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Abstract

The paperintends to serve two objectives. First, it revisits the celebrated
Fay-Herriot model, but with homoscedastic known error variance. The moti-
vation comes from an analysis of count data, in the present case, COVID-19
fatality for all counties in Florida. The Poisson model seems appropriate
here, as is typical for rare events. An empirical Bayes (EB) approach is
taken for estimation. However, unlike the conventional conjugate gamma
or the log-normal prior for the Poisson mean, here we make a square root
transformation of the original Poisson data, along with square root trans-
formation of the corresponding mean. Proper back transformation is used
to infer about the original Poisson means. The square root transformation
makes the normal approximation of the transformed data more justifiable
with added homoscedasticity. We obtain exact analytical formulas for the
bias and mean squared error of the proposed EB estimators. In addition
to illustrating our method with the COVID-19 example, we also evaluate
performance of our procedure with simulated data as well.
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1 Introduction

Small area estimation is now a topic of global importance. Methodologies
abound, and many of these are finding real-life applications.

Normal theory small area estimation pervades the literature, and the
pioneering (Fay and Herriot, 1979) method is most often used in real life
applications. The Fay-Herriot model is a normal theory mixed effects area-
level model. The model needs to assume known error variances in order to
avoid non-identifiability, whereas in reality, these are sample estimates.

The present article deals with the Fay-Herriot model with known con-
stant error variance. The motivation came from an analysis of count data,
in particular, COVID-19 data, to find estimates of fatality for all counties
in the state of Florida. The Poisson model is used, but we make a square
transformation of the original data, and the corresponding mean parameters
to attain a closer approximation to normality with added homoscedasticity.
This is in contrast to the log-transformation, where also one typically as-
sumes normality of the transformed data. However, transformation of the
original data in the log-scale bears the potential hazard of leaving out zero
counts, which on most occasions, can affect the conclusion significantly. Fur-
ther, our approach allows one to develop Stein-type shrinkage estimators for
small area means and study their properties analytically.

Variable transformation in the small area context has been addressed
before. The logarithmic transformation with the assumption of log-normal
distribution of the original data is most commonly used, for example, in
modeling income distributions. See for example, Slud and Maiti (2006) and
Ghosh et al. (2015). Recently, Hirose et al. (2021) considered an arc-sin
transformation of binomial proportions for small area estimation. Sugasawa
and Kubokawa (2017) suggested a non-explicit EB estimator and performed
an analysis based on the dual power transformation similar to that of Hirose
et al. (2021).

The remaining sections are as follows. In Section 2, we introduce the
square root transformation, develop Stein-type shrinkage estimators for the
transformed data motivated from an empirical Bayes point of view, and then
back transform properly to estimate the original parameters of interest. In
Sections 3 and 4, we obtain exact expressions for the bias and the mean
squared error of our shrinkage estimator. Finally, Section 5 we also obtain
an estimator of the mean squared error correct up to order O(m~1!) where
m is the number of small areas. Section 6 contains an illustration of the
proposed method to estimate the number of deaths due to COVID-19 in
each county. A simulation study is undertaken in Section 7. Some final
remarks are made in Section 8.
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2 Empirical Bayes Estimators

Suppose there are m areas with counts y; for i-th area. We assume y;
are independently distributed from Poisson();) for i-th area. We transform
zi = /y; and with the usual variance stabilizing square root transformation
so that V(z;) is approximately 1/4. We begin with

210; " N (6;,1/4) where 0; = /X, (i =1,...,m).

