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INTRODUCTION

Very and extremely preterm infants suffer from severe 
diseases associated with premature birth, including 
bronchopulmonary dysplasia (BPD), periventricular 
leukomalacia (PVL), necrotizing enterocolitis (NEC), 
patent ductus arteriosus (PDA), sepsis and retinopathy 
of prematurity (ROP). During the 90s, the universal 
introduction of antenatal steroids and surfactant 
replacement as standard therapies for the prevention 
and treatment of neonatal respiratory distress syndrome 
(RDS) in the neonatal intensive care units (NICUs) has 
dramatically changed the natural history of diseases 
affecting prematurely born infants.

Indeed, together with a reduction in the severity of neonatal 
RDS, the sequelae of perinatal lung and brain injury 
profoundly  changed: The old BPD and cystic PVL were 
replaced by newly emerging diseases, the so-called “new 
BPD” and “noncystic, diffuse PVL”, respectively. These “new” 
sequelae differ from the old ones in severity (in general are 
less severe), pathogenesis, pathological features and clinical 
presentation.[1-6] In general, focal injury/necrosis and the 
consequent fibrosis/astrogliosis, the main components 
of old BPD and cystic PVL, appear to be milder and to 
contribute to a lesser extent to the pathogenesis of new 
BPD and noncystic PVL. Conversely, tissue simplification 
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and developmental arrest (larger and fewer alveoli in the 
lungs and hypomyelination with defective white matter 
development and neuronal abnormalities in the brain) are 
the key and predominant components of new BPD and of 
the diffuse, noncystic form of PVL.[3,6]

While surfactant replacement and prenatal steroid proved 
revolutionary in changing the destiny of premature infants 
during the 90s, no preventive strategy is currently available 
to reduce the incidence of these emerging diseases, and the 
prevalence of all complications of prematurity has reached 
a steady state across the last decade [Table 1]. Overall, the 
sequelae of prematurity still represent a burden for neonatal 
medicine and global health.
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Therefore, the research and development of new tools for 
the prevention of the sequelae resulting from preterm birth 
are imperative.

Common mechanisms of pathogenesis in different 
diseases associated with prematurity
The extremely preterm infant as a whole is exposed to an 
array of risk factors that exert different pathogenic effects 
on different organs, depending, at least in part, on the 
sensitivity of the target tissues.

Sequelae of preterm birth often result from exposure 
to factors causing injury during the days immediately 
preceding birth and/or during the first two to three weeks 
of life. These pre-, peri-  and post-natal factors occur 
when organ expansion and development of architectural 
complexity reach their maximum.

Risk factors for BPD and brain injury ultimately contribute 
to tissue damage by two main mechanisms: Ischemia/
reperfusion and infection/inflammation, both promoting 
the production of free oxygen radicals causative of 
oxidative stress. In addition, tissue damage is enhanced 
by deprivation of maternal/placental protective growth 
factors and molecules (e.g., estrogens) and by a (probably) 
weak genetic predisposition.[7,8] The final effect of these 
pathogenic mechanisms is the development, at a variable 
extent, of scarring and fibrosis, and, most importantly, 
tissue simplification and developmental arrest [Figure 1].

Although an understanding of the mechanisms underlying 
tissue simplification is still incomplete, it is admitted that 
exposure to free radicals  (reactive oxygen and nitrogen 
species: ROS and RNS, respectively) is detrimental to stem 
and progenitor cells, while their terminally differentiated 
counterparts are more resistant to oxidative damage.[6,9-11] 
Therefore, the combination of risk factors cited above, 
including oxidative stress, genetic predisposition and 
deprivation of maternal/placental molecules, may 
contribute to tissue simplification by directly damaging 
stem/progenitor cells [Figure 1].

Data emerging from the literature support this hypothesis 
(see next sections) and open new paths of study for the 
upcoming years.

