stage IV) 
(15.60%, P = 0.0086, Pearson’s Chi-square test) and lym-
phatic invasion (51.77%, P < 0.0001, Pearson’s Chi-square 
test), evidencing why it showed the worst prognosis.

To understand the biological discrepancies among 
the three distinct clusters, we performed gene set varia-
tion analysis (GSVA) [34] on tumor samples (Fig. 2E and 
Additional file 3: Fig. S3A, C, D). The results showed that 
NRC1 and NRC3 were enriched in pathways mainly cor-
related with tumor-specific and stromal pathways such 
as TGF-β and epithelial-mesenchymal transition (EMT), 
supporting their poor prognosis. Interestingly, among 
the three clusters, NRC3 was remarkably enriched with 
immune cells and immunotherapy-related pathways, 
such as lymphocyte, monocyte, PD-1 and CTLA4 signal-
ing. All of these findings indicated the marked differences 
in the intrinsic biological underpinnings of the three 
NRCs in CRC.

Distinct tumor microenvironment infiltration in NRCs
Previous studies have indicated MSI-H/ dMMR status 
could predict the response to immunotherapy in CRC 
[16]. We next explored the MSI/MMR status in tumor 
samples of NRCs, which showed that MSI-H was mainly 
concentrated within NRC2 and NRC3 (Fig.  3A). When 
the association of NRCs with the consensus molecu-
lar subtype (CMS) system was analyzed, it revealed that 
CMS1-immune subtype was mainly clustered into NRC2 
and NRC3 (Fig. 3B). In GSE39582 cohort, samples with 
dMMR status were predominantly grouped into NRC2 
and NRC3 (Fig.  3C). Notably, CMS4 and CSC sub-
types, characterized by prominent transforming growth 
factor-β (TGF-β) activation, stromal invasion and angio-
genesis [26], were mainly concentrated within NRC3 
(Fig. 3C).

To further characterize the microenvironment hetero-
geneity of NRCs, we performed CIBERSORT [28] and 
ssGSEA analyses (Fig. 3D, E; Additional file 4: Fig. S4A). 
The results showed that not only antitumor immune cell 
populations such as memory CD4+ T cells and activated 
CD4+/CD8+ T cells, but also immune-suppressive cells 
such as MDSC and regulatory T cells were enriched 
within NRC3. Moreover, we used the ESTIMATE algo-
rithm [35] to quantify the overall infiltration of immune 
cells (Immune score), stromal cells (Stromal score) and 
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Fig. 2  Identification of necroptosis-related subtypes in CRC. A Correlation between 33 NRGs. The size of each gene represents survival impact 
(log-rank test P values indicated). Favorable factors for overall survival indicated in green, and risk factors indicated in purple. The thickness of 
the line represents the strength of correlation estimated by Pearson correlation analysis. Positive correlation is indicated in pink and negative 
correlation in blue. B Plot shows the cumulative distribution function (CDF) curve. C Heatmap shows the consensus matrix heatmap using 
“ConsensusClusterPlus”. The optimal number of clusters: K = 3. D Kaplan–Meier curves for overall survival of three necroptosis-related clusters (NRC) 
in TCGA. The P value was calculated by the log-rank test. E Heatmap shows the differences in clinicopathologic features and expression levels of 
NRGs between three NRCs. The statistical difference of clinicopathologic features was compared through Pearson’s Chi-square test. F Principal 
component analysis of three NRCs in TCGA-COAD/READ cohort

