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Obesity characterized by increased mass of adipose tissue leads to systemic inflammation. Calorie restriction (CR) improves
parameters associated with immune response and antioxidant defense. We hypothesized that CR with a high fat diet (HFCR)
regulates local and systemic inflammation and oxidative stress damage in a high fat diet induced obesity (HF group). We
investigated effect of HFCR on inflammation and oxidative stress-related markers in liver and adipose tissues as well as adipokines
in plasma. HFCR lowered liver triglyceride levels, total cholesterol levels, and the plasma leptin/adiponectin ratio to normal levels
and improved glucose tolerance. HFCR also improved fatty liver and normalized adipocyte size and morphology. HFCR reduced
lipid peroxidation and decreased the expression levels of inducible nitric oxide synthetase, cyclooxygenase-2, NF-E2-related factor,
and heme oxygenase-1 in the liver. Moreover, HFCR suppressed the expression levels of C- reactive protein and manganese
superoxide dismutase in the adipose tissue in the HF group. These results suggest that HFCR may have beneficial effects on
inflammation and oxidative stress as well as lipid profiles in the HF diet induced obesity. Moreover, HFCR may be a good way
to increase compliance in obese patients and to prevent obesity induced complications without changes in dietary pattern.

1. Introduction

Obesity is a multifactorial disease resulting from a combina-
tion and interaction of genetic, environmental, psychologi-
cal, social, and cultural factors [1, 2]. Obesity is considered
a major public health problem because it is associated with
insulin resistance, diabetes, hypertension, dyslipidemia, and
coronary heart diseases and characterized by increased mass
of adipose tissue, which is an active endocrine and secretary
organ [3–5]. Adipocytes secrete a wide range of protein
signals and factors including interleukin (IL)-6, IL-1β, tumor
necrosis factor (TNF)-α, monocyte chemoattractant protein
(MCP)-1, and adipokines such as adiponectin, leptin, and
resistin [4, 5]. Therefore, obesity is a heightened state of
inflammation [6]. An inflammatory process is character-
ized by increased expression of inflammatory markers and
activated inflammatory signaling pathways such as Jun N-
terminal kinase (JNK), IκB kinase (IKK)-β, nuclear factor

(NF)-κB, and redox-sensitive transcription factor [4, 7].
Furthermore, body mass index and fat accumulation are
positively correlated with levels of oxidative stress in human
and animal models [8, 9]. Elevated oxidative stress induces
insulin resistance by impairing phosphorylation of insulin
receptor substrate (IRS)-1 and IRS-1-induced phosphatidyli-
nositol 3 (PI3)-kinase activation, insulin-induced glucose
uptake, and translocation of glucose transporter (GLUT)-4
[10].

A calorie restriction diet (CR), which is the reduction
in calorie intake without malnutrition, improves many
parameters involved in immune responses and antioxidant
enzyme activities [11, 12]. Weight loss caused by moder-
ate CR can lead to improving insulin sensitivity as well
as reducing circulating inflammation-related products and
increasing potent antiinflammatory factors produced by
adipocytes [13–16]. CR and weight loss reduce the serum
concentrations of IL-6 and C-reactive protein (CRP) in
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obese subjects and suppresses the upregulation of NF-κB,
cyclooxygenase (COX)-2, and inducible nitric oxide synthase
(iNOS) in kidney [17–19].

Several studies have demonstrated that CR reduced the
production of inflammatory cytokines such as TNF-α and
IL-6 in healthy obese subjects [16, 20]. Although previous
studies have examined the anti-obesity and antiinflamma-
tory effect of CR on serum, liver, heart, and hypothalamus
[21–25], there is only one previous study focused on the
anti-obesity and antiinflammatory effect of CR in adipose
tissue [21]. Moreover, the effect of CR on the expression
of inflammatory markers such as iNOS, CRP, NF-E2-related
factor (Nrf2), and heme oxygenase (HO)-1 in in vivo obese
models continuously fed with a high-fat (HF) diet, is poorly
documented.

We hypothesized that obese animals previously fed with
the HF diet, when placed on HFCR, would see a reduction
in inflammation and oxidative stress damage in obese tissues
including adipose tissues.