STem Cell DePleTION IN PVl

Cystic PVL is characterized by focal necrosis deep inside 
the periventricular white matter, evolving in micro- or 
macrocyst formation and well correlates with cerebral palsy. 
However, nowadays, the predominant component of PVL 
is a more diffuse, noncystic, damage in the central cerebral 
white matter with associated secondary decreased cerebral 

cortical gray matter volume, which better correlates with 
cognitive/behavioral deficits. This latter is a cell-specific 
injury that appears to be caused by preferential death of 
premyelinating oligodendrocytes (preoligodendrocytes) 
during a developmental window of vulnerability.[6,12] 
Preoligodendrocytes are abundant in the brain of preterm 
(but not term) infants and progressively differentiate 
into mature oligodendrocytes between 28 and 40  weeks 
gestational age to form the myelin sheath. Both ischemia and 
infection contribute to the production of ROS and RNS, at 
least in part through the activation of microglia. It is known 
that preoligodendrocytes, but not mature oligodendrocytes, 
are highly vulnerable to oxidative stress, and are preferentially 
lost upon exposure to pathogenic factors associated with 
prematurity. These considerations support the notion that 
progenitor cell depletion (preoligodendrocyte depletion), 
occurring during the process of myelin formation, might 
result in developmental arrest and tissue simplification 
(hypomyelination in the central cerebral white matter and 
secondary neuronal abnormalities), the hallmarks of diffuse 
PVL [Figure 2].

Table 1: Incidence of major diseases associated with 
preterm birth in a population of very low birth weight 
infants (<1500 g)

2000 2005 2010

Necrotizing enterocolitis (%) 4.9 5.3 5.1

Bronchopulmonary dysplasia (%) 27.3 26.3 23.5

IVH grades III-IV (%) 5.8 6 5.4

Periventricular leukomalacia (%) 3 2.8 2.8

Number of involved centers 20,000 30,000 44,000

The number indicates the percentage of very low birth weight infants who developed the 
disease. Data are extrapolated from the Vermont Oxford Network database

Figure 1: Common mechanisms of pathogenesis in diverse diseases 
of prematurity
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Cell therapies aiming at preventing brain injury associated 
with preterm birth should therefore focus on protecting 
the cerebral stem/progenitor cells, and in particular 
preoligodendrocytes, and promote endogenous repair.

STem Cell lOSS IN BPD: INITIAl 
eVIDeNCe

BPD affects up to 43% of infants with birth weight less 
than 1500  g.[3] It is characterized by fibrosis and arrested 
alveolar and lung vascular growth, resulting in chronic 
need of oxygen supplementation until late in infancy, and 
disturbances in lung function and neurodevelopment in 
older children and adults.[1,3]

Alveolar simplification is predominant over fibrosis in the “new 
BPD” compared with the old BPD, and changes in ventilation 
or respiratory support in order to minimize lung injury have 
not, or only slightly, changed the incidence of BPD.[13-16] These 
observations suggest that, beyond ventilation-induced injury, 
specific developmental pathways or cell populations are 
disrupted in infants developing BPD in the post-surfactant 
era. Initial evidence supports the hypothesis that, at the cellular 
level, stem/progenitor cell depletion is a major pathogenic 
mechanism of lung tissue simplification and arrest in alveolar 
development in infants with BPD.

eNDOThelIAl PROgeNITOR 
Cell DePleTION

Experimental and clinical studies have been performed 
in support of the view that loss of endothelial progenitors 
could be a mechanism underlying the abnormal vascular 
growth in BPD.