Fig. 3  Distinct tumor microenvironment infiltration in necroptosis-related clusters. A–C Alluvial diagram of clusters in groups with different 
molecular subtypes. D Relative abundance of 22 tumor-infiltrating immune cells (TIICs) of three clusters in TCGA cohort. The statistical difference 
of three clusters was compared through the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. E Barplot shows the ssGSEA score of immune 
cell subtypes from the study of Charoentong in three necroptosis-related clusters. The statistical difference of three clusters was compared through 
the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. F Tumor purity, immune and stromal score of three NRCs in TCGA cohort. The statistical 
difference of three clusters was compared through the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. G Comparison of PD-L1 and PDCD1 
(PD-1) expression between three NRCs. The difference of three clusters was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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tumor cell purity (Tumor purity) across three NRCs 
(Fig.  3F and Additional file  4: Fig. S4B). Here we dem-
onstrated that NRC3 encompassed low tumor purity, 
and displayed remarkable stromal cells infiltration. 
Taken together, NRC3 was considered as an immune-
excluded phenotype characterized by stromal activation 
and weakened immune cell infiltration. However, there 
was no significant difference in immune cell infiltration 
between NRC1 and NRC2 by CIBERSORT and ssGSEA 
analyses. Using ESTIMATE algorithm, we observed that 
NRC2 had higher tumor purity than NRC1, while NRC1 
displayed stronger stromal cells infiltration than NRC2 
(Fig.  3F and Additional file  4: Fig. S4B). These features 
were not consistent with MSI-H/CMS1-like character-
istic of NRC2, which were shown in Fig. 3A–C. As pre-
viously reported, the expression of PD-1/PD-L1 could 
predict the response to immunotherapy in some cancers 
[36]. We next compared the PD-1/PD-L1 expression level 
among the three NRCs and observed the highest expres-
sion in NRC3 (Fig.  3G and Additional file  4: Fig. S4C). 
However, considering the immune-excluded phenotype 
of NRC3, patients in NRC3 might display ineffective 
response to anti- PD-1/PD- L1 treatment, which might 
partially explain why high expression of PD-1/PD-L1 has 
not been clinically demonstrated to effectively predict 
immunotherapy response in CRC.

Necroptosis phenotype‑related DEGs in CRC​
To further confirm the underlying molecular and clinical 
patterns determined by NRGs, we overlapped 2862 DEGs 
among the three NRCs and recognized them as necrop-
tosis phenotype-related signature (Additional file  5: Fig. 
S5). We next included these DEGs for univariate Cox 
regression analysis and obtained 475 prognostic genes. 
Then, we performed unsupervised consensus clustering 
analysis based on these 475 prognostic genes and divided 
TCGA patients into three necroptosis phenotype-related 
signature groups with different clinicopathologic sub-
groups, which were defined as gene-cluster A, B and C 
(Fig.  4A; Additional file  10: Table  S1). By hierarchical 
clustering and gene ontology enrichment (GO) analysis 
(Fig.  4C), 475 prognostic genes were only grouped into 
signature genes A and C (Additional file  13: Table  S4). 

Genes A were clustered into gene-cluster A and asso-
ciated with metabolic processes and stromal biologi-
cal processes such as endothelial tube morphogenesis. 
Genes C were enriched within gene-cluster C and asso-
ciated with immune cells activation and antigen pro-
cessing. We observed that gene-cluster A presented the 
worst prognosis (Fig. 4B; overall survival (OS), P < 0.0001, 
log-rank test) with the highest proportion of advanced 
stage patients (stage IV) (15.66%, P = 0.0053, Pearson’s 
Chi-square test) (Fig.  4A) and the most patients with 
lymphatic invasion (51.81%, P = 0.0003, Pearson’s Chi-
square test). We also found that gene-cluster A contained 
the most NRC1 tumors, while gene-cluster C had most of 
the NRC3 tumors (Fig. 4A). For CMS subtypes (Fig. 4A), 
CMS4 was mainly grouped into gene-cluster C, consist-
ent with the pattern of NRC3 (28.32% in gene-cluster 
C, P = 0.0021, Pearson’s Chi-square test). Subsequent 
ESTIMATE analysis showed that gene-cluster C had low 
tumor purity and remarkable stromal cells infiltration 
(Fig.  4D). Moreover, gene-cluster C displayed the high-
est expression level of PD-1/PD-L1, similar to NRC3 
(Fig. 4E). For TME cell infiltration (Fig. 4F), both adaptive 
and innate immune cells were enriched in gene-cluster C. 
Overall, based on necroptosis-related genes, there were 
two stable distinct phenotypes in CRC: like NRC1, gene-
cluster A was characterized by few TME cells infiltration 
(Figs. 3F and 4D) but with EMT/ TGF-β pathways activa-
tion, and like NRC3, gene-cluster C was characterized by 
remarkable stromal, immune cells infiltration, and EMT/
TGF-β activation, which was similar to CMS4-like and 
thus recognized as an immune-excluded phenotype[23].