Following the customary approach, we consider independent N (z; 3, A)

priors for the 6; with p-dimensional auxiliary variables x; and regression
ind

parameter S € RP where m > p + 4. The posterior 6;|z; ~ N((1 — B)z; +

Bz B, (1 — B)/4) where B = 1/14%. Thus, Bayes estimator of \; is

B = E(\|z) = E(0?|z) = (1 — B)/4+{(1— B)z + Bz{ }2  (2.1)

We now turn towards empirical Bayes A(EB) estimation of the ;. Writing
X = (21, %m) 5 Z = (21, ., 2m) " and § = (X T X)X TZ, it follows that
marginally ||Z — Xf||? ~ {5x2,_,- Here X is a m x p matrix with rank p.
Following Efron and Morris (1973), an EB estimator of B is B = ﬁ.
Thus an EB estimator of \; is

AFB = (1-B)/A+{(1 - B)z + Bz B}* (2.2)

For proving our technical results, we find it convenient also to define
AB = (1 - B)/A+ {(1 - B)z + Bx] B}, (2.3)
which is also an EB estimator of \; if the shrinkage factor B were known.

Also, for notational simplicity we write mg = m — p hereafter.

3 Bias of \FB

For both bias and mean squared error (MSE) calculations for
need the following lemmas.

2
Lemmal.Let<X>wN[<ul>,<(71 Ulf)]Then
Y 2 012 03

Var(X?) = 207 + 4p30}
Var(Y?) = 205 + 4us03
Cov(X? Y?) = 207

APB we

1o +4p1p2012
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Lemma 2. Define s; = xiT(XTX)_lzxi, up = (1 — B)z; + BxZTB and
u;p = (1 — B)z; + Bz, B then,

i ; B A(l—-B)+ (2-DB)si/4 (1—B)(A+s;/4)
[ Zil } simN [( i;l'ﬁ ) ) ( (1-B)(A+si/4) o/ A(1 - B) B )} - (31)

Proor. The result follows from the independence of B and z; — CCZB and
noting that 8 ~ N(B,(1/4 + A)(XTX)™1) while z; — 2] 8 ~ N(0,(1/4 +
A)(1 - s;)).

Lemma 3. (i) ||Z — X || is distributed independently of

<(Zl*$??) (anﬂﬁ))
1Z-XxBII"" " 1Zz=X8l )

T Ak T Ak
(ii) E [(Zl 2, ) } — Bz, f) for all positive integers k.

lZz=xBI* | E(lZ-XBI*)

(iii) E [M} = 0 if k is an odd positive integer and 0 <1 < k
IZ=XAIF ]~ P I '

PROOF. Marginally, Z ~ N(X8,(1/4 + A)I,). Hence, (3,]|Z — X3||)
is complete sufficient for (3, A), while <(217IITAB ) .. m=enf)
T Z=xp|l"" "7 |lZ-XBl
This proves (i) by an application of Basu’s Theorem (Basu, 1955).
Now for any positive integer k, and by part (i) in Lemma 3, we have,
(2 — =] B)*
1Z — XB|[*

) is ancillary.

12 - xB|*

&

3
|
8
_‘

=
E
Il

E

E |1z - XA B

(%wJBV]
1Z — X B||*
_ E(Zi—l‘;r/é)k

This leads to B | {555 | = 755

Il=

Next noting that ((z1 —z{ 3), ..., (zm—2)8)) = —((z1—x] B), ..., (zm—

2! B)) it follows that

1Z= X3 1z = X3 1Al Zx A

(Zi—fBiTB)
[1Z-X3]|
moments are 0. Hence,
(2 — x; B)*
1Z — X ]|

Therefore, is symmetric random variable around 0 and its all odd

(Zi - x:ﬁ)k]
1Z - X B[k

] - Ehz—xﬁw4
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= E(|lz- X8|

(Zi_-r@'TB)k]
1Z — X B[k

We get the second equality in the above equations using part (i) of this
Lemma. Proof of (iii) is complete after observing k is an odd integer.

Lemma 4. (i) E(B) = B if mg > 2.
(ii) E(B?) = =3B if my > 4.
(iii) E(1/B) = 5:%5 if mo > 2.

(iv) B(1/B?) = momod?) e > 2.