The term “EPC” encompasses a wide range of cell 
populations with angiogenic properties, some of which (the 
endothelial colony-forming cells, ECFC) are of endothelial 
origin and are able to differentiate, in vitro and in vivo, into 
endothelial cells and to give rise to functional vessels.[17] 

Other cell populations, among which the triple-positive 
CD34 + CD133 + VEGFR-2 + cells, have also been tagged 
as EPCs, due to their angiogenic capacity; however, the 
latter are of hematopoietic origin and they are not able to 
undergo endothelial differentiation in vitro and in vivo, but 
probably contribute to vascularization as bystander cells or by 
orchestrating endothelial cell growth and differentiation.[18-20]

In a mouse model of BPD, Balasubramaniam et  al. found 
that exposure to hyperoxia decreases pulmonary vascular 
density, simplifies distal lung structure and reduces EPCs 
of hematopoietic origin in blood, bone marrow and 
lungs, suggesting a role of mobilization, recruitment and 
engraftment of these cells to the lung in maintaining or 
repairing lung structure.[21] However, these findings are not 
consistent with human studies, in which this heterogeneous 
population (identified by flow cytometry with the expression 
of CD34, CD133, VEGFR-2, CD45 and CD144 surface 
markers in different combinations) do not correlate with the 
development of BPD, neither at birth nor at some days after 
birth.[22-24] Conversely, cord blood circulating ECFCs (i.e., 
EPCs of angiogenic origin, enumerated as number of colonies 
developing from cord blood mononuclear cells), have been 
shown, in two independent studies, to be lower in cord blood 
from infants who later develop BPD compared with infants 
without BPD.[22,25] Although both studies suggest that loss 
of circulating ECFCs may be implicated in the pathogenesis 
of lung vascular disruption typical of BPD, none of the two 
studies provide a mechanistic link. Interestingly, unpublished 
experimental data by Alphonse et  al., recently reported in 
two reviews, demonstrate that lung-resident ECFCs from 
rats exposed to hyperoxia are functionally impaired  (have 
compromised proliferative, clonogenic and in  vitro 
vessel-forming potential), suggesting that oxygen-induced 
depletion of lung-resident ECFCs may be a possible 
mechanism underlying arrested lung vascular growth in 
BPD.[26,27] Several in vitro studies demonstrated that ECFCs are 
highly sensitive to oxidative stress, a major contributor to the 
pathogenesis of BPD thus indirectly sustaining the idea that 
their disruption under oxidative conditions  (hyperoxia and 
infection/inflammation) may be linked to the pathogenesis 
of BPD.[9-11] Further human and animal studies are needed to 
definitely establish a link between loss of lung-resident and/or 
circulating ECFCs and the development of BPD in preterm 
infants. A  possible working hypothesis for these studies is 
schematically explained in Figures 3 and 4.

meSeNChymAl STROmAl Cell 
DePleTION

MSCs are cells of mesenchymal origin able to differentiate 
into mesoderm-derived cells.[28] MSCs display a wide 
variety of properties, including immunomodulatory and 
regenerative capacity as well as the ability to provide paracrine 

Figure 2: Mechanisms of brain injury in diffuse periventricular 
leukomalacia. Mesenchymal stem cell-based treatments may protect 
the developing brain or stimulate the endogenous repair
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antiapoptotic, proangiogenic and antiscarring (antifibrotic) 
stimuli.[29-32] In addition, they have been demonstrated to 
be able to protect lung epithelial cells against acute lung 
injury by restituting alveolar cell bioenergetics through the 
transfer of mitochondria to lung epithelial cells.[33]

The hypothesis that the loss of resident MSCs in the lung 
stroma may contribute to the development of BPD is 
supported by one experimental study. In a rat model of 
BPD, van Haaften et al. demonstrated that after 2 weeks of 
exposure to hyperoxia, the histological pattern of alveolar 
simplification was associated with a reduced number of 
circulating and lung-resident MSCs.[34] Popova et al. more 
recently collected the tracheal aspirates from 56 ventilated 
preterm infants for isolation of MSCs; in their study, the 
presence of MSCs in the tracheal aspirate increased the 
adjusted odds of BPD by nearly 22  times.[35] Of note, the 
studied cells were able to acquire a myofibroblast phenotype 
that was different from the human bone marrow-derived 
MSCs that do not undergo myofibroblastic differentiation 
in response to transforming growth factor b1; the difference 
in the studied cell populations may account for contrasting 
results between the two studies.[26]

In addition, the possible role of circulating bone marrow-
derived MSCs homing to the lung, under omeostatic or 
developmental conditions and/or after lung injury, is 
currently unknown.