2. Materials and Methods

2.1. Animals and Diets. Male Sprague-Dawley (SD) rats were
obtained at 8 weeks old (Daehan Biolink Co., Eumseong,
Chungcheongbuk-do, South Korea) and were individually
housed in a temperature-controlled (22 ± 1◦C) room on a
12 : 12 light-dark cycle and allowed free access to diets and
tap water. After a 2-week acclimation period, the animals
were randomly divided into two groups: a control diet group
(CON, n = 20) and a high-fat diet group (HF, n = 40), after
being balanced for body weights. Following 11–13 weeks
of ad libitum access to a control diet (D12450B, 10% kcal
fat; Research Diets, New Brunswick, NJ, USA) or a high-fat
diet (D12451, 45% kcal fat; Research Diets), the CON was
continuously provided with the control diet. The HF group
was divided into two: (i) the high-fat diet group (HF, n =
20) and (ii) the high-fat diet group with calorie restriction
(HFCR, n = 20) are fed their respective diets for 8–10
weeks. The HFCR group was fed 60% of the food intake
from the previous day’s amount of the HF group. During the
experiment period, body weights were recorded weekly. After
8–10 weeks of treatment, the animals were fasted overnight,
weighed, and anesthetized under ether. Blood samples were
collected via cardiac puncture, and plasma was separated by
centrifugation at 3000 rpm. Livers and fat pads including
epididymal white adipose tissue (WAT) and retroperitoneal
WAT were dissected and weighed. The tissues were isolated,
frozen in liquid nitrogen, and stored at −80◦C until analysis.
All rats were used in accordance with animal protocols
approved by the Kyung Hee University Institutional Animal
Care and Use Committee.

2.2. Intraperitoneal Glucose Tolerance Test (IPGTT). Glucose
tolerance tests were carried out after 8–10 weeks of calorie
restriction treatment. After an overnight fast, the rats were
intraperitoneally (i.p.) injected with 50% glucose (2 g/kg
body weight). Blood samples were collected from the tail
at 0, 15, 30, 60, 90, and 120 minutes for glucose level

measurements. The integrated area under the glucose curve
(AUC) in the IPGTT was calculated by the trapezoid method
from the glucose measurements at 0, 15, 30, 60, 90, and
120 min (mg/dL X min).

2.3. Histological Analysis. Histological sections (4 μm thick-
ness) were prepared from liver and epididymal WAT fixed
in 10% buffered formaldehyde and embedded in paraffin.
Histological sections were stained with hematoxylin and
eosin (H and E).

2.4. Measurement of Lipid Peroxidation. Malondialdehyde-
thiobarbituric acid (MDA-TBA) formation was used as an
index of lipid peroxidation [26]. Briefly, 200 μL of 8.1% SDS,
3 mL of 20% acetic acid-0.8% TBA mixture, and 600 μL
of distilled water were added to 0.2 mL of homogenated
liver tissues with 0.15 M KCl buffer (10%, w/v), and heated
for 60 min at 95◦C. After cooling in ice, 1 mL distilled
water, 5 mL mixture of n-butanol, and pyridine (15 : 1, v/v)
were added and centrifuged at 4,000 rpm for 10 minutes.
The upper layer was aspirated out, and fluorescence was
measured with an ELISA reader at 532 nm as compared with
1,1,3,3-tetramethoxypropane.

2.5. Measurement of Lipid Content in Liver. Hepatic lipids
were extracted using the Bligh and Dyer method [27].
Briefly, 1.25 g of tissues was homogenized with 3.75 mL of
chloroform-methanol (1 : 2, v/v) using a homogenizer. After
vigorous vortexing for 15 minutes, the homogenate was
mixed with 1.25 mL of chloroform and an equal volume of
water, then centrifuged briefly at 3000 rpm for 10 minutes.
The lower phase was transferred into a new tube, and
the residue was mixed with 1.88 mL of chloroform for
the second-step vortex and centrifugation. The lower phase
obtained by the centrifugation was mixed with the first
chloroform phase in the same tube. After evaporation under
nitrogen gas at 55◦C, the lipid extract was dissolved in 2 mL
of 2-propanol. Total cholesterol and triglyceride contents
were analyzed by enzymatic methods (Bio Clinical System
Co., Anyang, Gyeonggi-do, South Korea).

2.6. Measurement of Plasma Adipokine Concentrations. Lep-
tin (R&D Systems, Minneapolis, MN, USA) and adiponectin
(Adipogen, Seoul, South Korea) concentrations were deter-
mined by means of commercial radioimmunoassay kits
according to the manufacturer’s manual.

