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Abstract

Background: Anaemia during pregnancy and at delivery is an important public health problem in low- and middle-income
countries. Its association with the children’s haemoglobin level over time remains unclear. Our goals were to identify distinct
haemoglobin level trajectories using latent class analysis and to assess the association between these trajectories and
maternal anaemia and other risk factors.

Method: A prospective study of children from birth to 18 months of life was conducted in a rural setting in Tori-Bossito,
Benin. The main outcome measure was the haemoglobin levels repeatedly measured at 3, 6, 9, 12, 15 and 18 months.
Variables were collected from the mothers at delivery and from their children at birth and during the follow-up. The
analyses were performed by means of Latent Class Analysis which has never been used for this kind of data. All the analyses
were performed with Stata software, version 11.0, using the generalized linear latent and mixed model (GLLAMM)
framework.

Results: We showed that 33.7% of children followed a low haemoglobin trajectory and 66.3% a high trajectory during the
first 18 months of life. Newborn anaemia, placental malaria, malaria attack, sickle cell trait and male gender were
significantly associated with a lower children’s haemoglobin level over time, whereas maternal age, children living in a
polygamous family and with good feeding practices had a higher Hb level in the first18 months. We also showed that
maternal anaemia was a predictor for ‘low haemoglobin level trajectory’ group membership but have no significant effect
on children haemoglobin level over time.

Conclusion: Latent Class Analyses framework seems well suited to analyse longitudinal data under the hypothesis that
different subpopulations of subjects are present in the data, each with its own set of parameters, with distinctive evolutions
that themselves may reflect distinctive aetiologies.
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Introduction

Anaemia during pregnancy and at delivery, defined by

haemoglobin (Hb) concentration lower than 11 g/dl, is an

important public health problem in low-income and middle-

income countries [1]. In 2009, McLean et al. estimated that 30–

60% of pregnant women were anaemic [2].

The consequences of maternal anaemia on pregnancy outcomes

are well documented despite the existence of discrepant results.

Studies have shown a relation between maternal anaemia during

pregnancy and low birth weight, preterm birth and newborn

anaemia [3–5]. However, its association with the children’s

haemoglobin level over time remains unclear. In 2002, de Pee

et al. showed a relation between the mother’s haemoglobin

concentration during pregnancy and the infant’s haemoglobin

level from 3 to 5 months of age [6]. Moreover, iron-deficiency

anaemia was also found to be more frequent in children born to

anaemic mothers than children born to non-anaemic mothers in

Jordan, Indonesia and Niger [6–8]. All previous studies used cross-

sectional analyses not taking into account the correlation between

Hb measurements taken repeatedly on the same individuals.

Between 2007 and 2010, more than 2500 Hb measurements

were collected from 542 Beninese children enrolled in the Tori

Bossito project and followed-up from birth to 18 months [9,10].

Our objective in this study was to examine factors that can

influence children haemoglobin level with special emphasis on the

effect of maternal anaemia at delivery. During a first analysis of
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these data, using hierarchical mixed models to deal with the

repeated measures design, we concluded that the evolution of

haemoglobin levels from birth to 18 months of age was associated

with several children’s characteristics but not with maternal

anaemia at delivery [11].

However, mixed models, although well suited to longitudinal

data analysis, make the important assumption that the individuals

in the sample are randomly drawn from a homogeneous sample

(with an allowed individual variability accounted by the covariates

and the random effects). Nevertheless, in this sample, in which

more than 60% of newborns were anaemic at birth and a large

proportion remained anaemic during the follow-up, it seemed to

us very interesting to test whether distinct subpopulations of

children are present in the data, each with its own set of

parameters, with distinctive haemoglobin evolutions, or trajecto-

ries, that themselves may reflect distinctive aetiologies. The

identification of trajectories of haemoglobin through the first 18

months of life and risk factors that predispose to or modify a

particular trajectory may provide a better understanding of the

natural history of how children’s haemoglobin evolves. There are

several ways to model mixture of populations and latent class

analysis (LCA) approach is one of them. However, all these

approaches allow exploring this issue partly because they do not

assume that all individuals belong to the same homogeneous

population. It allows us to identify latent groups of individuals who

share a particular developmental trajectory of some attribute.

[12,13].

Thus, the main objective of the present work was to provide a

new approach to analyze the existence and characteristics of

groups of children with similar patterns of Hb levels evolution

between 3 and 18 months of life in a cohort of Beninese children

included in the Tori Bossito project.