Single‑cell analysis of NRCs
To further understand biological and TME characteris-
tics of NRC1 and NRC3, we analyzed single-cell datasets 
of CRC (GSE144735 [37] and GSE178318 [38]). We first 
overlapped representative genes of NRC1, gene-cluster 
A and NRGs, and obtained a total of 10 genes (RIPK3, 
IKBKB, TRADD, TYRO3, FADD, CDC37, PGAM5, 
TAB1, TRAF2, TNFRSF25; Fig.  5A) which were recog-
nized as signature α. Identical method was performed 
on NRC3, and 12 genes were identified as signature β 
(GSK3B, FAS, TLR3, FASLG, TLR4, BIRC3, BIRC2, 

(See figure on next page.)
Fig. 4  Necroptosis phenotype-related DEGs in colorectal cancer. A Consensus clustering of TCGA tumor samples using necroptosis 
phenotype-related signature. Clinical and molecular characteristics are shown on the top. The difference of three gene clusters was compared 
through the Pearson’s Chi-square test. B Kaplan–Meier curves for overall survival of three gene clusters in TCGA. The P value was calculated by the 
log-rank test. C Gene ontology enrichment (GO) analysis of genes A and genes C. D Tumor purity, immune and stromal score of three gene clusters 
in TCGA cohort. The statistical difference of three clusters was compared through the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. E 
Comparison of PD-L1 and PDCD1 (PD-1) expression between three gene clusters. The difference of three clusters was compared through the Wilcox 
test. *P < 0.05; **P < 0.01; ***P < 0.001. F Barplot shows the ssGSEA score of immune cell subtypes from the study of Charoentong in three gene 
clusters. The statistical difference of three clusters was compared through the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 4  (See legend on previous page.)
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Fig. 5  Single-cell analysis of necroptosis-based classification in CRC. A Venn plot shows overlapped genes between NRC1, gene-cluster A and 
NRGs. B UMAP plot show score α in 47,285 single cells of SMC cohort. C Box-plot shows score of two signatures in different cell types of SMC cohort. 
The statistical difference of two groups was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. D Venn plot shows overlapped 
genes between NRC3, gene-cluster D and NRGs. E UMAP plot shows score β in 47,285 single cells of SMC cohort. F UMAP plot shows score α and 
β in 19,796 epithelial cells of GSE178318. G Box-plot shows score of two signatures in different sites of GSE178318. The statistical difference of two 
groups was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001
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MAP3K7, NFKB1, CASP8, CHUK, HSP90AA1; Fig. 5D). 
We then used these two signatures to score single-cell 
data of SMC and KUL CRC cohorts from GSE144735 
(Fig. 5B, E, Additional file 6: Fig S6A and S6B). The results 
showed that score β in TME cells (especially in stromal 
and T cells) were higher than score α (Fig. 5C and Addi-
tional file 6: Fig. S6C). Therefore, NRC3 and gene-cluster 
C were indeed infiltrated by stromal and immune cells, 
consistent with an immune-excluded phenotype. Just as 
previously reported [37, 39], the strong stromal cell infil-
tration pattern might cause the CMS4-like phenotype 
and EMT/TGF-β activation in NRC3 and gene-cluster C.

Next, we included a single-cell dataset (GSE178318) 
which contained liver metastasis and scored a total of 
19,483 tumor epithelial cells using signature α and β 
(Fig.  5F). We found that score α in epithelial cells from 
liver metastasis was higher than that from CRC primary 
sites, while score β in liver metastasis was lower than pri-
mary sites (Fig.  5G), indicating that high score α might 
predict high risk of CRC liver metastasis. Because EMT 
is a crucial step that promotes tumor metastasis [40], we 
postulated that EMT phenotype of NRC1 was mainly 
exhibited on tumor cells, while EMT phenotype of NRC3 
was caused by its stromal cell infiltration.

Finally, we would like to explore whether these interest-
ing findings could be replicated in other cancer. We per-
formed identical analyses on single-cell data of metastatic 
lung adenocarcinoma (LUAD) (GSE131907) [41]. We found 
that score β were higher in TME cells (Fig.  6A–C). Then, 
we extracted tumor epithelial cells from early-(tLung), 
advanced-stages(tL/B), metastatic lymph nodes (mLN) and 
brain metastases (mBrain). By scoring tumor cells using the 
two signatures (Fig. 6D), we observed that score α in mBrain 
was significantly higher than primary site tLung (Fig.  6E). 
Score α in mLN was significantly higher than primary sites 
including tLung and tL/B (Fig.  6E). However, score β was 
the highest in advanced-stage primary sites (tL/B; Fig. 6E). 
All these results were similar to that in CRC datasets. Taken 
together, there were indeed two stable patterns based on 
necroptosis-related genes.