Altogether, these observations suggest that depletion of 
circulating or resident ECFCs and/or lung stroma resident 
MSCs may contribute, at least in part, to altered endothelial 
growth, abnormal epithelial–stromal interactions, defective 
elastogenesis and extracellular matrix remodeling, and 
may account for increased vulnerability of epithelial cells 
to acute injury thus contributing to subsequent alveolar 
simplification, the hallmark of new BPD. These findings may 

Figure 4: Working hypothesis on the role of endothelial colony-forming cell depletion in preterm infants developing bronchopulmonary dysplasia

Figure 3: Possible interventions to prevent bronchopulmonary 
dysplasia (BPD) based on the hypothesis that lung stem/progenitor 
cells and/or endothelial colony-forming cell (ECFCs) are depleted in 
infants developing BPD. Administration of mesenchymal stem cells or 
their conditioned medium or ECFC replacement may prevent lung injury
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provide a rationale basis for ECFC or MSC administration 
to protect the developing lung following preterm birth.

Animal models for cell therapy in neonatal lung and 
brain injury
The main goals of a cell-based therapy for the treatment 
or prevention of neonatal diseases associated with 
preterm birth include  (i) replacement of depleted stem/
progenitor cells, (ii) reduction of inflammation and fibrosis 
and (iii) protection of cells (both mature cells and resident 
stem/progenitor cells) from injury associated with infection, 
ischemia and oxidative stress.

BPD and PVL are complex and multifactorial diseases, 
and a combination of the above-mentioned goals could 
be favorable to achieve protection and optimal lung and 
brain development. Here, we will only focus on some 
issues regarding the most promising cell-based approaches, 
and the most likely to be used in clinical trials, without 
comprehensively describing all the possible cell-based 
treatment options available for neonatal diseases.

mSC‑BASeD TReATmeNTS

MSCs exhibit numerous properties, making them suitable 
for cell therapy in BPD and PVL. Their regenerative 
potential and immunomodulatory properties have been 
previously exploited in other MSC-based clinical protocols, 
including allogenic hematopoietic stem cell transplantation, 
to reduce the incidence or severity of acute graft–versus–
host disease.[29-31,36-39]

The use of MSCs has several advantages over the use of 
other stem/progenitor cell populations:
• MSCs have been previously used in clinical protocols 

and have been demonstrated to be safe;
• Their biological behavior (at least for bone marrow-

derived MSCs) has been extensively investigated in 
in vitro and animal models;

• MSCs display multiple beneficial properties, including 
immunomodulatory capacity, antifibrosis activity, 
anti-apoptotic and growth-promoting activity and 
ability to restore the bioenergetic balance through 
transfer of mitochondria to lung epithelial cells;

• MSCs have already been demonstrated to be effective 
in animal models of neonatal diseases, including BPD 
and hypoxic–ischemic encephalopathy, and their 
administration could have a “multiorgan” beneficial 
effect not limited to the lungs and the brain.

In experimental models of BPD, intratracheal, 
intraperitoneal or intravenous  (systemic) administration 
of bone marrow-derived MSC improved alveolar, airway 
and vascular structure, attenuated inflammation, decreased 

fibrosis, ameliorated right heart function and improved 
exercise capacity.[34,40,41] Importantly, the beneficial 
therapeutic actions of MSCs appear to be mediated through 
paracrine mechanisms and immunomodulatory effects, 
rather than through cell engraftment.[42] Consistently, 
administration of the conditioned medium from MSC 
cultures prevents lung injury [Figure 3].[43]