Methods

Study Design
The Tori Bossito project is a birth cohort study of children who

were followed up in the first18 months of life. Full details of the

survey have been described elsewhere [9–11].

Study Site and Population
This study was conducted in nine villages in the district of Tori-

Bossito, a semi-rural area located 50 km north of Cotonou, the

economic capital of Benin. The study participants were recruited

in three health centres (Tori Avame, Tori Cada and Tori Gare) in

the districts, which were chosen because of their capacity to

provide adequate care to children and their proximity to the study

population’s residential area. Malaria is perennial and Plasmodium

falciparum is the commonest species. There are two high

transmission peaks from April to July and October to November.

Transmission is low the rest of the year.

The study population was composed of pregnant women who

came to any of the three health centres for delivery between June

2007 and July 2008. The newborns included were followed up

until January 2010 (Figure 1).

Variables Measured
Variable of interest: Hb. At 3, 6, 9, 12, 15 and 18 months of

life, the haemoglobin level was assessed on a portable device

(HemoCueH) using a drop of blood. The haemoglobin level

repeatedly measured at 3, 6, 9, 12, 15 and 18 months was our

outcome variable.

Covariates. The following variables were collected from the

mothers at delivery: (1) maternal anaemia at delivery defined as

Hb level less than 11 g/dl (Hb level was measured before birth ),

(2) age, (3) ethnic group, (4) working status during pregnancy

(housewife vs. working), (5) maternal marital status (monogamous

vs. polygamous family), (6) parity (primipare vs. multipare), (7)

number of prenatal care visits (less or more than four prenatal

visits), (8) educational status (schooled vs. unschooled) and (9)

placental malaria (thick and thin placental smears were made to

look for placental malaria). The following variables were collected

from the children: (1) newborn’s anaemia (Hb,14 g/dl), (2) low

birth weight (,2500 g), (3) preterm birth (gestational age,37

completed weeks of gestation), (4) gender, (5) sickle cell trait, (6)

number of malaria attacks during the follow-up and (7) nutritional

status of children during all the following-up period, using a

WHO/UNICEF indicator [14] : infant and young child feeding

indicator (IYCF) is the sum of minimum meal frequency and

minimum dietary diversity. For each child and each month, based

on dietary recall of the last 24 hours we calculated the nutrition

score which was equal to 1 when the IYCF requirement was

satisfied.

Statistical Analysis
We used latent class analysis to identify the haemoglobin level

trajectories and assess their association with the covariates.

A general model’s formulation is:

yit ~ bj
0 z bj

1 Ageit z bj
2 Age2

it z bj
3 Age3

it z aj
1 X1t z:::

z aj
p Xpt z eit

where yit is the response variable (Hb level of the ith children at

age t), the bj are the coefficient associated to the children’s age in

the jth group and the aj are the coefficient associated to covariates

in the jth group (the index t specifies that the covariates can depend

on time) and eit the residual variation [eit *N 0,s2
� �

].

The posterior probability pj(zi) that an children i with the

covariates vector zi belongs to the group j is: pj(zi)~
exp (zihj )P

j

exp (zihj )

with covariates vector zi and its corresponding coefficients vector

hj .

The analysis was performed in four steps.

In the first step, each haemoglobin level trajectory was modelled

using a polynomial function of time and no covariates were added

to the model at this time. The most appropriate number of classes

was determined using the Bayesian Information Criterion (BIC).

The substantive criteria included the group prevalence greater

than 5% of the sample because of the usefulness and practical

interpretability of latent classes [15].

In the second step, we explored the relationships between

haemoglobin level trajectories and the covariates. All covariates

that were significantly associated with haemoglobin level in

univariate analysis with p,0.20 were entered in the multivariate

analysis. Statistical significance in the final model was set at

p,0.05. During this step, we examined the stability of the latent

classes determined in the first step. Indeed, as mentioned by Nagin

the percentage of subjects in each trajectory must not widely

change when the covariates are successively added to the model

[16]. In addition we apply the same substantive criteria as

previously [15]. Moreover, to check if the introduction of a further

group yields improves the analysis, we used the Gateaux derivative

method allowing testing whether the introduction of a new group

increases the likelihood when all other parameters are held

constant at their previous maximum likelihood values [17,18]. In

the final model, after multivariate analysis, each individual was

Maternal Anaemia and Haemoglobin in Children

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e50136



assigned to the trajectory group for which he had the highest

posterior probability. Within each group, posterior probability

values greater than or equal to 0.7 indicate adequate internal

reliability [15]. Taking together, these criteria allowed us to make

a definitive choice of the appropriate number of classes.

