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Abstract

Introduction

Health benefits of low-to-moderate alcohol consumption may operate through an improved

lipid profile. A Mendelian randomization (MR) approach was used to examine whether alco-

hol consumption causally affects lipid levels.

Methods

This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in

Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acet-

aldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, resid-

ing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and

were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol,

high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-

density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B

(apoB), and lipoprotein (a) (Lp(a)) levels were analyzed.

Results

Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol,

LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed.

Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower

level of TG (p < 0.001), a 7.71 mg/dL lower level of total cholesterol (p = 0.007), a 10.3%

higher level of HDL2-c (p = 0.007), a 6.87 mg/dL lower level of LDL-c (p = 0.012), a 7.4%

lower level of sdLDL-c (p = 0.037), and a 3.5% lower level of apoB (p = 0.058, poverall =

0.022).
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Conclusions

This study supports the causal role of regular low-to-moderate alcohol consumption in

increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for

the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c

levels among EA. However, given the nonlinearity of the effect of alcohol consumption,

even within the range of low-to-moderate drinking, increased consumption does not always

result in a larger benefit.

Introduction
Low-to-moderate alcohol consumption has been associated with cardiovascular health benefits
in observational [1–3] and experimental studies [4,5], but the mechanism is still unclear. Alco-
hol consumption may introduce a cardiovascular benefit by improving an individual’s lipid
profile, including an effect on HDL-c levels, HDL particle concentration, and HDL-c subfrac-
tions [6,7]. The relationship between low-to-moderate alcohol use and LDL-c or TG is less
clear, with studies reporting reduced LDL-c or TG levels [8–15], no effect [4], or a worsened
blood lipid profile [5,13,16].

The observed association between alcohol use and lipids can be confounded by demo-
graphic, social and behavioral factors, as well as access to health care, and health-related condi-
tions [17,18]. Mendelian randomization (MR) studies using instrumental variable (IV) analysis
and genetic instruments can facilitate causal inference in observational studies by reducing the
issues of residual confounding and reverse causation [19–27]. Using genetic variants that influ-
ence alcohol consumption may better capture the role of life-long alcohol use [28]. A limited
number of MR studies have been conducted to evaluate the relationship between alcohol con-
sumption and lipid levels, and the results have been largely inconclusive [2,28,29]. There is no
previous MR study investigating the causal role of alcohol consumption on HDL-c subfrac-
tions, HDL2-c and HDL3-c. Evaluation of these subfractions may provide a more complete
picture, as HDL is highly heterogeneous in terms of particle size, lipid component, and func-
tionality and it is hypothesized that not all HDL subclasses have anti-atherogenic effects [30].
The relationship between alcohol consumption and sdLDL-c, apoB, and Lp(a) has also not
been previously investigated. This MR study aims to investigate the causal link between low-
to-moderate alcohol consumption and blood levels of TG, total cholesterol, HDL-c, HDL2-c,
HDL3-c, LDL-c, sdLDL-c, apoB, and Lp(a) among European Americans (EAs).

Methods
This study involved 10,893 EAs from the Atherosclerosis Risk in Communities (ARIC) study,
an ongoing prospective cohort in four communities in the US: Forsyth County, North Caro-
lina; Washington County, Maryland; Minneapolis suburbs, Minnesota; and Jackson, Missis-
sippi. A description of the ARIC study objectives, design, and procedures is provided elsewhere
[31]. Briefly, ARIC participants received an extensive baseline examination (1987–1989),
including collection of medical, social, and demographic data. Three follow-up examinations
were performed at three-year intervals, and a fifth exam was conducted in 2011 to 2013. Partic-
ipant follow-up also occurred annually, by telephone, to maintain contact and to assess health
and vital status of the cohort. Individuals were categorized as EAs by self-report. The ARIC
study has been approved by Institutional Review Boards (IRB) at all participating institutions:
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University of North Carolina at Chapel Hill IRB, Johns Hopkins University IRB, University of
Minnesota IRB, and University of Mississippi Medical Center IRB. Study participants provided
written informed consent at all study visits.