2.7. Western Blot Analysis in Liver and Epididymal WAT. The
tissue was homogenized in lysis buffer and centrifuged at
14,000 rpm (30 min, 4◦C). For Western blot analysis, equal
amounts of protein (40 μg per lane) were loaded in the
wells of 8–10% polyacrylamide gels. After the electrophoretic
run, proteins were electroblotted on polyvinylidene fluoride
(PVDF) membranes (Millipore, Marlborough, MA, USA).
The membrane was blocked by incubation in 5% non-fat
milk in PBS-Tween 20, incubated with polyclonal antibody
against p65 (Cell Signaling, Danvers, MA, USA, 1 : 100),
TNF-α (Santa Cruz Biotechnology, CA, USA, 1 : 100),
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Table 1: Daily food and energy intakes in the experimental animals.

Group
Before HFCR After HFCR

Food intake (g/day) Energy intake (kcal/day) Food intake (g/day) Energy intake (kcal/day)

CON 25.92 ± 0.13a 99.79 ± 0.50a 24.72 ± 0.23a 95.16 ± 0.87a

HF
23.37 ± 0.13b 110.53 ± 0.64b 21.67 ± 0.20b 102.50 ± 0.94b

HFCR 13.01 ± 0.04c 61.56 ± 0.21c

CON: rats fed a control diet (10% kcal fat) ad libitum for the experimental periods, HF: rats fed a high-fat diet (45% kcal fat) ad libitum for the experimental
periods, HFCR: 40% calorie restricted rats fed a high-fat diet for 8–10 weeks after being fed the high-fat diet ad libitum for 11–13 weeks. Values are means ±
SEM, n = 20 in each group. Means for a variable without a common letter differ, P < 0.05.
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Figure 1: Effect of HFCR on body weight change in high-fat diet
induced obese rats. OI: obesity induction, CR: calorie restriction,
CON: rats fed a control diet (10% kcal fat) ad libitum for the
experimental periods, HF: rats fed a high-fat diet (45% kcal fat) ad
libitum for the experimental periods, HFCR: 40% calorie restricted
rats fed a high-fat diet for 8–10 weeks after being fed the high-fat
diet ad libitum for 11–13 weeks. Values are means± SEM, n = 20 in
each. Means for a variable without a common letter differ, P < 0.05.

pIκBα (Santa Cruz Biotechnology, 1 : 100), iNOS (Santa
Cruz Biotechnology, 1 : 1000), CRP (Abcam, 1 : 200), COX-
2 (Santa Cruz Biotechnology, 1 : 200), Nrf2 (Abcam, Cam-
bridge, UK, 1 : 250), HO-1 (Stressgen, Victoria, BC, Canada,
1 : 2000), copper zinc superoxide dismutase (CuZnSOD)
(Santa Cruz Biotechnology, 1 : 500), manganese superoxide
dismutase (MnSOD) (Stressgen, 1 : 5000), and α-tubulin
(Sigma Chemical Co., St. Louis, MO, USA, 1 : 4000), washed,
and incubated with horseradish peroxidase-conjugated anti-
body (Santa Cruz Biotechnology). Detection was performed
using the ECL chemiluminescence (Santa Cruz Biotech-
nology) according to the manufacturer’s instructions. The
luminescent signal was recorded and quantified with the
Syngene G box (Syngene, Cambridge,UK).

2.8. Statistical Analysis. Results are expressed as the mean ±
S.E.M. Statistical analysis of differences between mean values
was performed using the one-way ANOVA, followed by the
Duncan’s multiple range test. Differences were defined as
significant at P < 0.05.
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Figure 2: Effect of HFCR on body fat mass in high-fat diet-induced
obese rats. WAT: white adipose tissue, CON: rats fed a control diet
(10% kcal fat) ad libitum for the experimental periods, HF: rats fed a
high-fat diet (45% kcal fat) ad libitum for the experimental periods,
HFCR: 40% calorie restricted rats fed a high-fat diet for 8–10 weeks
after being fed the high-fat diet ad libitum for 11–13 weeks. Values
are means ± SEM, n = 20 in each. Means for a variable without a
common letter differ, P < 0.05.

