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Abstract
The ATP binding proteins exist as a hybrid of proteins with Walker A motif and universal stress
proteins (USPs) having an alternative motif for binding ATP. There is an urgent need to find a
reliable and comprehensive hybrid predictor for ATP binding proteins using whole sequence
information. In this paper the open source LIBSVM toolbox was used to build a classifier at 10-
fold cross-validation. The best hybrid model was the combination of amino acid and dipeptide
composition with an accuracy of 84.57% and Mathews correlation coefficient (MCC) value of
0.693. This classifier proves to be better than many classical ATP binding protein predictors. The
general trend observed is that combinations of descriptors performed better and improved the
overall performances of individual descriptors, particularly when combined with amino acid
composition. The work developed a comprehensive model for predicting ATP binding proteins
irrespective of their functional motifs. This model provides a high probability of success for
molecular biologists in predicting and selecting diverse groups of ATP binding proteins
irrespective of their functional motifs.

1. Introduction
Recent advances in the next generation sequencing and human genome projects have
resulted in rapid increase of protein sequences, thus widening the protein sequence-structure
gap [1, 2], leading to diverse protein functions from common family. Computation
prediction tools for predicting protein structure and function are highly needed to narrow the
widening gap [3]. The ATP binding proteins (ATP-BPs) are a diverse family of proteins in
terms of amino acid sequences, function, and their three-dimensional structures. These
proteins hydrolyze ATP to provide the energy necessary to drive biochemical reactions in
the cell [4]. There are two distinct functional groups of ATP binding proteins.

The first functional group has the Walker A motif [GXXXXGK (T/S) or G-4X-GK (T/S)] in
their sequences for ATP binding [5]. Many members are transmembrane proteins and are
responsible for transporting a wide variety of substrates across extra- and intracellular
membranes [6]. The biochemical functions of ATP binding proteins are well exhibited
within the ABC transporters group. In bacteria cell, ABC transporters pump substances such
as sugars, vitamins, and metal ions into the cell, while in eukaryotes they transport
molecules out of the cell [7]. They are also known to transport lipids and play a protective
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role to the developing fetus against xenobiotics [7]. ABC transporters are crucial in the
development of multidrug resistance, with the ATP binding sites exploitable as targets for
chemotherapeutic agents [8]. The mechanism of action in multidrug transportation is
unclear. However, one model called hydrophobic vacuum cleaner states that, in P-
glycoprotein, the drugs are bound indiscriminately from the lipid phase based on their
hydrophobicity [9].

The second evolutionary diverse functional class of ATP binding proteins is called universal
stress proteins (USPs). The universal stress proteins (USPs) are found in diverse group of
organisms like archaea, eubacteria, yeast, fungi, and plants; their expressions are triggered
by variety of environmental stressors [10]. These stressors might include but are not limited
to starvation of nutrients such as carbon, nitrogen, phosphate, sulfate and the required amino
acid and variety of toxicants and other agents such as heavy metals, oxidants, acids, heat
shock, DNA damage, phosphate, uncouplers of the electron transport chain, and ethanol [11,
12]. The USPs bind to ATP through the ATP binding motif [G-2X-G-9X-G(S/T)] [13].
Members of the USPs will segregate into two groups based on whether or not they bind to
ATP [13].

Experimental efforts are underway to determine the function of newly discovered proteins
[14], but these experimental methods are costly and time consuming and at times are
unsuccessful, due to the complexity involved in protein crystallization process. Several
methods had been studied based on predicting ATP binding residues from their known
structural features but with low accuracies [15, 16]. Some predictors of ATP binding
proteins have been developed with promising results such as those in [17, 18], including
Green et al. [19] article on an effective method to recognize ATP binding proteins by testing
parallel cascade identification and KNN. Unfortunately these methods were adapted to ATP
binding proteins containing only the classical Walker A motif [G-4X-GK (T/S)] in their
sequences. The objective of this research reported here was to introduce a classifier built
from a pool of protein sequences containing both ATP binding motifs of G-4X-GK (T/S)
and G-2X-G-9X-G(S/T). To achieve the objective, support vector machine (SVM) approach
is proposed which predicts protein functions based on the discriminative features that map
protein sequences to biological functions [20–23] using the sequence pool ATP hybrid
motifs.