This study focused on self-reported alcohol consumption at two of the examinations, base-
line and visit 4, during which the lipid levels included in this study were measured. Participants
were interviewed in person using a dietary questionnaire, and they were asked if they currently
or formerly drank alcoholic beverages. For current drinkers, information about the frequency
and amount of wine, beer, or hard liquor consumption was collected. The amount of alcohol
consumed in grams per week (g/wk) was calculated with the estimate that 4 oz wine was equal
to 10.8 g, 12 oz beer was equal to 13.2 g, and 1.5 oz liquor was equal to 15.1 g ethanol. Alcohol
consumption was recorded as 0 g/wk for current drinkers having less than one drink per week.
Total alcohol consumption was analyzed as the natural log of (alcohol use in g/wk +1) given
the skewed distribution. Current drinkers were further classified as infrequent drinkers if they
had less than one drink per week, as low-to-moderate drinkers if they drank� 210 g/wk for
men and� 105 g/wk for women, and were classified as heavy drinkers if they drank> 210 g/
wk for men and> 105 g/wk for women [32–35].

TG, total cholesterol, HDL-c and its subfractions, LDL-c, and Lp(a) were measured from
12-hour fasting blood samples collected at baseline. Plasma total cholesterol [36] and TG [37]
were measured by enzymatic methods, with the use of reagents supplied by Boehringer-Mann-
heim Biochemical, and were adapted for analysis in the Cobas-Bioanalyzer (Roche). HDL-c
level was determined by measuring cholesterol in the supernate after plasma precipitation with
MgCl2 and dextran sulfate according to the method of Warnick et al [38]. HDL3-c level was
determined after reprecipitation of the total HDL-c supernate with different concentrations of
MgCl2 and dextran sulfate. HDL2-c level was calculated by subtracting the HDL3-c value from
the value of total HDL-c [39]. LDL-c was calculated from the levels of total cholesterol, HDL-c,
and TG by the Friedewald formula [40]. LDL-c was not determined in individuals with plasma
TG levels>400 mg/dL [41]. Lp(a) was measured as total protein component (apolipoprotein A
plus apoB) with a double-antibody ELISA technique for apolipoprotein A detection [42]. Since
Lp(a) assay used in ARIC at baseline could be sensitive to apo(a) isoform size, we performed a
correction, multiplying by a factor of 1.326, to match with a newer Lp(a) assay that is insensi-
tive to apo(a) isoform size when calibrated with the International Federation of Clinical Chem-
istry proposed reference material in molar units [43]. SdLDL-c and apoB were measured from
12-hour fasting blood samples collected at visit 4. SdLDL-c was directly measured by a homo-
geneous assay method (sd-LDL-EX “Seiken”, Denka Seiken, Tokyo, Japan) on a Hitachi 917
automated chemistry analyzer [44]. ApoB was measured by an immunonephelometric assay
using a BNII nephelometer (Siemens Healthcare Diagnostics, Deerfield, IL) [44]. Due to the
skewed distribution of TG, HDL-c, HDL2-c, sdLDL-c, apoB, and Lp(a), these measures were
evaluated using the natural log transform.

In humans, alcohol is converted to acetaldehyde by alcohol dehydrogenases (ADH), and
then to acetate by acetaldehyde dehydrogenases (ALDH) [45]. Variants in genes from the
ADH and ALDH gene families are often associated with reduced drinking as they raise the
blood level of acetaldehyde which causes uncomfortable symptoms such as "hangover", nau-
sea, and facial flush [46]. Therefore, genetic variation in the ADH and ALDH genes were the
focus of this study. Previously published association studies, most of which involved Euro-
pean ancestry populations, identified 18 single nucleotide polymorphisms (SNPs) in ADH
and ALDH genes (S1 Table) that were significantly associated with alcohol consumption [47–
61]. These SNPs were evaluated for instrument selection by first identifying their availability
in ARIC based on genotypes from the Infinium HumanExome BeadChip v1.0 (Illumina, Inc.,
San Diego, CA) [62] referred to as the “exome chip” hereafter, genotypes from the Affymetrix
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6.0 array [63], or those that were genotyped by TaqMan [64]. From ten SNPs available in
ARIC, 6 SNPs in the ADH and ALDH genes passed stringent quality control procedures [62]
(S1 Table).