3. Results

3.1. Effect of HFCR on Body Weight Change and Food Intake.
Male SD rats were maintained on the control or the high-
fat diets for 11–13 weeks. There was no significant difference
in the average weight of the rats at the beginning of the
study. Rats gradually developed obesity when placed on high-
fat diets. After 2 weeks, the rats on the high-fat diet had
significantly higher body weights than the control group.
After 11–13 weeks of high-fat feeding, the HF group gained
19.74% more mass than the CON group (Figure 1). Once
obesity was reached by the animals on a high-fat diet the
HF group was put on a calorie restriction diet (HFCR).
The CR diet was 60% of the food intake amount of the HF
group. HFCR treatment significantly decreased body weights
throughout the experimental periods. At the end of the 8
weeks, HFCR animals lost 118.0 g. As shown in Table 1, the
food intake was significantly higher in the CON than in
the HF during obesity induction period. However, energy
intake was higher in the HF than in the CON. During HFCR
treatment period, the HFCR showed significantly lower food
and energy intake than the HF.
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Figure 3: Effect of HFCR on glucose tolerance (a) and longitudinal analysis of AUC (b) in high-fat diet induced obese rats. CON: rats fed a
control diet (10% kcal fat) ad libitum for the experimental periods, HF: rats fed a high-fat diet (45% kcal fat) ad libitum for the experimental
periods, HFCR: 40% calorie restricted rats fed a high-fat diet for 8–10 weeks after being fed the high-fat diet ad libitum for 11–13 weeks,
Values are means ± SEM, n = 20 in each. Means for a variable without a common letter differ, P < 0.05.
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Figure 4: Effect of HFCR on liver and epididymal WAT morphology in high-fat diet induced obese rats. (a) H and E staining of liver from
the three groups of animals (magnification X 40). The scale bar represents 250 μm. (b) representative H and E staining of adipose depots
from the three groups of animals (magnification X 20). The scale bar represents 250 μm. CON: rats fed a control diet (10% kcal fat) ad
libitum for the experimental periods, HF: rats fed a high-fat diet ad libitum for the experimental periods, and HFCR: 40% calorie-restricted
rats fed a high-fat diet (45% kcal fat) for 8–10 weeks after being fed the high-fat diet ad libitum for 11–13 weeks.

3.2. Effect of HFCR on Body Fat Pad Weight. As expected,
epididymal and retroperitoneal WAT were elevated in the HF
when compared to the CON. HFCR for 8–10 weeks reduced
epididymal WAT by 32.3% in the HF and retroperitoneal
WAT by 38.3% in HF (Figure 2).

3.3. Effect of HFCR on Glucose Tolerance. IPGTT was
performed to evaluate insulin sensitivity. As shown in
Figure 3(a), the HF group showed an impaired glucose
tolerance. Compared to the HF, glucose tolerance curves
in the HFCR were steeper after 30 minutes of glucose

administration. Although there was no significant difference
in the AUC of the IPGTT among the groups, there was a
general trend of increased AUC of the IPGTT in the HF when
compared with the CON (CON = 343.05±30.27 mg/dL·min;
HF = 488.60 ± 63.33 mg/dL·min; P = .053) (Figure 3(b)).
Finally, even if it was not statistically significant, HFCR treat-
ment decreased the obesity-associated glucose intolerance.

3.4. Effect of HFCR on Change of Liver and Epididymal WAT
Morphology. Photomicrographs of liver and epididymal
WAT sections stained with H and E are shown in Figure 4.
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The morphological changes (fatty liver-like) observed in the
HF were reversed in the HFCR (Figure 4(a)). In particular,
the HFCR did not show the extensive hypertrophy or the very
large unilocular adipocytes lipid droplets that are present in
the HF (Figure 4(b)).

3.5. Effect of HFCR on Liver Lipid Peroxidation Levels. As
shown in Figure 5, the HF displayed a significant increase
of lipid peroxidation compared to the CON (4 fold), while
the HFCR displayed levels of lipid peroxidation close to the
control group levels. A reduction of this magnitude was not
present in the HF.

3.6. Effect of HFCR on Hepatic Lipids Levels. The content of
triglyceride and total cholesterol in the liver was increased
in the HF compared with the CON. The HFCR treatment
significantly reduced the presence of hepatic lipids compared
to the HF (Figure 6).

3.7. Effect of HFCR on Plasma Adipokine Levels. As shown
in Figure 7, there was a decrease (although not significant)
in adiponectin levels in the HF as compared with the CON
(Figure 7(a)), this effect was completely reversed in the
HFCR. The same results were observed for leptin, with a
significant increase in the HF levels and a similar value
between the CON and the HFCR. As a useful inflammatory
biomarker, we calculate the leptin/adiponectin ratio. As
shown in Figure 7(b), this ratio clearly increased in the HF
when compared to the CON, while the HFCR treatment
significantly lowered the ratio (Figure 7(b)).