Whether stem and progenitor cell therapy could be 
beneficial in attenuating the complications of PVL is still an 
unanswered question. Animal models are rather focused on 
the use of MSCs in the recovery process after brain injury 
following birth asphyxia or stroke [Figure 2].[44-49] Whether 
the same cell populations and routes of administration for 
hypoxic–ischemic encephalopathy could be used in PVL 
still needs to explored with animal models.

ePC‑BASeD TReATmeNTS

The rationale for using angiogenic cells  (either EPCs of 
hematopoietic origin or true endothelial progenitors, 
namely ECFCs) for the prevention of BPD is based on the 
following observations:
• Lung vascular growth is disrupted in infants with BPD
• Low numbers of ECFC in cord blood correlate with 

subsequent development of BPD, suggesting a role for 
ECFC depletion in the pathogenesis of lung vascular 
disruption.

In an oxygen-induced BPD mouse model, Balasubramaniam 
et  al. showed restoration of the alveolar structure and 
vessel density in mice treated with bone marrow myeloid 
progenitor cell population  (bone marrow-derived 
angiogenic cells), a novel myeloid cell population with 
angiogenic properties.[50]

In addition, interesting unpublished preliminary data 
by Alphonse et al. show that intrajugular administration 
of human umbilical cord-derived ECFCs (i.e., EPCs of 
endothelial origin) improved lung function, preserved 
alveolar development, attenuated pulmonary hypertension 
(improved pulmonary artery acceleration times and 
decreased right ventricular hypertrophy) in hyperoxia-
exposed mouse pups, suggesting that human umbilical 
cord-derived ECFCs may offer a new therapeutic option 
for BPD by replacing depleted ECFCs or by restoring their 
function [Figure 3].[26,27]

human amnion epithelial cell‑based treatments
Given their availability from human amniotic membranes, 
hAECs could be a good candidate for cell replacement. In 
the developing lung, hAEC have been shown to prevent 
ventilation-induced injury and injury related to infection in 
ovine models, mainly via modulation of the inflammatory 
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response rather than by engraftment. Further studies will 
clarify the therapeutic potential of hAEC in BPD.[51,52]

Unsolved issues: Which infants? Which cells? how many? 
Which route? When (Repair or prevention)?
Before stem and progenitor cell therapy becomes a true 
option for very and extremely preterm infants, the following 
issues should be resolved:
• The accurate definition of infants at higher risk 

of sequelae of prematurity, representing the best 
candidates for treatment and/or prevention;

• The right timing for cell administration  (and the 
definition of the goal: Repair or prevention?);

• The most suitable cell population targeted to specific 
diseases and/or clinical conditions;

• The best source of stem cell populations  (e.g., 
for MSCs: Adult bone marrow or adipose tissue, 
umbilical cord, cord blood, placenta or amniotic 
fluid) and their safety, as addressed by in vitro and 
in  vivo nontumorigenicity and genetic stability upon 
expansion and transplantation;

• The exact number of cells to be administered and the 
best route of administration, possibly depending on the 
clinical picture and the target organs in individual infants.

CONClUSIVe RemARkS

Neonatal diseases associated with preterm birth still 
represent a burden for global health and families. The 
search for new tools to minimize the risk of complications 
associated with prematurity is urgent. Stem cell technology 
offers new possibilities to prevent or cure these invalidating 
diseases. Further understanding of the developmental 
biology in physiological and pathological conditions, 
of the multiple mechanisms underlying disruption of 
normal organ development after very/extremely preterm 
birth, and of the complex biology of stem cells, will allow 
the performance of targeted studies and the design of 
appropriate preventive and treatment protocols.

methods for locating and selecting data
Articles were searched on Pubmed using the following 
terms: (“bronchopulmonary dysplasia” (Mesh Term) 
AND (“Mesenchymal stromal cells” (MeSH Terms)); 
(“bronchopulmonary dysplasia” (Mesh Term) AND 
(“endothelial” (MeSH Terms)); (“bronchopulmonary 
dysplasia” (Mesh Term) AND (“Stem cells”(MeSH Terms)).
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