= (mo—2)2B?
(zif:rjé)Q _ (1-sy)
o) B[] =
. (zi—IIB)AL _ 3(1—87;)2
) B [{i=5650] = mtmetn
PROOF. The proof (i) to (iv) follows by noting that B = ﬁ and

1Z — XB||> ~ 15X%,- To prove (v) and (vi) we also need part (ii) of
Lemma 3.

Now we start with calculation of the bias E(APF — ;). The following
theorem is proved.

THEOREM 1. Suppose z;|0; ind N(0;,1/4) with priors 0; ind N(z] B, 4)
and mgo > 2. Then bias of the EB estimator )\ZEB in Eq. 2.2 for \; = 02 is
given by

Bias(A\PP) = E(AFB — \) = 2B <3¢ G Si)) : (3.2)

i 1 e
PrOOF. We begin with the partition
EGFP = X)) = EQOP = \) + EQFP = AP) + EGFP - AFP)  (33)
By Lemmas 1 and 2,
EGNP =AP) = B} —ud) = Var(un) + (2:8)* — Var(ui) — (2:8)°
= (2—B)s;/4 (3.4)
Noticing E(\;) = E(E(\i|z)) = E(AP), we have E(\Z — \;) = 0. Tt is

easy to see that

AP —XPP = (B—B)/d+22]B(B - B)(zi — 2] )
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+H{(B* - B%) —2(B-B)}(zi — /) (35)

= A+ Ay + 43,
where Ay = (B — B)/4, Ay = 2] (B — B) and A3 = {(B? - B?) - 2(B —
B)}(zi —x] B)2. The expectation of A; is 0 since B = ﬁ is unbiased
estimator of B. Now,
E(42) = B(]B)E|(B=B)(z—a] B)]
~ ~ ~ mo — 2 T5
= E(z{ H)E(B(2i — z] B)) = B(x] B)E | ————— (2 — 2] B)
Az - XB|)
=0 (3.6)

The first equality in Eq. 3.6 is by independence of B and ((z1 — xIB), ce
(2n — x,} ). The third equality holds by part (iii) of Lemma 3 since (z; —
57 B) ~ N(0, (1/4+ A)(1 - 5,)).

Finally, we simplify As. By (i) and (iii) of Lemma 3 and Lemma 4,

EGNP = AP) = E[(B*~ B —2(B — B)}(z — «{ §)?]

_ (Zz—iﬁjﬁ)z A2 P2\ o(P mo — 2
i HZ—XBH?]E[{(B ) —26 = B
_ (=sy) (m°4_ 2)E[B—BQ/B’—2+2B/B]
mo
(1—s8;5) (mo—2) m m
= 04 [B—Bm002—2+2m002]
_ 1osin_py, (3.7)
2mg

The proof of Eq. 3.2 follows now by combining (3.3) with Egs. 3.4-3.7.
REMARK 1. With the usual assumption, s; = xZ(XTX)_Ixi =0(m™)
for large m, the bias of the EB estimator A8 | E(AFP — \;) = O(m™1).
REMARK 2. We can estimate the bias in Eq. 3.2 by replacing the B by
B, An unbiased estimator of the bias is

— 2-B 2(1 — s4)
bias = T <31 + T)’I,()) . (38)

Thus, from Eq. 3.8, the EB estimator has positive bias, and the bias-
corrected estimator of \; is

ACEB — \EB _ bigs.
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4 MSE of AP
The following theorem provides an exact expression for the MSE of M\EB,
THEOREM 2. Suppose z;|6; e N(0;,1/4) with priors 0; nd N(z] B, 4)
and mg > 4. Then MSE of the EB estimator )\iEB mn Eq. 2.2 for \; = 9? is
given by

MSE(APB) = E(PB - ))?
B (1-B)(2-B)
= (1-B) [(xiTﬁ)Q + 5B }

+Bs;(z] 8)? + (1 — B)?s; /4 + s2(1/2 — B/4 — B?/16)
B2 1-— Si

T 22 ,
o1 2me [4(@ 3) B+sl]

2m2 — 9mg + 6 B 1

1—s)? 0 2 L1

+3( S) {4m0(m0+2)(m0—4) m0+2+2m0
+(1—SZ‘)B I—B(m0_3>
2m0 m0—4

(L —s;

L5l —si)

mo

(2 — 2B + B*/4).