Construction and validation of the prognostic NRG_score
A flowchart illustrating the generation of the signature for 
NRG_score was presented in Additional file 7: Fig. S7A-
B. As previously reported [30, 31], we conducted 1000 
iterations in total and 5 gene groups were included for 
further screening. A gene model with 13 genes showed 
the highest frequencies of 726 compared to other four 
gene models (Fig. 7A), for which it was further applied to 
generate the gene signature for NRG_score calculation. 
We then calculated the c-index to validate the accuracy of 
NRG_score in survival prediction. The c-index for TCGA 
dataset, meta-GEO, GSE33113, GSE14333, GSE37892 

and GSE39582 were 0.702, 0.568, 0.468, 0.621, 0.630, and 
0.555, respectively (P < 0.05, Fig. 7B). The high-risk group 
in TCGA dataset, meta-GEO, GSE14333, GSE37892 
and GSE39582 had worse survival rate than the low-risk 
group (Additional file 7: Fig. S7B). These results demon-
strated the predictive power of the signature for survival 
in 5 datasets except in GSE33113. Finally, we constructed 
the NRG_score as follows:

We next explored the differences in NRG_score between 
NRCs, and between necroptosis phenotype-related gene 
clusters, which showed the highest NRG_score in NRC1 
and gene-cluster A, consistent with results of prognosis 
(Fig. 7C, D). The distribution plot of the risk of NRG_score 
showed that death rate increased with the increase of NRG_
score (Fig. 7E). The survival analysis revealed that patients 
with low NRG_score showed improved overall survival 
(log-rank test, P < 0.0001; Fig.  7F). Additionally, the 1-, 2-, 
3-, and 5-year survival rates of NRG_score were reflected 
by AUC values of 0.699, 0.730, 0.724, and 0.767, respectively 
(Fig. 7F). Subsequently, we validated the prognostic predic-
tive ability of the NRG_score in external datasets (Meta-
GEO, GSE14333, GSE37892), which showed that patients 
could be dichotomized into low- and high-risk subgroups by 
using the aforementioned formula of the training set (Addi-
tional file  8: Fig. S8A-S8B). Moderate AUC values were 
reproduced in GSE14333 and GSE37892 when it comes to 
the prediction of the 1-, 2-, 3-, and 5- year survival using the 
NRG_score (Additional file 8: Fig. S8C). In addition, we also 
plotted K-M survival curves and calculated the AUC values 
of a cohort from FUSCC based on NRG_score. The results 
showed that high-risk score group displayed a worse prog-
nosis (log-rank test, P = 0.0077; Fig.  7G) and AUC values 
at 1-, 2-, 3-year were 0.672, 0.624 and 0.603, respectively. 
Taken together, the NRG_score could be applied to predict 
the survival of CRC patients.

Risk score = (−0.004956222× DHX15 expression)

+ (−0.115492238× BMP2K expression)

+ (−0.043519529× LUZP1 expression)

+ (−0.074852629× GSTCD expression)

+ (−0.373708136× DLAT expression)

+ (0.680108072× RBM17 expression)

+ (−0.066367539× ATAD5 expression)

+ (−0.159671175× AKAP5 expression)

+ (−0.057824168× DYNC1LI1 expression)

+ (−0.199873730× KIAA0825 expression)

+ (−0.300275421× UBTD2 expression)

+ (−0.208650641× CCAR2 expression)

+ (−0.033744746× ASAH1 expression).
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Fig. 6  Single-cell analysis of necroptosis-based classification in LUAD. A, B UMAP plot show score α and β in 107,761 single cells of GSE131907. C 
Box-plot shows score of two signatures in different cell types of GSE131907 cohort. The statistical difference of two groups was compared through 
the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. D UMAP plot shows score α and β in epithelial cells of GSE131907. E Box-plot shows score of two 
signatures in different sites of GSE131907
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Because GSE39582 contained the patients who under-
went adjuvant chemotherapy, we then examined whether 
the NRG_score could predict the response to adjuvant 
chemotherapy (ADJC). The results showed that patients 
receiving chemotherapy had the higher NRG_score 
(Fig.  7H). Subsequent survival analysis showed that low 
score group without ADJC manifested better overall sur-
vival. However, patients receiving ADJC in both high and 
low score group had poor survival (Fig. 7I). As presented 
above, patients with high NRG_score coupled with more 
advanced stage disease, which might partially explain why 
patients with high score and receiving ADJC showed poor 
survival. However, the result of patients with low score and 
receiving ADJC might indicate that these patients might 
not benefit from ADJC. We also calculated risk score (see 
methods) in single-cell dataset curated from GSE178318 
[38], which contained three patients treated with chemo-
therapy (PC: Preoperative chemotherapy) (COL15, COL17, 
and COL18) and three patients were treatment naïve 
(COL07, COL12, and COL16) (Fig.  8A, B). We observed 
that most of the treated samples’ scores were high, which 
was similar to bulk transcriptomic analysis (Fig. 8C).