In the third step, we studied the predictor effect of maternal

anaemia to belong to one or more trajectory depending on the

number of classes we identified.

Finally, our fourth step consisted to test whether the effects of

covariates on the evolution of haemoglobin levels in the first18

months of age differed within each trajectory.

All these analyses were performed with Stata software, version

11.0 (StatCorp LP, College Station, TX, USA), using the

generalized linear latent and mixed model (GLLAMM) framework

[19,20].

Ethics
The study’s protocol was approved by the University of

Abomey-Calavi’s institutional review board and the IRD’s

Consultative Ethics Committee. All women who participated in

this study signed informed consent before enrolment (which also

included their children) and were able to withdraw their consent at

any time during the study.

Results

The analysis covered 2708 haemoglobin measurements out of

the expected 3252. In most cases, an Hb measurement was missing

from the children’s follow-up because the mother had not attended

a quarterly meeting: 480 children (89%) were present at least four

times out of six at quarterly meetings during the follow-up. Full

details of the baseline characteristics of the subjects have been

described elsewhere [11].

First we identified groups of individuals who followed a similar

pattern of haemoglobin from age 3 to 18 months. Using the BIC

as criteria, the model with three groups was selected when

compared to the two-group model (8289.1 and 8345.1, respec-

tively). A fourth group, when added, accounted for less than 0.6%

of the children. The same pattern was observed with models of

more than four groups (i.e. less than 1% of the sample fell into the

supplementary trajectories). In the two-group model, the first

latent trajectory accounted for 32.8% of children with a low

haemoglobin level and the second trajectory 67.2% of children

falling into the highest haemoglobin level in the first18 months of

life. For the three-group model, the first latent trajectory

accounted for 10.6% of the children with the lowest haemoglobin

level. The second latent trajectory accounted for 34.3% of the

sample falling into an intermediate haemoglobin level category

and, finally, the third latent trajectory accounted for 55.1% of the

children who fell into the highest haemoglobin class.

Then we explored the relationships between haemoglobin

trajectories and covariates using the two-group model and the

three-group model. The effects of covariates were similar with the

two- or three-trajectory models (see below). However, after adding

covariates in the three-trajectory model, only 2% of the sample fell

into the lowest haemoglobin trajectory instead of 10.6% previ-

ously, consistent with the instability of the three-trajectory model.

The Gateaux derivative method confirmed that the three-point

solution may represent a local maximum of the log-likelihood.

Finally, for the following analyses, we used the two-group model.

The largest group identified, called the ‘high trajectory’ group,

accounted for 66.3% of the children in this sample. The second

trajectory included children who had lower haemoglobin from 3 to

18 months of life. This group was called the ‘low trajectory’ and

accounted for 33.7% of the sample. With this model, 95.2% of

children from the high haemoglobin level trajectory were classified

as belonging to this group with a posterior probability greater than

70%, whereas 86.0% of children from the low haemoglobin level

trajectory were classified as belonging to this group with a

posterior probability greater than 70%. These two groups are

presented in Figure 2 and were labelled according to their most

unique characteristics. For the low trajectory, the haemoglobin

level at 3 months of age was around 9.75 g/dl and decreased

between 3 and 12 months; After 12 months it increased slightly

until 18 months. For the high trajectory, the haemoglobin level

started around 10.4 g/dl and increased from 3 to 12 months of life

and remains stable for the last six months. Table 1 showed the

descriptive variables of these two latent groups.The factors

associated with children haemoglobin progression in multivariate

analysis are presented in Table 2. Newborn anaemia, placental

malaria, malaria attack, sickle cell trait and male gender were

significantly associated with a lower haemoglobin level in the

first18 months of age (p = 0.007, p = 0.039, p = 0.005, p,1023 and

p = 0.012, respectively). Maternal age, children living in a

Figure 1. Enrollment and follow-up in study, Tori-Bossito, Benin, 2007–2010.
doi:10.1371/journal.pone.0050136.g001
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polygamous family and with good feeding practices had a higher

Hb level in the first18 months of age than others (p = 0.013,

p = 0.01 and p = 0.003, respectively). We found that maternal

anaemia at delivery had no significant effect on children

haemoglobin level in the first18 months (p = 0.275).

In the third step of our analysis, we examined the role of

maternal anaemia as predictor of belonging preferentially to either

group. Children born to mothers with maternal anaemia were

more likely to belong to the lower trajectory class [OR = 1.65,

p = 0.03].