The proof of Theorem 2 is given in Appendix A.

REMARK 3. Theorem 2 shows that the MSE of EB estimator AEB
E(\EB — E(\))? = O(1) due to the first term in Eq. 4.1 for large m.

5 Estimation of the MSE of \*B
In this section we estimate the MSE of j\lE B provided in Theorem 2 up to
the order O(m™!) for large m. We now assume that s; = O(m~!). Ignoring
the O(m~2) terms, we rewrite

MSEGEE) = (1- B)(a) f) + (I_ng# +s |B@ip? + & _43)2
B* 2B(z{8)*  3(1-B)* B(1-B) _2
toat Tt g FOmT)

It is easy to see that only first two terms in Eq. 5.1 do not depend on m and
remaining terms are of O(m~1). Using Lemma 4 we get

B(%-2)=%+0m™)

E (32 _ %Bz> _ B2+ O(m?) (5.1)



456 M. Ghosh et al.

Using Eq. 5.1, we find
(1-B?2@2-B) 4 N 2B2

~

mB m

E +0O(m™2).(5.2)

o B

_ [(1 — B)*(2-B)

Now by 3::/3’ ~ N (:JJZTB , 15 ), Lemma 4 and the independence of B and B, we
also have

E[(1 - B)((aTB)? - i/4B)] = (1 = B)T B2+ O(m™2).  (5.3)
Since we are ignoring O(m™2) terms in MSE estimation, we can estimate
the Q(m_l) terms in Eq. 5.1 simply by replacing B? by B? and (x;rﬁ)2 by
(z]3)%. By Egs. 5.2 and 5.3, we derive estimator of the MSE of A\*B in
Theorem 3.

THEOREM 3. Assume conditions of Theorem 2. Then MSE(j\iEB) as
given in (13) is estimated by

= N R — B)2(2 —
MSEQED) = (1- By 2 + | L= B 2= D)
8B
NapTme, (1=B? (1-B)| 3B
2B, 155 3 ., B(1-B) 1 L
= (x ~ (1-B - .
(2 f)°+ 5 (1-B)" + — 2mB+(9p(m )

The next theorem shows that MSE of the bias-corrected estimator ;\?EB
equals MSE(AFB) + O(m=2). In other words, bias correction does not lead
to any significant improvement over M SFE ()\fB ), at least, when calculated
up to O(m=1).

THEOREM 4. Assume conditions of Theorem 2. Then

E[(AT5P = X) = B[(AFP = X)! + O(m™?).

PROOF. Write bias = (QZB) d;, where d; = s; + 217;32' = O(m™1). We
begin with
E[(ATFP =0)? = VI = A,

= V[NFB_\]+Vbias|—2Cov(AFB =\, bias).(5.4)

It is immediate that V[AFE —\;] = E[(AFF — \;)?] — (bias)?, where (bias)? =
£ (2= B)?%d? = O(m™2). Next

—

Vibias)] = E[B?|-B?*=FE

Om—%f]_Bz
1612 - X4]|*
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(mo — 2)? 16 B2 ,  2B?
N 16 (mg—2)(mo — 4) omg—4°
Hence,
P d? B? -3
V[bias] S O(m™?) (5.5)

Finally, Cov(A\FF — \;, @s) = Cov(\FB, b/zas) — Cov(\;, @s), But

—

Cov(\;, bias) = E[Nbias] — E[\]E|bias),
= C’ov()\?, %),
= Cov({(1 - B)z + Bz 8}?, bias),
(1 — Si)