Finally, we assessed the transcriptional signature 
between high and low NRG_score groups. The expression 
levels of 33 NRGs and 13 model genes between high- and 
low-risk groups in TCGA and meta-GEO cohort were 
shown in Fig. 7J, K and Additional file 8: Fig. S8D, E.

Evaluation of TME between the high‑ and low‑risk groups
As presented by the immune scores of representative 
gene-signatures in Fig.  8D, high NRG_score was nega-
tively related to T cells and cytotoxic CD8+ T cells, while 
it was positively correlated with myofibroblasts and 
TGF-β pathway, suggesting high-score group exhibited a 
suppressive immune microenvironment. For molecular 
classifications, we observed that low NRG_score group 
was enriched with more MSI-H tumors (Fig.  8E). Since 
infiltration level of cytotoxic CD8+ T cells predicted the 
response to immunotherapy, we explored the relationship 

between NRG_score and representative genes of cytotoxic 
CD8+ T cells, such as GZMA and IFNG (Fig. 8F, G). The 
results showed that low NRG_score group showed upreg-
ulation of GZMA and IFNG (Fig.  8F, G). These results 
suggested patients in low-score group might exhibit effec-
tive response to immunotherapy because of its high infil-
tration level of cytotoxic CD8+ T cells and MSI-H status.

Imputed drug sensitivity score in necroptosis‑related 
phenotypes
We next evaluated the differences in drug susceptibility 
between the high-and low-risk groups. Differential analy-
sis demonstrated that the imputed scores of 89 drugs 
from Sanger’s Genomics of Drug Sensitivity in Cancer 
(GDSC) v2 [42] were significantly different (with imputed 
score elevation of 86 drugs and decline of 3 drugs) in 
CRC tumors in reference to normal samples (Fig.  9A). 
Afterwards, we selected drugs currently adopted to treat 
CRC in clinical practice to evaluate the drug sensitivity of 
patients in the high- and low-risk groups [32] (Fig.  9B). 
Interestingly, we found that patients in the high-risk 
group had higher imputed score for irinotecan, afatinib, 
sapitinib and gefitinib, suggesting that these patients 
might not respond to the aforementioned drugs effec-
tively (Fig.  9A, B). Thus, patients with different NRG_
score might respond to drugs differently.

We also evaluated the drug susceptibility among the 
three NRCs. The imputed score of 190 drugs were shown 
in Fig. 9C. Our results showed that there were significant 
differences in imputed score of 5-Fluorouracil, Oxalipl-
atin, Irinotecan, Gefitinib and Afatinib among the three 
NRCs (Fig.  9D). For example, high imputed score of 
5-Fluorouracil and Oxaliplatin in NRC3 suggested that 
these patients might not respond effectively to these two 
drugs, while high score indicated that patients in NRC1 
might not respond to Irinotecan, Gefitinib, and Afatinib 
(Fig.  9D). Taken together, these results indicated that 
patients within different NRCs might present discrepant 
sensitivity to chemotherapeutic drugs.