3.8. Effect of HFCR on Liver Protein Expression Related
to Inflammation and Oxidative Stress. In this study, we
performed Western blot analysis to determine liver protein
levels for inflammatory markers such as pIκBα (indirect
approach to evaluate NFκB activation), iNOS, COX-2, and
CRP. Our results showed a significant increase in pIκBα levels
in the HF, when compared with the CON levels (Figure 8).
The HFCR pIκBα levels were similar to the CON pIκBα
levels. In addition, iNOS protein expression significantly
increased in the HF, and this effect was completely abolished
in the HFCR that was compared to the CON. As shown in
Figure 8, the high-fat diet induced COX-2 expression (P <
0.05 versus CON) in the HF was almost completely restored
to normal levels in the HFCR. There was no significant
difference with the CRP protein expression in all groups
(data not shown). The HF diet caused the increase of nuclear
Nrf2 protein in the HF, and the upregulation of Nrf2 was
restored in HFCR treatment. The protein expression of HO-
1 was increased significantly in the HF but not in the HFCR.
There were no significant differences in the CuZnSOD and
MnSOD protein expression in liver (data not shown).

3.9. Effect of HFCR on Protein Expression Related to Inflam-
mation and Oxidative Stress in Epididymal Adipose Tissue.
Protein expression level related to inflammation (p65, TNF-
α, iNOS, and CRP) and oxidative stress (HO-1, CuZnSOD,
and MnSOD) from adipose tissue in each treatment group
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Figure 5: Effect of HFCR on lipid peroxidation in liver of high-fat
diet induced obese rats. CON: rats fed a control diet (10% kcal fat)
ad libitum for the experimental periods, HF: rats fed a high-fat diet
ad libitum for the experimental periods, and HFCR: 40% calorie-
restricted rats fed a high-fat diet (45% kcal fat) for 8–10 weeks after
being fed the high-fat diet ad libitum for 11–13 weeks. Values are
means ± SEM, n = 20 in each. Means for a variable without a
common letter differ, P < 0.05.
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Figure 6: Effect of HFCR on liver lipid levels in high-fat diet-
induced obese rats. CON: rats fed a control diet (10% kcal fat) ad
libitum for the experimental periods, HF: rats fed a high-fat diet ad
libitum for the experimental periods, HFCR: 40% calorie-restricted
rats fed a high-fat diet (45% kcal fat) for 8–10 weeks after being fed
the high-fat diet ad libitum for 11–13 weeks. Values are means ±
SEM, n = 20 in each. Means for a variable without a common letter
differ, P < 0.05.

was determined by Western blot. The nuclear p65 and TNF-
α expression levels were significantly higher in the HF than in
the CON (Figure 9). The HFCR did not induce this increase.
In the HF animals, the level of iNOS protein expression
significantly increased, compared to the CON. The HFCR
lowered significantly. The same trend was observed for
CRP, an acute-phase protein that rises in response to
inflammation. As shown in Figure 9, induction of HO-1 was
higher in the HF than in the CON. No effect was noticed with
the induction of HO-1 in the HFCR. The protein expression
levels of MnSOD in epididymal WAT increased in the HF
group, with respect to the CON. The COX-2 expression
levels were back to steady levels in the HFCR. The protein
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Figure 7: Effect of HFCR on adiponectin and leptin levels (a) and leptin/adiponectin ratio (b) in plasma of high-fat diet induced obese rats.
CON: rats fed a control diet (10% kcal fat) ad libitum for the experimental periods, HF: rats fed a high-fat diet ad libitum for the experimental
periods, HFCR: 40% calorie restricted rats fed a high-fat diet (45% kcal fat) for 8–10 weeks after being fed the high-fat diet ad libitum for
11–13 weeks, Values are means ± SEM, n = 20 in each. Means for a variable without a common letter differ, P < 0.05.

expression of CuZnSOD in epididymal WAT did not differ
among the groups (data not shown).

4. Discussion

The present study was performed in order to evaluate the
possible effect of HFCR on the induction of inflammation
and oxidative stress damage by a high-fat diet.