Finally, among the covariates significantly associated with

children haemoglobin in the first18 months, sickle cell trait was

the only one for which the effect differed within each group

(Table 3). Indeed, its negative effect was more strongly marked

within the low trajectory (p = 0.023).

When maternal anaemia at delivery and newborn anaemia

were replaced respectively by haemoglobin levels as quantitative

variables, the same pattern of results was obtained. Maternal

haemoglobin level at delivery was not significantly associated with

children haemoglobin level in the first18 months (p = 0.8) whereas

newborn haemoglobin level had significant effect (p = 0.03).

Discussion

As far as we know, published data describing repeated

haemoglobin measurements from children over extended periods

are very scarce. Only one analytic method for such data has been

proposed heretofore [11,21]. We previously showed that neither

haemoglobin level at birth nor maternal anaemia were associated

with children Hb level in the first18 months, but the occurrence of

a malaria attack during follow-up, male gender and sickle cell trait

carriage were associated with a lower children haemoglobin level

in the first18 months. Children living in a polygamous family and

with good feeding practices had a higher Hb level in the first18

Figure 2. Trajectories for haemoglobin (3 to 18 months of age).
doi:10.1371/journal.pone.0050136.g002

Table 1. Table of descriptive variables of the two latent groups.

High trajectory Low trajectory

Birth weight, mean (SD) 2994.8 (382.8) 2951.6 (384.2)

Low Birth weight 32 (7.8%) 18 (13.6%)

Preterm birth 43 (10.5%) 12 (9.2%)

Hemoglobin rate, mean (SD) 14.6 (1.9) 14.2 (1.9)

Newborn’s anemia 143 (35.5%) 49 (37.7%)

Children’s gender (Female) 191 (46.8%) 81 (61.8%)

Sickle cell trait (carrier or not of AS variant) 80 (20.1%) 32 (26.0%)

Number of malaria attacks during the first 18 months

0 147 (36%) 36 (27.5%)

1 to 2 176 (43%) 61 (46.5%)

.2 85 (21%) 34 (26%)

doi:10.1371/journal.pone.0050136.t001
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months of age than the others. The present analysis, using latent

class models, confirms these results, strengthening the importance

of these risk factors, which have been discussed elsewhere [11].

However, this approach, one among several population mixture

models, provided a better understanding of the natural history of

children haemoglobin levels by identifying new determinants of

haemoglobin levels (i.e. placental malaria and the newborn

anaemia) as well as the role played by mother’s anaemia as a

predictor of belonging to the low latent trajectory. We also showed

that the negative effect of sickle cell trait was more strongly marked

within the low trajectory. In our preceding analysis using mixed

models, we found that newborn anaemia and placental malaria

were associated with a decreased haemoglobin level in the first 18

months of life. However, these associations were not significant

(p = 0.104 and p = 0.190 respectively). This result strengthens the

fact that taking into account the existence of a mixture of

populations could help to identify covariates with significant but

probably complex effect that cannot be easily identified under the

hypothesis that all subjects belong to the same population. Finally,

the innovative LCA suggests that the data are compatible with two

levels of haemoglobin over time, high and low, concerning two-

thirds and one-third of the sample, respectively.

Latent class analysis has been used extensively in criminology

and behavioural research [22–24], less to date in public health

research [25–27]. It is an extension of a mixed model and assumes

the presence of and identifies latent groups of individuals who

share a particular developmental trajectory of some attribute,

thereby allowing a better understanding of the pattern of change

in the variable of interest [15,16,28–30]. The other strength of this

approach is that it reveals a predictor of belonging to the low

haemoglobin group along with the effects of all other risk factors.

Furthermore, it allows studying the effect of variables within

trajectories and underlined the negative influence of sickle cell trait

during infancy. Latent class analysis forms a part of mixture

modeling, a widely applied data analysis approach used to identify

unobserved heterogeneity in a population. Mixture modeling

involved several techniques with potential differences [31]. We

provided our model equation to take these potential differences

into account and to make our results easily and clearly understood,

despite technical considerations, with no risk of miss understand-

ing. One limitation of our approach could be that each group has

the same variance structure rather than a variance-covariance

structure among time points.

Multiple indices have been described to identify clusters in

Latent Class Analysis. To date, there is not common acceptance of

the best criteria for determining the number of classes in mixture

modeling, despite various suggestions [32]. Among them, several

simulation studies indicated that the BIC performs well [33,34].

Table 2. Risk factors for children’s haemoglobin progression
from 3 to 18 months of life in each latent class identified by
the Latent Class Analysis, Benin, 2007–2010.