Next, the 6 SNPs were evaluated for violation of IV assumptions. Since these assumptions
are violated if the genetic instruments are in high linkage disequilibrium (LD) with loci associ-
ated with lipid levels [19, 23], the SNPs were examined for LD (r2 > 0.2) with lipid-related loci
identified in published genome wide association studies (GWAS) [65–76]. The SNPs were then
evaluated using Pearson's correlation coefficient for association (r> 0.1) with potentially
genetically determined confounders of the alcohol consumption-lipid relationship. These con-
founders included smoking, body mass index (BMI), waist-to-hip ratio, and diabetes. To avoid
redundancy, the selected SNPs were also evaluated for pair-wise LD (r2 > 0.7), and only the
SNP with the most functional impact (i.e., exonic, splicing), followed by the largest sample size,
was kept. None of the 6 SNPs were correlated with potential confounders, nor were they in
high LD with lipid-related loci, but rs1693482 was removed due to LD with another instrumen-
tal SNP (r2 = 0.96) (S1 Table). A total of 5 SNPs (rs2066702, rs1693457, rs1789891, rs698, and
rs1126671) met the IV assumptions (S1 Table).

The final genetic instruments were coded to ensure consistent effect direction of increasing
alcohol consumption [77] and then were combined into an unweighted genetic risk score.
The genetic risk score was further evaluated for correlation with lipid-related loci and poten-
tial confounders using the same criteria applied for the aforementioned SNP selection. The
genetic risk score did not violate these MR assumptions, and was used to fit the IV regression
models.

First we evaluated the regression between observed alcohol consumption categories and
lipid levels to evaluate the linearity of the association. Two Stage Least Square (2SLS) IV
regression, performed in Stata 12 [25], was used for causal inference and estimation of the
causal effect size of alcohol consumption on lipid measures. Non-linear relationships
between alcohol consumption and lipids were evaluated in the second stage of 2SLS using
the predicted alcohol consumption categorized into quartiles and then fitted into the models
with lipids. The significance of alcohol consumption was evaluated by both Wald p-values
from the test comparing each quartile versus the first quartile and Wald p-values for overall
significance of alcohol consumption. Population stratification was controlled for [23] using
the first two genetic principal component scores calculated in Eigenstrat [78] based on
genome-wide autosomal SNPs from the exome chip array. The IV regression models also
controlled for sex and age to increase precision and reduce weak instrument bias [20]. With
sdLDL-c and apoB measured at visit 4, alcohol consumption and age at visit 4 were included
in the model. Similarly, with all other lipid outcomes measured at baseline, alcohol con-
sumption and age at baseline were used. The IV regression diagnostics included a test of
weak instrument bias using the F-value of the first stage regression, and an F-value greater
than 10 was considered unbiased [20,21]. Because the effect of alcohol may have a J-shaped
relationship with lipids and heavy drinking can be harmful [10, 12,79,80] sensitivity analyses
excluding heavy drinkers were conducted to examine the effect of alcohol consumption
within the low-to-moderate range. In addition, the relationship between alcohol consump-
tion and lipids can be confounded or biased by reverse causation when individuals with
adverse health conditions abstain from drinking. Although the MR approach is known to
reduce the problems of confounding and reverse causation in observational data [19–27,81],
we also conducted a sensitivity analysis excluding never drinkers, never and heavy drinkers,
and never and former drinkers in order to further reduce the potential confounding or
reverse causation.
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Results
Table 1 shows the characteristics of the ARIC EA individuals included in this study. Regular
alcohol consumption was common, and 43.1% of individuals had one or more drink per week.
Low-to-moderate current drinkers accounted for 34.4% and heavy drinkers only accounted for
8.8% of individuals.

The regression between observed alcohol consumption categories and lipid levels (Table 2)
shows that increased alcohol consumption was associated with lower LDL-c and higher HDL-
c, HDL2-c, and HDL3-c levels. A non-linear trend was observed for TG, total cholesterol, and
sdLDL-c, and no significant association was observed with apoB and Lp(a). As a result of this
observed non-linear relationship between alcohol consumption and the lipids evaluated as a
part of this study, in the second stage of 2SLS the predicted alcohol consumption was catego-
rized into quartiles and then fitted into the models with lipids.

Table 3 shows the 5 instrumental SNPs included in this MR study. The effect direction for
alcohol consumption of all these 5 final instrumental SNPs was consistent with previous stud-
ies [48,52,55,58–60].

Table 1. Characteristics of 10,893 ARIC EAs.