There is a need to develop an automated predictor for ATP binding USP encoded proteins to
speed experimental designs and study how these proteins function under diverse
environmental stressors. This research has developed hybrid ATP binding protein predictor
using the open source LIBSVM toolbox classification. The best model was the combination
of amino acid and dipeptide composition of the sequences with an accuracy of 84.57% and
Mathews correlation coefficient (MCC) value of 0.693%. This model shows a striking
overall performance in sensitivity (82.46%), specificity (87.00%), and precision (87.85%)
with area under the ROC curve (AUC) value of 0.849219. The general trend shows that
combinations of descriptors perform better and improved the overall performances of
individual descriptors, particularly when combined with amino acid composition. This
model provides a high probability of success for molecular biologists in predicting and
selecting diverse motif groups of ATP binding proteins.

2. Materials and Method
2.1. Datasets

Balanced datasets of ATP and non-ATP binding proteins were constructed from the UniProt
protein database (UniProt release 2011_11) (http://www.uniprot.org/), Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do), IMG/M database (http://img.jgi.doe.gov/cgi-bin/
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m/main.cgi), and published literatures [24–26] which contain diverse universal stress
proteins.

2.1.1. Extraction of Walker A Motif Dataset—A total of 2000 protein sequences which
belong to Walker A motif positive dataset were retrieved. Redundancy due to homologous
sequences was removed using CD-HIT [27] and PISCES [28] servers at a threshold of 25%.
This threshold statistically retains adequate number of protein sequences for analysis as well
as avoids bias that might result from high homology. Dataset obtained was manually
reviewed through literature search and information from the protein data bank [2] to ensure
they represent ATP binding proteins. A total of 100 sequences were randomly selected from
the original dataset and retained for training and testing to represent Walker A motif positive
(ATP binding) dataset. The Walker A motif negative dataset (non-ATP binding) was taken
from Yu et al. 2006 [29]. This was the “negative” dataset used for nucleic acid binding
proteins. This is because ATP binding proteins are members of nucleotide binding protein
family; hence the negative dataset used in [29] for predicting nucleotide binding protein
family was considered useful. Redundancy was also maintained at 25% threshold and each
protein was verified to be non-ATP binding using both the literature and protein data bank
information. A total of 100 sequences were also randomly selected from [29] and retained
for training and testing to represent Walker A motif negative (non-ATP binding) dataset.

2.1.2. Extraction of USP Protein Dataset—The extracted USP sequences were tested
for the presence or absence of the G-2X-G-9X-G(S/T) motif in their sequences using the
NCBI conserved domain search tool [30]. The USP sequences were divided into two groups
based on the presence or absence of ATP binding motif [13].The redundancy was also
maintained at 25% threshold and 100 sequences were selected for each class of proteins
(200 sequences in total).

The overall summary of the data prepared for analysis was as follows: (i) 100 ATP binding
proteins with Walker A motif; (ii) 100 without ATP binding proteins without Walker A
motif, (iii) 100 USP sequences with ATP binding motif [G-2X-G-9X-G(S/T)], and (iv) 100
USP sequences without ATP binding motif [G-2X-G-9X-G(S/T)].The 400 sequences were
separated into two hybrid groups as follows: 200 ATP binding sequences and 200 sequences
without ATP binding motifs and were used to generate the feature vector. The feature vector
was generated from the entire sequences of the proteins (not only the ATP-binding domains)
via PROFEAT server using 1497 descriptor set [31]. Physicochemical and sequence
attributes of biologically informative were prioritized for investigation. The attributes were
incorporated into LIBSVM classifier to find the best hybrid model for predicting ATP
binding proteins.

2.2. LIBSVM Classifier
Support vector machines (SVM) recognized objects to be classified as points in a high-
dimensional space needing a hyperplane to separate them [32].The biological molecules are
represented with descriptor set. With a proper mapping furnished by a kernel function, SVM
classifiers separate transformed data with a hyperplane in a high-dimensional space to
predict the correct classification of protein functional classes. SVMs have been widely used
in supervised classification problems in bioinformatics, such as [33–36]. The LIBSVM
package which is freely downloadable at (http://www.csie.ntu.edu.tw/~cjlin/libsvm) was
adopted and used to evaluate the attributes and build the final classifier, using the radial
basis function (RBF) as the kernel function [37–39].