= 7<1 — B)2di = (’)(m_Q)- (5'6)
8m0

Thus, Cov(AFB — ), l;c:s) = Cov(\FB, I;cz‘;) + O(m~2). Now,

o — 1-B . s 1.5 2—B
Cov(\FB bias) = Cov <4 +{(1 — B)z + Bz] 5}?, 4di> ,
=SB~ %cow ({1 - By + Ba] 5. B)
16 4 ‘ ER
B? d; s . U
- B g . 21— B)(z—x,
+(1 = B2z — o] B B). (5.7)

Due to the independence of 3 and Z — X33, COU({ZL‘ZTB}Q,B) = 0. Next,
again invoking the symmetry of Z — X around 0, and E(z; — a:ZT g) =0,

Cov((1 = B)(z —a] B! 5,B) = E{(1— B)(2i — ] B)z] B]

A N

~E[{(1 - B)(z; — ] B)x] BIE[B],
= 0.
Hence Eq. 5.7 reduces to
Cov(A\PB bias) = (—d;/4)Cov((1—2B + B?)(z — z; §)% B)
+0(m™2), (5.8)
(mo — 2) (2 — ; §)?

T2 B = _ 1 3)2
Cov((z — x; B)°, B) E T z_x0)2 E[(z — x; B)°]B.
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1-— S;
= (5.9)

Next

S Tae (mo—2) (z —a}B)? (mog—2) \
Cov(B(z; — ﬁ),B)—Cov( I HZ—XBH?’4HZ—XBH2>_

(zi—x] B)?
1Z—xB||? ) )
sufficient statistic (8, Z — Xf3), by Basu’s Theorem,

Since is ancillary, and ||Z — X ]2 is a function of the complete

Cov(B*(z — ] B)*,B) = E[B(z — ] p)’] - E[B*(z — ] B)’|B
_ (mo—2P L (m—alB) 1
64 12 - XBI? 1|1z - Xp||t
C(mo—27 (z — 2] B> 1 ]
16 12 - XBI? |1z - X5B|12]
. 2
_ (mgmiﬁ) _“Z))B (5.10)

Hence, from Eqs. 5.7-5.10, COU(S\?B,%) = O(m~?). This along with
Eqgs. 5.4-5.6 proves the theorem.

6 Data Analysis

In this section, we now deploy our approach on the 2020 COVID-19
pandemic dataset, which is available at usafacts.org. This example is used
mainly for illustration. We are using the figures provided as the sampled
estimates. Our study shows that the coefficient of determination (R?) does
not increase much if we include other demographic variables such as the
population size, number of people over age 60, and income in the linear
model for the number of deaths regressing on number of confirmed cases.
It suggests that the number of confirmed cases is the most crucial variable
in estimation of the number of deaths by Coronavirus than the aforemen-
tioned demographic variables. We have also studied a few more county-level
data sources! and we found out that adjusted gross income (AGI)? of the
year 2017 is really relevant for estimating the number of deaths. In our
model, we have transformed the number of confirmed cases and adjusted

1US Census Bureau and Statistics of Income Division (SOT) of the IRS
2https://www.irs.gov/pub/irs-soi/17incyallagi.csv


https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
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gross income (AGI) by taking the square root. All data are aggregated at
the county level. We are interested in estimating the counts of death due to
Coronavirus for all counties in Florida. Here m = 57 since Florida has 57
counties. From Section 2 we know that ,/y; gt N(z] 8,A + 0.25) and we
estimate S by ordinary least square method. Based on our analysis, we get
B = (—0.2786,0.0917,O.OOOB)T7 the respective estimates for the intercept,
number of confirmed cases and AGI. We have summarized our results based
on our model in Table 1 and the shrinkage factor B =0.3777. It seems that
our model-based approach seems to pull the direct estimates towards some
grand average, as one anticipates in a typical EB analysis. Figure 1 shows
that the estimates are higher in south east Florida than the rest of the state.