Characteristics n (%) or mean (SD)

Female 5,784 (53.10%)

Age (years) 54.3 (5.7)

Alcohol consumption

grams/week 45.7 (93.9)

Never Drinkers 1,965 (18.10%)

Former Drinkers 1,848 (17.00%)

Infrequent Drinkers* 2,369 (21.80%)

Low-to-Moderate Current Drinkers* 3,734 (34.36%)

Heavy Current Drinkers* 951 (8.75%)

TG (mg/dL) 137.1 (90.7)

Total cholesterol (mg/dL) 214.5 (40.0)

HDL-c (mg/dL) 50.5 (16.8)

HDL2-c (mg/dL) 13.7 (8.6)

HDL3-c (mg/dL) 36.8 (10.9)

LDL-c (mg/dL) 137.6 (37.6)

sdLDL-c (mg/dL)† 45.2 (21.0)

apoB (mg/dL)† 100.6 (25.1)

Lp(a) (mg/dL) 8.2 (3.0–19.6) ¥

Smoking

never smokers 4,386 (40.30%)

former smokers 3,851 (35.40%)

current smokers 2,649 (24.30%)

Body mass index (kg/m2) 27.0 (4.9)

Waist-to-hip ratio 0.9 (0.1)

Diabetic 955 (8.78%)

SD: standard deviation;

*Infrequent: < 1 drink/wk, Low-to-moderate: � 1 drink & � 210 g/wk for men and �105 g/wk for women,

Heavy: � 1 drink & > 210 g/wk for men and > 105 g/wk for women;
†measured at visit 4, lower sample sizes: N = 8,694 and 8,221 for sdLDL-c and apoB, respectively;
¥ median and interquartile range.

doi:10.1371/journal.pone.0148765.t001
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The unweighted score created from the final five instrumental SNPs was associated with
increased alcohol consumption at baseline (β = 0.06, p< 0.001) (S2 Table). This score
explained approximately 0.1% variance of alcohol consumption (Table 4). Almost all 2SLS
models using this score had first-stage F-values greater than 10, suggesting no weak instrument

Table 2. Association between observed alcohol consumption category and lipids.

Lipids Alcohol consumption categories beta 95% CI pa

TG ¥ Never Drinkers* 0.00

Former/ Infrequent Drinkers -0.08 -0.11 -0.05 <0.001

Low-to-Moderate Current Drinkers -0.16 -0.19 -0.13 <0.001

Heavy Current Drinkers -0.13 -0.17 -0.09 <0.001

Total cholesterol Never Drinkers* 0.00

Former/ Infrequent Drinkers -2.75 -4.99 -0.51 0.02

Low-to-Moderate Current Drinkers -0.73 -3.03 1.57 0.53

Heavy Current Drinkers 4.05 0.73 7.37 0.02

HDL-c ¥ Never Drinkers* 0.00

Former/ Infrequent Drinkers 0.03 0.01 0.04 0.001

Low-to-Moderate Current Drinkers 0.14 0.12 0.15 <0.001

Heavy Current Drinkers 0.26 0.23 0.28 <0.001

HDL2-c ¥ Never Drinkers* 0.00

Former/ Infrequent Drinkers 0.07 0.04 0.10 <0.001

Low-to-Moderate Current Drinkers 0.17 0.14 0.20 <0.001

Heavy Current Drinkers 0.30 0.26 0.35 <0.001

HDL3-c Never Drinkers* 0.00

Former/ Infrequent Drinkers 0.40 -0.14 0.94 0.15

Low-to-Moderate Current Drinkers 4.16 3.60 4.73 <0.001

Heavy Current Drinkers 8.70 7.84 9.55 <0.001

LDL-c Never Drinkers* 0.00

Former/ Infrequent Drinkers -2.59 -4.69 -0.49 0.02

Low-to-Moderate Current Drinkers -4.38 -6.53 -2.23 <0.001

Heavy Current Drinkers -7.48 -10.70 -4.25 <0.001

sdLDL-c ¥# Never Drinkers* 0.00

Former/ Infrequent Drinkers -0.04 -0.07 -0.01 0.02

Low-to-Moderate Current Drinkers -0.05 -0.08 -0.01 0.01

Heavy Current Drinkers 0.01 -0.04 0.06 0.66

apoB ¥# Never Drinkers* 0.00

Former/ Infrequent Drinkers -0.01 -0.02 0.01 0.52

Low-to-Moderate Current Drinkers -0.01 -0.03 0.01 0.54

Heavy Current Drinkers -0.02 -0.04 0.01 0.21

Lp(a) ¥ Never Drinkers* 0.00

Former/ Infrequent Drinkers -0.03 -0.10 0.03 0.34

Low-to-Moderate Current Drinkers 0.01 -0.06 0.08 0.72

Heavy Current Drinkers -0.06 -0.16 0.03 0.19

*reference group,
¥ ln transformed,
# measured at visit 4,
aWald p-value comparing each alcohol consumption category with never drinkers.

doi:10.1371/journal.pone.0148765.t002
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bias [20,21] except for sdLDL-c and apoB that were measured at visit 4 and therefore had
reduced sample sizes (Table 4).