A “grid-search” was employed to select the proper values of the parameter of RBF and the
penalty parameter (C) of the soft margin SVM. C was set to 2−5, 2−3,…, 215 and γ to 2−15,
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2−13,…, 23. All the combinations of C and γ were tested and the pair with the best cross-
validation accuracy for each feature set or combination of feature sets was selected. A
smaller γ value makes the decision boundary smoother. The SVM training parameter C is
the regularization factor, which controls the tradeoff between low training error and large
margin [37, 40]. Throughout this work, the parameter C was maintained at C = 4 after trial
and error assessment as the best value. The optimal value of γ was obtained for each
descriptor set for best results. The entire sets of attributes were evaluated in terms of their
association with ATP binding protein and a final subset with good predictive power was
selected. In this research a 10-fold cross validation (10CV) was implemented. The objective
of training is to maximize the ability of the SVM predictor to discriminate between classes
while avoiding overfitting.

2.3. Tenfold Cross-Validation Analysis
The technique to evaluate any newly developed method has become a major challenge to
investigators. The jack-knifing leave-one-out cross-validation (LOOCV) [41–43] is the
popular technique for evaluating models. During this procedure one sequence is used for
testing and the left over sequences are used for training. This process is repeated many times
and each sequence is used once for testing. Even though this method is popular, it is
computer intensive with considerable labor time.

In this work, 10-fold cross-validation was used to train and test the dataset with sequences
randomly partitioned into ten sets. This cross-validation ensures that the dataset was split at
the protein level in addition to the stratified partition, thus ensuring a more rigorous
evaluation. During the procedure, the positive and negative data samples are distributed
randomly into 10 sets or the so-called fold. In each of the 10 round steps, 9 of the 10 sets are
used to construct a classifier (training), and then the classifier is evaluated using the
remaining set (testing). This procedure was repeated ten times in a manner where each set
was used for testing [44, 45]. The overall performance was the average of the performances
of all the 10 sets.

2.4. The LIBSVM Performance Evaluation
The standard parameters used in evaluating the performance of the LIBSVM are indicated
below. The overall accuracy (Acc) is the intuitive measurement of the performance on a
balance dataset where as Matthew’s correlation coefficient (MCC) [46] is more realistic than
Acc in measuring performance when using an unbalanced dataset [47, 48]. When both MCC
and Acc values are high, the overall performance of the predicted model is better. In
addition to Acc and MCC, the following parameters below were also calculated. Sensitivity
is the percentage of correctly predicted binding proteins to the total binding proteins.

True positive (TP).

True negative (TN).

False positive (FP) (false alarm).

False negative (FN).

False positive rate (FPR).

Sensitivity/recall or True positive rate (TPR) TPR = TP/P = TP/(TP + FN).

Precision = TP/(TP + FP).

Accuracy (Acc) = (TP + TN)/(P + N) = (TP + TN)/(TP + TN + FP + FN).

Specificity (SPC) SPC = TN/N= TN/(FP + TN) = 1 − FPR.
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Matthew’s correlation coefficient (MCC).

((TP × TN) − (FP × FN))/[sqrt ((TN + FN) × (TN + FP) × (TP + FN) × (TP + FP))] OR

(1)

Here TP is the number of true positives (ATP-BPs), TN is the number of true negatives (non
ATP-BPs), FP is the number of false positives, and FN is the number of false negatives. 2.5.
Area under the ROC Curve (AUC) for LIBSVM. It is a plot between true positive proportion
(TP/TP + FN) and false positive proportion (FP/FP + TN). The StatsDirect was used
package to plot ROC and calculates the area under the ROC curve directly by an extended
trapezoidal rule [49]. The confidence interval was constructed using DeLong’s variance
estimate [50] embedded in the statistic package.

3. Results and Discussion
The ATP binding proteins are known to play key roles in the biochemical functioning of the
cell. In signaling pathways ATP molecules are substrates for protein kinase phosphorylation.
It is difficult to identify ATP binding proteins due to lack of experimentally determined
protein structures [51–53]. This is because the growth of protein sequences from various
genomic projects exceeds the capacity of experimental techniques in determining protein
structures and their binding reactions which are time consuming and at times unsuccessful.
Therefore there is an urgent need to develop automated expert methods for determining the
functional class of proteins such ATP binding proteins from their primary sequence
information.