Fig. 7  Construction and validation of the prognostic NRG_score. A Generation of the ten gene groups after 1000 iteration. The gene model with 13 
genes was selected to construct the signature for NRG_score as its highest frequencies of 726 compared to other four gene models. B The c‑index 
of both training and testing sets. C Alluvial diagram of NRCs in groups with different gene clusters and NRG_score groups. D Barplots show the 
risk score between three NRCs and three gene clusters. The statistical difference of three clusters was compared through the Kruskal–Wallis H test. 
*P < 0.05; **P < 0.01; ***P < 0.001. E Ranked dot and scatter plots showing the NRG_score distribution and patient survival status. F, G Kaplan–Meier 
analysis of the survival rate between the two groups. The high and low groups were divided by the median value of the NRG_score (left pannael). 
ROC curves to predict the sensitivity and specificity of 1-, 2-, 3-, and 5-year survival according to the NRG_score (right panel). H Barplot shows the 
NRG_score between groups with adjuvant chemotherapy (ADJC) and without adjuvant chemotherapy (ADJC). The statistical difference of two 
clusters was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. I Survival analysis among four patient groups stratified by both 
NRG_score and treatment with adjuvant chemotherapy (ADJC). J, K Differences in the expression of 33 NRGs and 13 genes among the two gene 
subtypes. The statistical difference of two groups was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Developing a nomogram to predict patients’ survival
Next, NRG_score and disease stage (TNM stage) were 
incorporated to establish a nomogram to predict the 1-, 
3-, and 5-year RFS, the results of which were shown in 
Fig. 10A. The AUC of the nomogram model for survival 
at 1, 3, and 5  years showed high accuracy in the train-
ing set (TCGA), testing set (meta-GEO), and three vali-
dation sets (GSE14333, GSE37892 and FUSCC cohorts) 
(Fig.  10B–F). The predictive accuracy of the nomogram 
showed AUC values at 1-, 3-, and 5-year in TCGA were 
0.791, 0.795 and 0.765, respectively. In the testing set 
(meta-GEO), the 1-, 3- and 5-year AUC values of the 
nomogram were 0.740, 0.731, and 0.715, respectively. 
AUC values of TCGA at 1- and 3- year in this part were 
higher than that based on only NRG_score in Fig.  7F. 
AUC values of nomogram (at 1-, 3- or 5-year) in three 
validation sets (GSE14333, GSE37892 and FUSCC 
cohorts) were also higher than that based on only NRG_
score in Additional file 8: Fig. S8C and Fig. 7G. Further-
more, AUC values of the nomogram at 1-, 3- and 5-year 
in TCGA, meta-GEO, and GSE14333 sets, and AUC 
values of the nomogram at 3- and 5-year in GSE37892 
were higher than AUC values of TNM stage systems, 
suggesting that our nomogram displayed an advantage 
in survival predictive ability over TNM stage systems 
(Additional file 9: Fig. S9A–D). Subsequently, the calibra-
tion plots demonstrated that the nomogram we estab-
lished could perform similarly in both the training and 
testing sets (Additional file 9: Fig. S9E–I).

Discussion
Cell death has recently attracted increasing attention for 
its potential role in triggering anti-tumor immunity [43]. 
Like apoptotic cells, emerging researches have showed 
that necroptotic tumor cells can induce anti-tumor 
immunity by their interaction with diverse immune cell 
types [44, 45]. Although various studies have revealed the 
regulation of NRGs in TME [46, 47], a landscape of TME 
characteristics mediated by NRGs have not been com-
prehensively understood.

In this study, we introduced necroptosis-related phe-
notypes of TME in CRC. Based on 33 NRGs and DEGs 
associated with necroptosis-related phenotypes, we could 
stratify CRC samples into three molecular phenotypes 
(NRC1-3). However, we observed that only two classifi-
cations kept stable according to their immune infiltration 

patterns. Therefore, we postulated that there were two 
stable TME patterns mediated by necroptosis in CRC: 
a phenotype characterized by few TME cells infiltration 
but with EMT/TGF-β pathways activation, and another 
phenotype characterized by remarkable stromal cells 
infiltration, together with EMT, TGF-β signaling path-
way activation, corresponding to the immune-excluded 
and CMS4-like phenotype. To confirm these two stable 
phenotypes related to necroptosis, we performed single-
cell transcriptomic analyses in CRC datasets and further 
validated in LUAD datasets. We observed that score of 
NRC1 represented by score α was increased in tumor 
metastatic sites, while score β was elevated in TME cells. 
We thus postulated that EMT phenotype in NRC1 was 
mainly exhibited on tumor cells, while CMS4-like and 
EMT phenotype in NRC3 were predominantly caused 
by its remarkable stromal cell infiltration. What’s more, 
high α score might be used to predict the risk of CRC 
metastasis.

Previous reports suggested that immune context of 
TME could promote EMT. MDSCs, well-known as imma-
ture immune cells, are associated with poor prognosis of 
cancers for suppressing T cells activation [48]. TGF-β 
production from MDSCs have been experimentally 
proved to render a profound impact on tumor metasta-
sis [49]. Stromal cells such as fibroblasts have been also 
reported as a major source of TGF-β production [50, 51]. 
TGF-β expressed by cancer-associated fibroblast (CAF) 
(such as myofibroblast) induces recruitment of more 
fibroblasts, and might thus lead to a pro-tumorigenic 
and immunotolerant status [52]. Adaptive immune cells 
like CD8+ T cells respond to TGF-β may also cause an 
immunosuppressive environment. Since NRC3 was infil-
trated by stromal cells and MDSCs, patients in NRC3 
cannot respond to PD-1/PD-L1 therapy. Fortunately, 
NRC3 was remarkably infiltrated by activated T cell 
populations such as CD4+ and CD8+ T, which should 
have been related to anti-tumor immunity. High expres-
sion of PD-1/PD-L1 was observed in NRC3, which has 
been reported to predict response to immune checkpoint 
inhibitors [53]. Therefore, intervention targeting on stro-
mal cells and MDSCs, and downregulation of TGF-β may 
help patients within NRC3 regain an effective response 
to immunotherapy. Without considering TME, the role 
of necroptosis in tumor cells has not been comprehen-
sively understood either [54]. Previous findings showed 