We demonstrated HFCR-reduced metabolic abnormal-
ities, such as dyslipidemia and plasma adipokine levels, in
the obese rats continuously fed the HF diet. The HFCR
animals gained less body weight, accumulated lower body
fat, hepatic triglyceride, and cholesterol than HF animals,
which is a similar pattern of previous studies [21, 28]. HFCR
decreased the levels of lipid peroxidation demonstrated by
MDA, a generally accepted biomarkers of lipid peroxidation
[29]. Our data suggests that HFCR as well as CR maintains
the redox-balancing power in cells and tissues [19, 30]
and exhibits reduced oxidative damage. Our data showed
that HFCR tends to reduce basal fasting blood glucose and
impairment of glucose tolerance in the HF, which is in
parallel with previous reports [21, 22]. Barzilai and Gabriely
suggested the beneficial effect of dietary CR on glucose
homeostasis can be attributed to a decrease in adipose cells
and their products [31]. In addition, steatosis (fatty liver)
shown in the HF disappeared in the HFCR and extensive
hypertrophy of the WAT in obese rats was reversed by HFCR
treatment as compared to that in the CON.

Adipose tissue is no longer considered to be solely an
energy-storage tissue [32]. Adipose tissue produces and
secretes a variety of signals and factors associated with
inflammation, including IL-6, IL-1β, TNF-α, MCP-1, and
adipokines such as adiponectin, leptin, and resistin [4,
5]. Adiponectin is an essential mediator in the regulation
of insulin resistance and antiinflammatory effects through

the inhibition of TNF-α and upregulation of the antiin-
flammatory cytokines [32–34]. In our study, the levels of
plasma adiponectin were decreased in the HF, while HFCR
treatment increased the levels of plasma adiponectin. Leptin,
an adipocyte-derived hormone, regulates energy intake and
energy expenditure [35]. In obese humans and rodents,
leptin resistance, which is circulating leptin, fails to reach its
targets in the brain. [36, 37]. Therefore, obesity leads to an
increase in the circulating leptin levels. Recent studies have
reported the leptin/adiponectin ratio is correlated with body
mass index and may be a useful biomarker for inflammation,
insulin resistance, and atherogenesis [38–41]. In the present
study, an increased ratio of leptin/adiponectin of the HF
group was significantly decreased by the HFCR treatment.

Consumption of a high-fat diet has been reported to
promote inflammation and the activation of NFκB [42]. In
a normal state, NFκB is bound with an inhibitory protein
of nuclear factor-κB (IκB) in the cytoplasm. Following
stimuli, such as oxidative stress and various cytokines, IκB
is phosphorylated and NFκB is free to migrate into the nuclei
and activate several genes such as iNOS and COX-2 [43–45].
Our results have shown that intake of a high-fat diet activated
NFκB p65 subunit in rat liver. Previous research reported
NFκB binding activity was higher in the rats fed high-fat diets
than rats fed control diets [46].

The inflammation response of iNOS may be an impor-
tant factor because it can be induced by several inflammatory
stimuli [47]. It has been shown that iNOS expression in the
liver has been shown to increase inflammation in the ob/ob
mice. Treatment with an iNOS inhibitor reversed fasting
hyperglycemia. iNOS inhibitors improved insulin sensitivity
by increasing the protein expression of IRSs and enhancing
IRSs-mediated insulin signaling in the liver of ob/ob mice
[48]. Our study showed liver iNOS expression pattern in
the HF group was similar to the previous study where the
increase of iNOS expression in ob/ob mice [48].
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Figure 8: Effect of HFCR on protein expression related to inflammation and oxidative stress in liver. (a) Western blot assay of pIκBα, iNOS,
COX-2, Nrf2, and HO-1. (b) densitometric analysis of bands in Western blot. CON: rats fed a control diet (10% kcal fat) ad libitum for the
experimental periods, HF: rats fed a high-fat diet (45% kcal fat) ad libitum for the experimental periods, and HFCR: 40% calorie restricted
rats fed a high-fat diet for 8–10 weeks after being fed the high-fat diet ad libitum for 11–13 weeks. a.u.: arbitrary unit. Values are means ±
SEM, n = 10 in each. Means for a variable without a common letter differ, P < 0.05.