Table 4 shows significant causal relationships between alcohol consumption and TG, total
cholesterol, HDL2-c, LDL-c, sdLDL-c, and apoB. Alcohol consumption increased HDL2-c and
reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For all these lipids, the same
non-linear trend was observed and the effect peaked at the third quartile and then reduced or
stayed the same (only with sdLDL-c) at the fourth quartile. Compared to the first quartile, the
third quartile of alcohol consumption had a 12.3% lower level of TG (β in log scale (βlog) =
-0.13, 95%CI: -0.20, -0.07, p< 0.001), a 7.71 mg/dL lower level of total cholesterol (β = -7.71,
95%CI: -13.26, -2.15, p = 0.007), a 10.3% higher level of HDL2-c (βlog = 0.10, 95%CI: 0.03, 0.17,
p = 0.007), a 6.87 mg/dL lower level of LDL-c (β = -6.87, 95%CI: -12.24, -1.50, p = 0.012), a
7.4% lower level of sdLDL-c (βlog = -0.08, 95%CI: -0.15, -0.005, p = 0.037), and a 3.5% lower
level of apoB (βlog = -0.04, 95%CI: -0.07, 0.001, p = 0.058). With apoB, the second quartile had
a slightly lower effect than the third quartile but it was significant (p = 0.005) due to a narrower
95%CI; and the test of overall effect of alcohol consumption was also significant (poverall =
0.022).

The sensitivity analysis excluding heavy drinkers resulted in similar conclusions (Table 5).
Specifically, TG, total cholesterol, HDL2-c, LDL-c, sdLDL-c, and apoB were still significant
with similar patterns of effect. The lower F-values observed in Table 5 resulted from a smaller
sample size due to the exclusion of the heavy drinkers.

The sensitivity analyses excluding never drinkers, never and heavy drinkers, and never and
former drinkers (S3–S5 Tables) further confirms the significant causal role of alcohol con-
sumptions on TG, total cholesterol, HDL2-c, LDL-c, sdLDL-c, and apoB.

Discussion
This study supports the causal role of regular low-to-moderate alcohol consumption in increas-
ing HDL2-c, and reducing TG, total cholesterol and LDL-c, and provides evidence for the novel
finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among
EA. The association between alcohol consumption and increased HDL2-c levels was found in
several observational studies [7,82]. A previous MR study also supported a causal effect of alco-
hol consumption in reducing TG [28]. The relationship between alcohol use and reduction in
LDL-c is also concordant with two experimental studies involving red wine [14,15].

The IV analyses conducted in this study demonstrate a non-linear effect of alcohol con-
sumption on TG, total cholesterol, HDL2-c, LDL-c, LDL-c, sdLDL-c, and apoB, with the high-
est effects observed at the third quartile of alcohol consumption. This suggests that alcohol
consumption may have the greatest benefit within a low-to-moderate range. When excluding

Table 3. Final instrumental SNPs.

Genes SNPs Minor allele frequency (MAF) Alcohol consumption-raising allele Effect on alcohol consumption (β)*

ADH1B rs2066702 0.001 G 0.33

ADH1B rs1693457 0.172 T 0.06

ADH1B/1C rs1789891 0.169 A† 0.07

ADH1C rs698 0.409 C† 0.05

ADH4 rs1126671 0.313 A† 0.07

* from a linear model, regressing each individual SNP on alcohol consumption,
† minor allele.

doi:10.1371/journal.pone.0148765.t003
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Table 4. Instrumental Variable analysis using 2SLS.