(See figure on next page.)
Fig. 8  Evaluation of TME between the high- and low-risk groups. A UMAP plot shows 113,331 single cells of GSE178318 cohort. B Bar-plot shows 
the proportion of samples corresponding to treatment (PC: Preoperative chemotherapy; nPC: non-Preoperative chemotherapy). C Dot plot shows 
the distribution of samples from GSE178318 based on their risk score. D Score of immune-related gene-signatures between high- and low-risk 
groups. E Differences of molecular subtypes between low- and high-risk groups. F, G Expression of GZMA and IFNG between low- and high-risk 
groups. The statistical difference of two clusters was compared through the Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 8  (See legend on previous page.)
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that RIPK3 was upregulated in late-stage breast tumors, 
implying a promising role of necroptosis in tumor pro-
gression [54, 55]. In NRC1, we observed upregulation of 
RIPK3 (Fig. 5A), EMT activity (Additional file 3: Fig. S3A 

and S3D), and enrichment of advanced stages (15.60%; 
Fig. 2E), suggesting that RIPK3 may play an indispensa-
ble role in CRC progression. Emerging evidences dem-
onstrated that RIPK3 upregulation could potentiate 

Fig. 9  Imputed drug sensitivity score of necroptosis-related phenotype. A The number of drugs in GDSC v2 that was significantly upregulated or 
downregulated (P < 0.05) in the high-risk score group versus low-risk score group among each of 24 drug categories in the TGCA cohort. B Barplot 
shows the imputed drug sensitivity score between high- and low-risk groups. The statistical difference of two clusters was compared through the 
Wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. C Dot plot shows the imputed drug sensitivity score among three NRCs. D Barplot shows the imputed 
drug sensitivity score among three NRCs. The statistical difference of three clusters was compared through the Kruskal–Wallis H test. *P < 0.05; 
**P < 0.01; ***P < 0.001



Page 18 of 21Luo et al. Journal of Translational Medicine          (2022) 20:235 

chemotherapeutic effects by inducing necroptosis [56]. 
Therefore, RIPK3 may be a key mediator resulting in 
EMT and chemo-sensitive phenotype of patients within 
NRC1. Future experimental researches are required to 
investigate the key regulator RIPK3 in CRC development.

We also constructed a robust and effective prognostic 
NRG_score and demonstrated its predictive ability in 
CRC survival by integrated analyses of public databases 
and a patients’ cohort from FUSCC. Patients with low- 
and high-risk NRG_score displayed significantly different 
clinicopathological characteristics, prognosis, immune 
infiltration and drug susceptibility. We observed that 
high-risk score group was highly infiltrated by myofi-
broblast and characterized by TGF-β pathway activa-
tion. In contrast, low-risk group was enriched with 
more cytotoxic T cells. We further explored cytotoxic 

genes like GZMA and IFNG in public database, con-
firming the precise predictive ability of low-risk score in 
response to immunotherapy. Interestingly, the explora-
tion of drug imputed score showed patients in high- and 
low-risk groups might present different chemotherapeu-
tic efficacy, suggesting that NRG_score could be used 
for patient selection when considering ADJC and there 
might be potential molecular targets based on NRGs. 
Finally, by integrating NRG_score and tumor stage, we 
established a quantitative nomogram, which further 
improved the performance and facilitated the use of 
NRG_score. Overall, the NRG_score we constructed can 
be an accurate prognostic model for prognosis stratifica-
tion of CRC patients, and a good predictor for immuno-
therapy and chemotherapy.