7 Simulation

In this section, we will measure the performance of our model via a sim-
ulation study. The choice of the auxiliary parameters is guided by the case
study of the previous section. For illustration purposes, we have considered
only one covariate- the number of confirmed cases to estimate the number
of deaths due to COVID 19. This data is available for 3,142 counties of the
United States. For simulation purposes, we have taken a random sample
from this data without any replacement for each choice of m. The number
of small areas (counties), m, is set to be 25, 50, 100, 200, 500, or 1000. For
each choice of m, we generated data from the model :

210; % N(6;,1/4), 6, = /N ™ N (2] 8, A)

The design matrix X includes a column of ones and one explanatory variable.
To set the value of the parameter for 8 and A, we first create a linear regres-
sion model for the number of deaths on the number of confirmed cases using
entire data for 3,142 counties. The estimated value for regression coefficient
vector 8 is (5.281570,0.000272) " and mean square residuals is 22.75. For
simulation we set 8 = (5.281570,0.000272) " and A = 22.75 — 0.25 = 22.50,
hence shrinkage factor B = 0.011. Due to this variance stabilizing transfor-
mation, the shrinkage factor does not change between counties. Now using
Eq. 7.1 we generate \; and z; for all i = (1,...,m). The explanatory variable
is again number of confirmed cases which is simulated randomly without re-
placement from the entire populations of 3,142 counties in the United States.

Here we will compare the true RMSE and estimated RMSE of AP5. We
examine our findings in Theorems 2, 3 and 4 based on six different settings
for m. Here we will vary the m and only one dataset is generated for each
m, the latter taking values 25, 50, 100, 200, 500, 1000. We have estimated the
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SQUARE ROOT TRANSFORMATION
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Figure 1: The top two map compares the EB and BIAS corrected EB for
the number of deaths due to COVID-19 in each county of Florida, and the
bottom two maps show the BIAS and RMSE of the EB

true RMSE of S\ZCEB based on 1,000 simulated samples since we do not have
exact expression for RMSE of S\ZCEB .

Figure 2 substantiates that the approximations given in Theorems 3 and
4 are fairly close to the true RMSE. In addition, they also point out one
particular small area where the MSE is significantly higher than rest of the
small areas.

8 Conclusion

The paper introduces square root transformation of Poisson count data,
and attains approximately both normality of the transformed data as well as
variance stabilization. In this way, we obtain explicit estimates of bias and
MSE for Poisson means. Based on the simulation, it seems that our estimates
closely resemble the truth. Data analysis part tells us that estimates are
higher on south-east Florida when the model appropriate.
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Figure 2: figure compares True RMSE: root of Eq. 4.1, estimated RMSE:
root of Eq. 5.4 and simulated RMSE of bias corrected estimators. The
RMSE of bias corrected EB estimators (;\ZCEB ) is based on 1,000 simulations
provided in Fig. 2 and it also verifies the result in Theorem 4

There are many potential extensions. One that immediately comes to
mind is consideration of unit level models with corresponding square root
transformation. Gongalves and Ghosh (2021) have addressed this problem
using a pure hierarchical Bayesian framework, but an empirical Bayes ap-
proach with all its theoretical properties should also be a topic of future
investigation. Even under the present framework, one may add a spatial
component and using something like a CAR model (see for example, Ghosh
et al., 1999). A final interesting problem is to consider an overdispersed
Poisson model, i.e. a negative binomial model for count data with variable
transformation as in Yu (2009) which also leads to homoscedasticity.
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Appendix
Proof of Theorem 2

) PROOF. In this section we will dq calculfite the MSE of thAe EB estifnator
%\fB. We observe that E((AB — X\;)(AFB —AP)) = 0 and E((A\P — X)) (\EB -
MEBY)) = 0 since E((AP — \i)|zi) = 0. Thus we have