Lipids N Predicted alcohol consumption
quartiles†

β* 95% CI pa p
overallb

1st-stage partial
R2

1st-stage F-
value

TG ¥ 9,911 q1 0.00 <0.001 0.12% 12.17

q2 -0.06 -0.09 -0.02 0.001

q3 -0.13 -0.20 -0.07 <0.001

q4 -0.08 -0.17 0.00 0.049

Total
cholesterol

9,751 q1 0.00 <0.001 0.11% 10.86

q2 -5.54 -8.23 -2.85 <0.001

q3 -7.71 -13.26 -2.15 0.007

q4 -4.56 -11.36 2.25 0.189

HDL-c ¥ 10,132 q1 0.00 0.117 0.13% 13.48

q2 0.01 -0.01 0.03 0.435

q3 0.04 0.00 0.07 0.070

q4 0.03 -0.02 0.07 0.293

HDL2-c ¥ 10,120 q1 0.00 <0.001 0.13% 13.48

q2 0.04 0.00 0.07 0.040

q3 0.10 0.03 0.17 0.007

q4 0.06 -0.03 0.15 0.179

HDL3-c 10,120 q1 0.00 0.916 0.13% 13.48

q2 -0.19 -0.87 0.49 0.580

q3 0.08 -1.23 1.38 0.908

q4 0.11 -1.51 1.74 0.892

LDL-c 9,751 q1 0.00 <0.001 0.11% 10.86

q2 -4.60 -7.18 -2.03 <0.001

q3 -6.87 -12.24 -1.50 0.012

q4 -4.57 -11.11 1.96 0.170

sdLDL-c ¥# 8,102 q1 0.00 0.054 0.07% 6.00

q2 -0.04 -0.08 -0.01 0.014

q3 -0.08 -0.15 -0.005 0.037

q4 -0.08 -0.17 0.01 0.067

apoB ¥# 7,663 q1 0.00 0.022 0.08% 6.13

q2 -0.03 -0.04 -0.01 0.005

q3 -0.04 -0.07 0.001 0.058

q4 -0.04 -0.08 0.01 0.132

Lp(a) ¥ 9,924 q1 0.00 0.578 0.14% 13.87

q2 -0.02 -0.09 0.06 0.657

q3 -0.05 -0.20 0.10 0.500

q4 -0.01 -0.20 0.18 0.890

†Quartile 1: 1.49–3.63 g/wk, quartile 2: 3.63–4.66 g/wk, quartile 3: 4.66–10.57 g/wk, and quartile 4: 10.57–19.54 g/wk,

*second stage regression coefficient between lipid measures and predicted alcohol consumption quartiles with quartile 1 as the reference group,
aWald p-value comparing each quartile with the quartile 1,
bWald p-value for overall effect of alcohol consumption,
¥ ln transformed,
# measured at visit 4

doi:10.1371/journal.pone.0148765.t004
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Table 5. Sensitivity IV analysis excluding heavy drinkers.