The general assumption here is that every protein that binds to ATP molecule either USPs or
those having Walker A motif will have some common features embedded in their sequences.
In both the USP (G-2X-G-9X-G(S/T)) and Walker A (G-4X-GK (T/S))motifs, the G, K, T,
and S denote glycine, lysine, threonine, and serine, respectively, and X denotes any amino
acid residue. The lysine (K) residue in the Walker A motif is crucial for nucleotide binding
[54] in this class of proteins. It interacts with the phosphate groups of the nucleotide and
with the magnesium ion, which coordinates the β - and γ -phosphates of the ATP molecule
[55, 56].

The universal stress proteins bind to ATP through the ATP binding motif G-2X-G-9X-G(S/
T), with the-G(S)/T as essential residues for ATP binding and phosphorylation [13].
Therefore, members of this class of proteins will segregate into two groups, based on
whether or not they bind to ATP [13, 57]. Thus, it is important to identify ATP binding
USPs and other ATP binding proteins. Several methods have been studied based on
predicting ATP interacting residues if the protein structures are known, with some results
showing very low accuracies [15, 16, 58, 59]. This work has predicted ATP binding proteins
in general with high accuracy irrespective of their structural information using SVM
classifier. The training and prediction statistics for each of the descriptor sets used were
visualized and discussed below. The visualizations were constructed using Tableau Public
Software (http://www.tableausoftware.com/public).

The objective in this report was to find the best descriptor set which can be use to build a
predictive model for a reliable and effective server for predicting ATP-BPs in general,
irrespective of their subfunctional classes. Throughout this work, the parameter C was
maintained at C = 4, while the optimal value of γ for each descriptor was obtained and used
in evaluating their performances. Their performances were evaluated based on five
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computed parameters consisting of their accuracies, sensitivities, specificities, precisions,
and MCC, after a 10-fold cross validation (CV10).

The performance of pseudo amino acid composition was evaluated with only accuracy due
to lack of sufficient sequence information. The lengths of the color coded descriptors were
used as a measure of their performances. In terms of accuracy the best descriptor was the
combination of amino acid with dipeptide composition (84.57%), followed by amino acid
composition alone (83.64%), dipeptide composition (83.17%), and Norm M-B
autocorrelation in that order (Figure 1).The pseudo amino acids and Quasi sequence order
descriptors performed poorly compared to the other descriptors. However, the overall
performances of the other descriptors were better as most of them registered accuracy values
greater than 70.00%. These high performers might be due to the rigorous refinement of
protein sequences. Thus protein function classification with SVM classifiers can be
improved drastically using rigorously refined protein sequences.

The individual performances of amino acid composition (83.64%) and dipeptide
composition (83.17%) were increased to 84.57% when both descriptors were combined
together. This indicates that the combination of descriptors can enhance the individual
performance of other descriptors, particularly those combining with amino acid
composition. This is a binary classification problem involving a balance dataset and
accuracy (Acc) is the best parameter for evaluating performance based on balance dataset
where as Matthew’s correlation coefficient (MCC) is more realistic than Acc when using an
unbalanced dataset [47, 48]. But when both MCC and Acc values are high, the overall
performance of the predicted model is better.

The performances of the models were evaluated based on MCC (Figure 2). The pyramidal
view and the length of the color coded descriptors were used for performance visualization.
The best performer was amino acid and dipeptide composition in combination (0.6931)
followed by amino acid composition (0.6765), dipeptide composition (0.6637), and Norm
M-B autocorrelation (0.6449) in that order. This order is in line with their performances
measured using accuracy as the parameter. This result justifies the performance of the
overall model. In general the combination of descriptor sets performs better than individual
descriptors, particularly when combined with amino acid composition.

Therefore from the statistical point of view the use of combination sets particularly with
amino acid composition tend to give better prediction performance than individual-sets [53].
The amino acid composition generally increases the overall accuracies of other descriptors
in combination. One of the shortcoming of amino acid composition as a descriptor is that the
same amino acid composition may correspond to diverse sequences due to the loss of
sequence order [28, 60]. This sequence order information can be partially covered by
combination with dipeptide composition, but dipeptide composition itself lacks information
on the fraction of the individual residue in the sequence, as such a combination set is
expected to give a better prediction result [27, 61] as shown above due to masking effect.

The models were further investigated based on their sensitivity to predict ATP-BPs and the
results displayed in pyramidal view (Figure 3). The most sensitive descriptor was amino
acid composition (0.875) followed by dipeptide composition (0.8381), amino acid/dipeptide
composition in combination (0.8246), and Norm M-B autocorrelation (0.8224) in that order.