EGFP =X = BGAF =X+ EQOFP =) + EGFP - AFP)?
+2B((AFF = APP)(AFF - AF) (5.11)

Each term in the right side of Eq. 5.11 will be computed separately. Since
0;)z; ind N((1 - B)z + Bz B,(1 — B)/4), by Lemma 1,

EGAE—XN)? = E(BE(\z)—N)*=E[E{(E(\)—X)?|z}]|=E[Var(z)]
= E[(1-B)?/8+ uj(1 — B)]

(1-B)[(1—B)/8+ (A(1 - B) + (z{ B)*)]

(1-B)(2- B)

(1-B) |(z}B)*+ B

Next we compute the second term in the right side of Eq. 5.11. By Lemmas
2 and Eq. 3.4,

EQAFP — 2B = vVar(\B)+Var(A\FP)—2Cov(\Z, AFP) + (E(AFP — \P))?
= Var(ul)+Var(uh)—2Cov(uir, uh) + (E(ul —uk))?.  (5.12)

Also,

Var(ufy) = 2(A(1 = B) + (2 — B)si/4)” + (4A(1 — B) + (2 = B)si)(z] 8)°  (5.13)
Var(u) = 2(A(1 — B))? + 4A(1 — B)(z] 8)? (5.14)
Cov(ufy, ufy) = 2(1 = B)* (A +s;/4)* + 4(z B)*(1 — B)(A + 5i/4) (5.15)
[E(uf) —u})]® = (2 - B)?s?/16 (5.16)
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By Egs. 5.13-5.16, 5.12 simplifies to

EAFP —A\P)?* =Bsi(a{ )+ (1 — B)?s;/4+s?(1/2 — B/4— B%/16)  (5.17)

Now we evaluate the last expression in right side of Eq. 5.11.

MNP -AP = (1= B)zi + Bx[ B)* — (1= B)z + B/ p)°
= B(z] f — ] B)° +2a] B(a] f — 2] B)]
+2B(1 - B)(a] § - o P)a]
+2B(1 - B)(a f — ] B)(z — =/ B)
— By + By + Bs (5.18)
We define By = 32[(:UIB—m?ﬁ)?+2:p?ﬁ(x?ﬁ—x;ﬁ)], By = ZB(l—B)(x:B—
z} B)z] B, Bs = 2B(1 — B)(z] 8 — =} B)(zi — z, B). The expressions Ay, Ay
and Az in Eq. 3.5 are functions of residuals ((z; — z; f)..., .. (2 — z 3))
and the expressions B; and By in Eq. 5.18 are functions of 8. Therefore,

(A1, Ag, A3) is independent of (Bj, B2) and their covariances are 0. The
expectation of Bs is 0 since (z] 3 — /] ) is independent of (z; —x; 3). Also,

CovarBy) = PUZB pp By - oI B)BGTE - =0
Cov(As, B3) = 2B(1— B)E |(B? - B*—2(B - B))(2 —z; §)
xB(x! il B)
= 0.
Hence, again using part (v) of Lemma 4, Egs. 3.5 and 5.18, we have
Cov(\FB — \FB \EB _\By = (Cou(4y, Bs)
= E(Qu] BB — B)(s0 — 5} $)2B(1 - B)
x(x] B — ] B)(z — ] B))
= 4B(1 - B)E((B - B)(zi — z B)*)
xE(z] Bz} B — ] B))

= 4B(1 - B)MVW(Q:ZTB)
2m0
— 4B(1- B) (1= si) (1/4 + A)s;
2m0
Si(l — SZ‘).

- (1 B B) 2m0
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Hence, from Eqgs. 3.4 and 3.7,

E(GFP 3EP)GEP 3By = (1-pySill—)
2m0
29-B(l—s)2-B
2 mo 4
Si(l — Si)

= 2= "W (2 _92B+ B%/4).
S ( + B7/4)

Si

Next we compute the remaining third term in the right side of Eq. 5.11.