Fig. 10  Developing a nomogram to predict patients’ survival. A Nomogram for predicting the 1-, 3-, 5-, and 10-year RFS of CRC patients in the 
training set. B–F ROC curves for predicting the 1-, 3- and 5-years, ROC curves in the training (TCGA), testing (meta-GEO), GSE37892, GSE14333 and 
FUSCC cohorts
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In a nutshell, we comprehensively analyzed the muta-
tions and expression patterns of NRGs in CRC. NRCs 
and NRG_score were established and their associations 
with TME were explored. Sensitivity to chemotherapy 
and response to immunotherapy were probed. These 
integrated analyses highlighted the main role of necrop-
tosis in TME infiltration of CRC. Moreover, we put for-
ward specific genes related to EMT phenotype on tumor 
cells, and genes related to stromal cells infiltration in 
TME, which will provide an interesting insight into the 
mechanism between necroptosis and TME infiltration. 
However, there are still some limitations: (1) the study 
was conducted based on retrospective data, thus, selec-
tion bias might be unavoidable; (2) though we validated 
our findings in validation sets based on public datasets, 
validation in prospective study will further add credibil-
ity to these findings; (3) molecular mechanisms of these 
observations necessitate exploration in the future.
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Additional file 1. Figure S1. Kaplan-Meier curves of 33 NRGs in TCGA 
cohort. The surv_function of the R package survminer was used to deter-
mine the optimal cutoff value to divide samples into high and low groups.

Additional file 2. Figure S2. Identification of necroptosis-related subtypes 
in CRC, related to Figure 1 (A) Heatmap representation of consensus 
clustering for necroptosis-related genes in TCGA cohort with cluster 
numbers from 2 to 6. (B) Heatmap representation of consensus clustering 
for necroptosis-related genes in meta-GEO cohort with cluster numbers 
from 2 to 6.

Additional file 3. Figure S3. Clinical characteristics and biological 
molecular changes underlying three clusters in CRC, related to Figure 2 (A) 
Barplot shows the GSVA score of pathways in three NRCs of TCGA cohort. 
The statistical difference of three clusters was compared through the 
Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (B) Kaplan-Meier 
curves for overall survival of three necroptosis-related clusters (NRC) in 
meta-GEO. The P value was calculated by the log-rank test. (C) Heatmap 
shows the differences in clinicopathologic features and expression levels 
of NRGs between three NRCs in meta-GEO cohort. (D) Barplot shows the 
GSVA score of pathways in three NRCs of meta-GEO cohort. The statistical 
difference of three clusters was compared through the Kruskal-Wallis H 
test. *P < 0.05; **P < 0.01; ***P < 0.001.

Additional file 4. Figure S4. Distinct tumor microenvironment infiltration 
in necroptosis-related clusters, related to Figure 3 (A) Barplot shows the 
ssGSEA score of immune cell subtypes from the study of Charoentong in 
three necroptosis-related clusters. The statistical difference of three clus-
ters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; 
***P < 0.001. (B) Tumor purity, immune and stromal score of three NRCs 
in TCGA cohort. The statistical difference of three clusters was compared 
through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001.  

(C) Comparison of PD-L1 expression between three NRCs. The difference 
of three clusters was compared through the wilcox test. *P < 0.05; **P < 
0.01; ***P < 0.001.

Additional file 5. Figure S5. DEGs among the three necroptosis-related 
clusters

Additional file 6. Figure S6. Single-cell analysis of necroptosis-based 
classification in CRC, related to Figure 5 (A-B) UMAP plot show score α 
and β in 17,678 single cells of KUL cohort. (C) Box-plot shows score of two 
signatures in different cell types of KUL cohort. The statistical difference of 
two groups was compared through the wilcox test. *P < 0.05; **P < 0.01; 
***P < 0.001.

Additional file 7. Figure S7. Construction and validation of the prognostic 
NRG_score (A-B) The workflow of construction and validation of the 
signature for calculating NRG risk score (NRG_score).

Additional file 8. Figure S8. Construction and validation of the prognostic 
NRG_score, related to Figure 7 (A) Kaplan–Meier analysis of the survival 
rate between the two groups in meta-GEO cohort. (B) Ranked dot and 
scatter plots showing the NRG_score distribution and patient survival 
status. (C) ROC curves to predict the sensitivity and specificity of 1-, 2-, 
3-, and 5-year survival according to the NRG_score in GSE14333 and 
GSE37892 cohort. (D-E) Differences in the expression of 33 NRGs and 13 
genes among the twogene subtypes.

Additional file 9. Figure S9. Developing a nomogram to predict patients’ 
survival, related to Figure 10 (A-D) ROC curves for predicting the 1-, 3- and 
5-years, ROC curves in the training (TCGA), testing (meta-GEO), GSE37892, 
GSE14333 and FUSCC cohorts based on TNM stage systems (E-I) Calibra-
tion curves of the nomogram for predicting of 1-, 3-, and 5-year survival 
rate in the training, testing, GSE37892, and GSE14333 sets, and FUSCC 
cohort.

Additional file 10. Supplementary Table S1. The description of patients 
with bulk RNA expression data, including clinical characteristics and 
consensus clusters.
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