Covariates Estimation
Standard
Errors

p-
value

Intercept 10.17 0.11 ,1023

Maternal anaemia

(Reference = No)

Yes 20.07 0.06 0.275

Newborn anaemia

(Reference = No)

Yes 20.18 0.06 0.007

Placental malaria

(Reference = No)

Yes 20.20 0.09 0.039

Number of children’s malaria attack

(Reference = 0)

1 to 2 20.15 0.07

.2 20.26 0.08 0.005

Children’s gender

(Reference = Female)

Male 20.15 0.06 0.012

Maternal marital status

(Reference = Monogamous family)

Polygamous family 0.17 0.07 0.01

Sickle cell trait

(Reference = No)

Yes 20.27 0.07 ,1023

Maternal age

(Reference = Age #20)

21–25 0.25 0.10

26–30 0.28 0.10

$30 0.26 0.10 0.013

Children’s feeding in the first18 months 0.17 0.06 0.003

doi:10.1371/journal.pone.0050136.t002

Table 3. Effects of covariates among trajectories.

Variable High trajectory Low trajectory p-value*

Newborn anaemia 20.02 0.04 0.589

Placental malaria 20.0003 0.08 0.543

Number of children’s malaria attack 20.0248 0.001 0.988

Children’s gender 20.003 0.05 0.458

Maternal marital status 0.12 0.07 0.36

Sickle cell trait 20.037 20.25 0.023

Maternal age 20.046 0.08 0.25

Children’s feeding in the first18 months 0.087 0.095 0.326

*The null hypothesis is that the covariate has the same effect for each trajectory. A significant p-value is consistent with a different effect of the covariate for each group.
doi:10.1371/journal.pone.0050136.t003
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More recently, Nylund et al. found that the Bootstrap Likelihood

ratio test (BLRT) presented the best performances and that the

second best index was the BIC. They also showed that the BLRT,

does have its disadvantages such as the increased computation

time [32], but this should not affect the fact that it is more

powerful and accurate. Finally, the authors strongly recommended

using the BIC as the first step. Here, we followed this

recommendation, together with the criteria proposed by Andruff

[15] based on the percentage of population included in each

group. However, despite the fact that they are widely used in the

literature [22,27,35], as they are partly based on the percentage of

the sample within the trajectories, this choice is somewhat

subjective. To take this point into account, we also used the

Gateaux derivative method to determine the number of groups

required to achieve the largest possible likelihood. This method

has confirmed our choice of two trajectories for the changes in

haemoglobin level, suggesting that the three-point solution may

represent a local maximum of the log-likelihood.

Finally, to take into account the complexity and the possibilities

of these population mixture models, it could be of great interest to

pursue this exploration by using more indices to define the number

of clusters and by adding a variance-covariance structure among

time points. This could be proposed by using and comparing

several modelling mixture methods in a near future for such

complex data.

In the present study, maternal anaemia at delivery seems to be

predictive of belonging to the low trajectory but has no direct

effect on the changes in haemoglobin level over time. The

association we found between the effect of maternal anaemia at

delivery, and the absence of direct effect on the evolution of

haemoglobin level during infancy, could apparently seems

contradictory. Indeed this trajectory loses Hb over time, whereas

the higher trajectory does not. One possible explanation could be

that the association between maternal anaemia at delivery and

haemoglobin level during infancy could be (at least partly)

mediated through newborn anaemia. Indeed, inserting both

maternal anaemia and newborn anaemia in the same model

could result in collinearity, which could explain the apparent

absence of effect of maternal anaemia on children haemoglobin

evolution. However, maternal anaemia remained not significantly

associated (p = 0.14) with the evolution of children haemoglobin

progression even when included in a multivariate model without

newborn anaemia. Furthermore, using the Bayesian Informative

Criterion as criteria, the model with newborn anaemia was

selected when compared to the model with maternal anaemia.

Using haemoglobin level of mother at delivery as quantitative

variable did not change these results (data not shown). Hence, this

pattern of results can be interpreted as the fact that maternal

anaemia stops having a negative effect at birth but that children

born of an anaemic mother are probably disadvantaged during

infancy. The mother’s anaemia could also be interpreted as an

indirect marker of a woman’s and/or a family’s disadvantage

because of poor socioeconomic status that could be associated with

inadequate nutrition during infancy. The importance of adequate

nutrition is illustrated by the positive effect of nutritional status on

the haemoglobin progression during infancy.