These descriptors were among the best four performers in terms of Acc and MCC.
Evaluation based on specificity indicates that amino acid composition (0.87) was more
specific followed by using the entire feature set (0.8478), Quasi sequence order descriptors
(0.8333), and dipeptide composition (0.8257) in that order (Figure 4). This information
highlights the vital role played by amino acid composition in protein function predictions in
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general. Interestingly the Quasi sequence order descriptors (0.9626) had the highest
precision followed by amino acid and dipeptide composition in combination (0.8785), entire
feature set (0.8692), and Transition (0.8411) in that order (Figure 5).

The overall model evaluation shows that the amino acids and dipeptide composition was the
best model for predicting ATP-BPs from diverse functional classes using whole sequence
information. The use of “all the descriptor” set did not generally result in a better model in
classification. The “all features” descriptor accuracy was 79.9% against 84.57% for amino
acids/dipeptide in combination. This finding is in accordance with [62, 63], on their work on
molecular descriptors for predicting compounds of specific properties using “all features”
set. The reduction in accuracy might be due to noise generated by the use of many
overlapping and redundant descriptors. Hence the accuracy of the classifier algorithms can
be severely degraded by the presence of noisy or irrelevant features, or if the feature scales
are not consistent with their importance in solving the classification problem in question.
The performance of the SVM model using ROC plot (Figure 6) has a value of AUC of
0.849219. This highlights a better model based on whole sequence analysis.

4. Conclusions
The prediction of ATP-binding proteins has been exploited using a battery of descriptor sets
and a hybrid functional group. Also for the first time the prediction of ATP binding in
universal stress proteins had been investigated using the support vector machine. The best
hybrid model was the combination of amino acid and dipeptide composition of the
sequences with an accuracy of 84.57% and Mathews correlation coefficient (MCC) value of
0.693. The general trend is that combination of descriptors will perform better and improve
the overall performances of individual descriptors, particularly when combined with amino
acid composition. This model provides a high probability of success for molecular biologists
in predicting and selecting diverse groups of ATP binding proteins.
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Figure 1. The performances of descriptors with LIBSVM in terms of accuracy
The length of each color coded descriptor and the pyramidal view is a measure of their
performances in terms of accuracy (Accsvm). In terms of accuracy the best descriptor was
combination of amino acid and dipeptide composition (84.57%), followed by amino acid
composition (83.64%), dipeptide composition (83.17%) and Norm M-B autocorrelation in
that order. The pseudo amino acids and Quasi sequence order descriptors perform poorly
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Figure 2. The performances of descriptors with LIBSVM in terms of Mathew’s Correlation
Coefficient (MCC)
The length of each color coded descriptor and the pyramidal view is a measure of their
performances in terms of MCC. The best performer was amino acid and dipeptide
composition in combination (0.6931) followed by amino acid composition (0.6765),
dipeptide composition (0.6637) and Norm M-B autocorrelation (0.6449) in that order.

Mbah Page 12

ISRN Comput Biol. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. The performances of descriptors with LIBSVM in terms of Sensitivity
The length of each color coded descriptor and the pyramidal view is a measure of their
performances in terms of sensitivity. The most sensitive descriptor was amino acid
composition (0.875) followed by dipeptide composition (0.8381), amino acid and dipeptide
composition in combination (0.8246) and Norm M-B autocorrelation (0.8224) in that order.
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Figure 4. The performances of descriptors with LIBSVM in terms of Specificity
The length of each color coded descriptor and the pyramidal view is a measure of their
performances in terms of specificity. The most specific descriptor was amino acid
composition and amino acid/dipeptide composition (0.87) followed by all using all the
feature set (0.8478), Quasi sequence order descriptors (0.8333) and dipeptide composition
(0.8257) in that order.
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Figure 5. The performances of descriptors with LIBSVM in terms of Precision
The length of each color coded descriptor and the pyramidal view is a measure of their
performances in terms of precision. The most precise descriptor was Quasi sequence order
descriptors (0.9626) followed by amino acid and dipeptide composition in combination
(0.8785), all feature set (0.8692) and Transition (0.8411) in that order.

Mbah Page 15

ISRN Comput Biol. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. The ROC plot
The plot shows the performance of the LIBSVM model generated with StatsDirect package
using an extended trapezoidal rule and a non-parametric method analogous to the Wilcoxon/
Mann-Whitney test to calculate the area under the ROC curve. The calculated AUA was
0.849219.
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