EAFE —XFBY? = E(A; + Ay + A3)?
= E(B-B)*/16 +4E(z] B(B — B)(z: — ] B))*
+E[{(B* - B*) = 2(B - B)}’(zi — a; B)"]
+[E(B - B{(B* - B) - 2(B - B)}(zi — @i $)*]/2. (5.19)

In the above calculation, the cross terms EF(A;Ag) and E(A243) in Eq. 5.19
vanish by part (iii) of Lemma 3. Again, by part (ii) of Lemma 4, we have,

E(B—B)’=B’—2BE(B)+E(B?) = —B>+ ™0 —2p2 _ 2B (5.20)
moy — 4 (mo — 4)

Again, applying Lemmas 3 and 4,

Bl 3(B ~B)(zi —a] P = Bl(«] BYIE(B ~ B)(zi — ] B
= [@l87?+ %]

M(B _ B)QM

12 - XB|? 4B
o S; (1 — Si)(mo — 2)
o {(xjﬁ)Z + E} 4myg

xE[B%/B — 2B + B]

o T /2 S; (1 — Si)(mo — 2) 2B

N [(:EZ By + @} 4my mg — 2
1-— Si S;

- 2mg [(%T/B)2B + Z} '
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Now we calculate the third term, 1/2]5[{(]!@2 - B?) - 2(3 —B)}?(z — a:jB)ﬂ

in Eq. 5.19. By Lemma 3 and 4 and recalling || Z — X || = “10—;, we obtain,

BI{(B* - BY) = 2(B — B)Y*( — 2] )"]
- F [flz‘_“;;f)'} B [((5 - B%) - 2B - B)Y)
= Mo ed =B i apt 4 BB - 4B BB - B+ BB
+4(1 — 2B/B + B*/B?)]
o L (e )

o

+4B( mo mo(m0+2)>+4<1_2 mo mo(mo+2))

m0—2_ (mo—2)2 m0—2 (m0—2)2

_3(1—89)2(mo — 2)? | 2 4(2md — Img + 6)
16777,0(7710 =+ 2) (mo — 4) (m() — 2)2

—4mo 2(m0 + 2)
B e —2r T Yo — 22
2m2 — 9mg + 6 B 1
= 1—s;)? o B? — — . 21
3( 5 ) |:4’I7”L()(m() + 2)(7710 — 4) mo + 2 + 2mo (5 )

mo—2

Finally, once again by Lemmas 3 and 4, and recalling ||Z — X B |2 = o

we get (5.19),

E[(B — B){(B* ~ B%) — 2(B — B)}(zi — =/ §)*]
(zi — ] B)? _B)Y{(B® - B%) —2(B— B} 2
IIZ—XBIIJ 200 - B - ) - 208 - 2y

— . —_— ~ ~ ~ A 2
:w}g [33_32—33/B+BQ—2(B—B)—2B+22 }

4m0
e _ _ 2
_ (1 sl)(mo 2) B2 _ B2m0 2 o moB +32 _ QB+ moQB
4m0 m0*4 m072 m072
_(I=si)(mo—2)[ 4B 4B*(mo—3)
- 4m0 mo — 2 (m() — 2)(m0 — 4)

(5.22)

(1-s:)B {1 - B(mo:f)} .
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From Eqgs. 5.19-5.22, we obtain,

BOEE_sEme B 1o yrgen ]
' ' 8(mo —4) = 2mo ’ !
2m2 — 9mo + 6 B 1
1— ;)2 0 2
31~ s) {4m0(m0 +2)(mo — 4) mo + 2 * 2mo
L (-s)B [1  B(mo - 3)} .
2m0 mo — 4

Theorem 2 follows from Eqgs. 5.11, 5.12, 5.17, 5.19 and 5.23.
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