The mechanisms by which a newborn’s anaemia at birth can

affect haemoglobin level over time have not yet been clearly

described. A period of rapid growth, especially during infancy,

results in substantial demands for iron. In developed countries

where breastfeeding is not common, mothers often use children

formula fortified with iron in order to supplement the children’s

needs. This is not necessary with breastfeeding, which provides

high concentrations of highly absorbable iron. In developing

countries where all children are routinely breastfed during the first

year of life, we could expect that breastfeeding compensates iron

requirements and corrects anaemia. However, the interactions

between iron intakes and stores are complex and it has been shown

that exclusive breastfeeding at 4 months of life was protective of

iron status and of iron deficiency-anaemia at 6 months, compared

with children receiving early complementary food [36]. In our

study population, breastfeeding is far from exclusive, and at 4

months of age only 18% of children were exclusively breastfed

(data not shown). Moreover, the mothers from our sample are

could be iron depleted. Put together our results show that both

maternal anaemia at delivery and newborn anaemia at birth are

associated at different level, with haemoglobin progression in

children during the first 18 months of age. These two risk factors

could interact with each other and furthermore interact with

feeding practices and have to be taken into account to define

preventive strategy.

In this study, placental malaria was associated with a low

haemoglobin level in the first18 months of life. This association

was not significant during our first analysis [11]. This association

has already been described by Redd et al. (1994), who have shown

that placental malaria was associated with anaemia around 2

months of age [37]. In cases of iron deficiency during pregnancy,

expression of placental transport proteins for iron increases,

allowing a greater transport of iron to the foetus [38,39]. In case of

placental malaria, a thickening of the trophoblastic basement

membrane has been described, damaging the placenta’s active

transfer capacity [40]. It can therefore be assumed that placental

malaria reduces the transfer of iron from the mother to her

children, increasing the newborn’s iron deficiency. However, a

more indirect explanation can be proposed that is consistent with

the effect of placental malaria on haemoglobin level over time.

Indeed, some authors have hypothesized that placental malaria is

associated with an immune tolerance phenomenon [10,41].

Children born of infected placenta are more susceptible to malaria

infection. As both the number of malaria attacks during the follow-

up and placental malaria were independently significantly

associated with the level of haemoglobin in the first18 months,

we can argue that children born of mothers with placental malaria

are more susceptible not only to malaria but also to other

infections, as we have recently shown in this same cohort [42].

These children, frailer and more often infected, have a higher risk

of developing anaemia.

Our study also described a negative effect of sickle cell trait

among trajectories. As this result was obtained during multivariate

analysis with both variables (i.e. malaria and sickle cell) we can

argue that the sickle cell trait effect is independent of the

protection against clinical malaria classically described [43,44].

Our hypothesis is that this effect could be explained by an intrinsic

role of sickle cell trait in anaemia, even for heterozygous

individuals. To our knowledge, one study has described an

association between anaemia and sickle cell trait [45] but this

association has not been confirmed to date. In addition, it has been

described that haematuria, both microscopic and macroscopic, is

one of the most frequent complication of sickle cell trait [46–48].

In our sample no macroscopic haematuria was found and we did

not search a microscopic haematuria. However although we could

hypothesize that children with sickle cell trait experienced

microscopic haematuria, we cannot explain clearly the different

effect of this variable in each group.

According with our protocol the children found anaemic were

treated as proposed by the recommendation of the Ministry of

Public Health of the Republic of Benin. They received haema-

tinics which was prescribed by the nurses working in the public
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dispensaries of the area. The team involved in the follow-up was

different and the population was monitored equivalently and

independently of the Hb levels or of they life conditions.

Furthermore, as the families involved in this program were very

similar we do not think that a ‘‘cohort effect’’ could represent a

limitation of the study.

In conclusion, this study, using latent class analysis models,

shows that the occurrence of a malaria attack during follow-up,

male gender, sickle cell trait carriage, children living in a

polygamous family, children with good feeding practices, newborn

anaemia, placental malaria were associated with haemoglobin

level in children and that maternal anaemia was a predictor of a

low haemoglobin level trajectory in children in their first 18

months of life. Latent class approach could be applied more

frequently to analyse longitudinal data when the existence of

groups with distinct pattern of evolution is suspected. This

assumption cannot be adequately explored with mixed models.

The prevalence of anaemia during pregnancy and in the newborn

is very high in developing countries, 40% and 61%, respectively,

in our study in Benin. There is a need to increase actions that

target the prevention of maternal anaemia as well as placental

malaria and newborn anaemia.
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