Lipids N Predicted alcohol consumption
quartiles

β* 95% CI pa p
overallb

1st-stage partial
R2

1st-stage F-
value

TG ¥ 9,024 q1 0.00 <0.001 0.10% 9.41

q2 -0.06 -0.10 -0.03 <0.001

q3 -0.15 -0.22 -0.08 <0.001

q4 -0.11 -0.19 -0.02 0.018

Total
cholesterol

8,877 q1 0.00 <0.001 0.10% 8.64

q2 -5.42 -8.21 -2.63 <0.001

q3 -6.43 -12.45 -0.40 0.037

q4 -2.78 -10.07 4.51 0.454

HDL-c ¥ 9,228 q1 0.00 0.164 0.11% 10.39

q2 0.01 -0.01 0.03 0.236

q3 0.04 0.00 0.07 0.079

q4 0.03 -0.02 0.08 0.252

HDL2-c ¥ 9,216 q1 0.00 0.002 0.11% 10.38

q2 0.04 0.00 0.07 0.034

q3 0.09 0.01 0.16 0.023

q4 0.05 -0.04 0.14 0.277

HDL3-c 9,216 q1 0.00 0.963 0.11% 10.38

q2 -0.01 -0.69 0.68 0.989

q3 0.23 -1.11 1.56 0.737

q4 0.37 -1.29 2.03 0.662

LDL-c 8,877 q1 0.00 <0.001 0.10% 8.64

q2 -4.45 -7.10 -1.80 0.001

q3 -4.95 -10.72 0.82 0.093

q4 -2.29 -9.24 4.66 0.519

sdLDL-c ¥# 7,517 q1 0.00 0.098 0.07% 5.08

q2 -0.04 -0.07 0.00 0.049

q3 -0.08 -0.16 -0.01 0.031

q4 -0.09 -0.18 0.00 0.060

apoB ¥# 7,110 q1 0.00 0.045 0.07% 5.17

q2 -0.02 -0.04 0.00 0.013

q3 -0.04 -0.07 0.00 0.064

q4 -0.03 -0.08 0.01 0.152

Lp(a) ¥ 9,040 q1 0.00 0.742 0.12% 10.43

q2 -0.02 -0.10 0.06 0.657

q3 -0.05 -0.21 0.10 0.502

q4 -0.03 -0.23 0.17 0.782

*second stage regression coefficient between lipid measures and predicted alcohol consumption quartiles with quartile 1 as the reference group,
aWald p-value comparing each quartile with the quartile 1,
bWald p-value for overall effect of alcohol consumption,
¥ ln transformed,
# measured at visit 4

doi:10.1371/journal.pone.0148765.t005
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heavy drinkers, the effect of alcohol consumption on those lipids remained significant, and
with the peak effect at the third quartile. Therefore we conclude that alcohol consumption may
have the greatest benefit within a low-to-moderate range and higher drinking does not always
result in larger benefit. The consistent results when excluding never and former drinkers fur-
ther confirm that the causal role of alcohol consumption on TG, total cholesterol, HDL2-c,
LDL-c, LDL-c, sdLDL-c, and apoB are robust to potential confounding and reverse causation
from adverse health conditions that may prevent people from drinking.

These findings may help explain the mechanism of a cardiovascular protective effect of alco-
hol consumption. Studies found HDL2-c, which are large HDL particles, had cardioprotective
effect [83–85]. Alcohol consumption may raise HDL-c level by increasing hepatic production
or increasing transport rate of apoA-I and apoA-II [7,86,87], increasing cellular cholesterol
efflux and plasma cholesterol esterification [7,87,88], increasing muscle ATP-binding cassette,
subfamily A (ABCA1) which may be important in recycling preformed HDL through reverse
cholesterol transport, and decreasing cholesteryl ester transfer protein (CETP) [7,87]. Lowered
CETP level was found associated with an increased level of large HDL particles [89]. sdLDL is
considered a pro-atherogenic particle due to their susceptibility to oxidization that promotes
inflammation and plaque development [44,90–92]. Studies suggest that apoB may be more pre-
dictive than LDL-c for the risk of CHD [91,93,94], and total apoB likely reflect the total number
of atherogenic particles [92].

This study has a number of strengths. With the large sample size, this is one of the most
comprehensive MR studies involving alcohol use and a comprehensive set of lipid measures.
This is also the first MR study looking at the causal effect of alcohol consumption on HDL-c
subfractions, sdLDL-c, apoB, and Lp(a). Compared to a case-control study, the cohort design
helps to avoid selection bias and increases the validity of the MR approach [19]. This study
employed a stringent process of selecting genetic instruments. The instrumental variants were
examined by a thorough procedure of validating MR assumptions and possible violations
including linkage disequilibrium (LD) and pleiotropy issues. The potential for population strat-
ification was also addressed by controlling for genetic principal components in the IV regres-
sion models. The fact that the score was created from different genes further strengthens the
causal inference in this study, because potential violations of MR assumptions through LD and
pleiotropy issues were unlikely [23].

A limitation of this study is the fact that sdLDL-c and apoB were measured at visit 4 and the
sample sizes were reduced compared to the analyses of other lipid measures at baseline. This
resulted in F-values less than 10, indicating that the results have the potential for bias, and
therefore the causal inference for sdLDL-c and apoB should be interpreted with caution. Sev-
eral instrumental SNPs were related to alcohol dependence and alcoholism in previous studies.
Given that the variants of interest are located in the ADH genes, the likely biological mecha-
nism of the mutated alleles is to increase acetaldehyde level and prevent people from drinking.
Therefore, those ADH genetic variants should influence alcohol consumption level, not just the
status of dependence. This was confirmed by significant associations between the genetic score
and alcohol consumption at baseline as well as at visit 4 (S2 Table).

In conclusion, this study supports the role of low-to-moderate alcohol use in improving
lipid profiles. Continued investigation of the role of alcohol consumption on TG, total choles-
terol, HDL2-c, LDL-c, sdLDL-c, and apoB is warranted.
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