Cumulative evidence shows that COX-2 activation con-
tributes to the generation of ROS in the pathophysiological
condition and mediates the Nrf2 activation by regulating
inflammatory response and transcriptional activity [49]. Our

data showed the HFCR treatment, which decreased the COX-
2 protein level, not only attenuated obesity-related increase
in liver oxidative damage, but indicated a suppression of
elevated liver contents of TBARS, an index of oxidative
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Figure 9: Effect of HFCR on protein expression related to inflammation and oxidative stress in epididymal adipose tissue. (a) Western blot
assay of p65, iNOS, HO-1, TNF-α, CRP, and MnSOD. (b) densitometric analysis of bands in Western blot. CON: rats fed a control diet (10%
kcal fat) ad libitum for the experimental periods, HF: rats fed a high-fat diet ad libitum for the experimental periods, HFCR: 40% calorie
restricted rats fed a high-fat diet (45% kcal fat) for 8–10 weeks after being fed the high-fat diet ad libitum for 11–13 weeks. a.u.: arbitrary
unit. Values are means ± SEM, n = 10 in each. Means for a variable without a common letter differ, P < 0.05.

damage. The HFCR treatment suppressed nuclear Nrf2
and HO-1 protein expression in liver. Helmersson et al.
[50] demonstrated that the development of type 2 diabetes
mellitus (T2DM) in elderly men was significantly correlated
with COX-mediated inflammation and oxidative stress. The
beneficial effects of CR can be further extended to its ability
to modulate proinflammatory proteins, such as IL-1β, IL-6,
TNF-α, and iNOS as well as COX-2 mRNA and protein level
by manipulating NFκB [51]. A recent study identified Nrf2 as
a pivotal transcription factor for controlling hepatic oxida-
tive stress [52]. The induction of Nrf2 activity though CR is
known to decrease ROS production, decreases inflammation
processes, and improves insulin signaling pathways [53].

Nrf2 regulates the antioxidant response element (ARE)-
dependent gene regulation in the response to oxidative stress.
Nrf2 induces expression of antioxidant enzymes such as HO-
1 by binding to ARE in the promoters of these genes [54].
Our data clearly shows the HF treatment led to an increase
of Nrf2 in liver, along with raised levels of HO-1, whereas
the effect was reversed by the HFCR treatment. Based on this
information, we suggest that ROS overproduction in obesity
can activate Nrf2.

Adipose tissue is an important source of TNF-α, a major
proinflammatory factor in obesity [55]. TNF-α contributes
insulin resistance by blunting the insulin-stimulated tyrosine
phosphorylation of IRS-1 [56], inhibiting glucose uptake
[57], and activating NFκB pathway [58]. Our data showed
in the HF groups that there was an increase of adipose
tissue protein levels of TNF-α. Although the HFCR treatment
did not significantly decrease TNF-α protein levels in adi-
pose tissues, HFCR treatment resulted in the improvement
of glucose intolerance. These results suggest that other
inflammatory factors may indirectly correlate with insulin
sensitivity. Moreover an upregulation of TNF-α mediates an
increase in NFκB nuclear translocation, which results in the
activation of inflammatory genes expression such as iNOS
and CRP [59, 60]. In this study, the HFCR treatment was
not able to reduce the nuclear p65 expression in epidydimal
WAT but significantly reduced a downstream gene, iNOS,
and an inflammation related protein, CRP, in epididymal
WAT as compared with the HF. Previous studies reported
CR’s antiinflammatory action such as suppression of NO
production by inhibition of iNOS in alveolar macrophage
[61] and reduction of plasma CRP levels, indicating
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a reduction of systemic inflammation [62]. The proper levels
of ROS during inflammation serve as essential regulators in
the signal transduction pathway [63–65]. HFCR treatment
decreased expression of important inducible antioxidant
enzymes, MnSOD, along with reduced oxidative damage
was demonstrated by lipid peroxidation in this study. These
results suggest HFCR still has beneficial antioxidant and
antiinflammatory capacity.

5. Conclusion

Collectively, the present results show that HFCR without a
dietary composition change decreased the leptin/adiponectin
ratio in plasma, suppressed the proinflammatory cytokines
expression in epidydimal WAT, and reduced the inflamma-
tion and oxidative damage in the liver and epidydimal WAT.
In conclusion, HFCR and CR with a low-fat diet are still
beneficial approaches to obese subjects. These diets increase
long-term compliance in weight control which induce atten-
uation of obesity-induced inflammatory responses, which is
a risk factor for obesity related chronic diseases, along with
decreased fat mass in obesity.
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