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Abstract: Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy
vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would
increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and
other minerals. This study aimed to investigate the proposed hypothesis that a complex network of
genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis
in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes
with contrasting oxalate phenotypes was performed under normal physiological conditions. A total
of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the
high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions
associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment
of the metabolic and secondary metabolite pathways. The expression profiles of genes associated
with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and
photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea
that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3)
all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation
for novel insights into oxalate metabolism in spinach.

Keywords: oxalate; spinach; transcriptomics; isocitrate lyase

1. Introduction

The presence of oxalate is ubiquitous across the plant kingdom. Many plants belonging
to the families Chenopodiaceae, Amaranthaceae, and Polygonaceae accumulate excessively high
oxalate [1]. The functional significance of oxalate accumulation in plants can be attributed to
several mechanisms, such as sequestering and regulating excess calcium [2–7], detoxifying
heavy metals [8–11], protecting against insects [12,13] and diseases [14,15], and maintaining
ionic balance [7]. Despite these multiple roles in plants, high oxalate levels in edible plant
parts are a concern for human nutrition and health. Excess levels of oxalate in a regular diet
significantly alter nutrient availability, as oxalate reacts with calcium and other minerals to
form insoluble crystals, resulting in hyperoxaluria, a predominant risk factor for recurrent
kidney stones [5,16,17]. Hence, in order to better understand its biological relevance
in oxalogenic plants and manipulate its accumulation in edible plant parts, elucidating
oxalate’s metabolic or gene regulatory mechanisms is essential.

Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich
leafy vegetables, it is also a potent accumulator of excessive amounts of anti-nutritional
oxalate [18,19]. High consumption of spinach reduces calcium and magnesium absorption
due to the formation of oxalate-bound insoluble complexes. Reducing the oxalic acid
concentration would increase the nutritional value (by enhancing the dietary bioavailabil-
ity of calcium and other minerals, ascorbates, and vitamins) and consumer acceptance
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(suppressing the bitter taste) of spinach. Strategies such as seasonal variations, genotypic
differences, and modified agronomic techniques—such as nitrogen fertilizer management—
have been proposed for the management the oxalate content of vegetables. Several studies
have demonstrated increased oxalate accumulation with increasing amounts of available
NO3

− in spinach [20–22] and rice [23]. Furthermore, manipulation of nitrogen forms or
the ratio of NO3 to NH4 [24–27], along with seasonal and genetic effects [18], can also
alter oxalate accumulation in spinach. Conflicting reports suggest both increases [28] and
decreases [29] in oxalate concentrations with plant age in spinach. In general, oxalate
content in spinach stems and petioles was lower than in leaves [26,30,31]. A study showing
minimal correlation of oxalates with the leaf type (flat or savoy) and leaf weight of plants
suggested the feasibility of the genetic improvement of spinach for oxalate reduction using
high-yielding spinach varieties [19]. The presence of significant genetic variation in the
amount of oxalic acid was first reported in a small population of 39 spinach breeding lines,
hybrids, and F2 populations [32]. Demonstration of a converse relationship in fast-growing
spinach cultivars that accumulated low oxalates but high nitrates, and vice versa, in a study
comprising 182 open-pollinated and F1 hybrid cultivars and breeding lines [33], suggests
the possibility of developing fast-growing cultivars as a breeding strategy to reduce oxalate
accumulation. Although no specific genes were identified, an ethyl methanesulfonate
(EMS)-mediated mutant in spinach [34] and ion-beam-mutagenized rice [35] accumulating
lower oxalate levels suggests the possibility of the genetic improvement of spinach for ox-
alate reduction. Identification of SNP markers associated with high oxalate [36] in spinach
has allowed accelerating efforts to breed spinach varieties with low oxalic acid content.
Despite the wide range in oxalate concentrations observed among the genotypes, no major
QTLs with significant impacts on oxalate concentration were identified, confirming the
complexity of oxalate as a trait possibly regulated by several minor genes.

Oxalate biosynthesis in plants is complex, possibly involving five critical substrates—
isocitrate, glycolate, glyoxylate, oxaloacetate, and ascorbate. Despite widespread occurrence
across the plant kingdom, it remains unknown which specific pathways or genes directly
or indirectly contribute to oxalate accumulation. Although oxalate production through
photorespiratory glycolate/glyoxylate oxidation has been demonstrated [4,5,37–39], con-
tradictory findings suggest the occurrence of glycolate-independent oxalate synthesis in
plants [4,5,40]. The growing quantity of evidence using canonical and non-canonical path-
ways also implicates the role of ascorbates in oxalate synthesis [5,41–47]. Despite being
naturally rich in oxalate, few efforts have been made to explore the precise contributions of
these individual pathways to oxalate metabolism, expression of associated genes, or tissue
specificities in spinach under normal physiological conditions. The only study performed
on spinach, using a subset of putative genes involved in oxalate metabolism [31], suggested
the roles of glycolate oxidases (GLO/GXO) and oxaloacetate acetyl hydrolases (OXAC) in
oxalate synthesis. However, this study does not provide a detailed overview of global gene
expression in the context of associated processes—such as photorespiration, or the glyoxy-
late cycle—or competing pathways sharing various substrates involved in the biosynthesis
or catabolism of oxalate in spinach. We examined the global transcriptomic differences
under normal physiological conditions in two spinach cultivars with contrasting oxalate
phenotypes. For this study, we selected a pre-characterized high oxalate spinach accession,
PI 175311 from the USDA germplasm repository [19] and a low oxalate heirloom spinach
variety, ‘Bloomsdale’. The study was designed to test the hypothesis that a complex net-
work of genes associated with intrinsic metabolic and physiological processes regulates
the homeostasis of the endogenous oxalate in the spinach genotypes. The study identified
differentially expressed transcripts in the leaf and root tissues of high-oxalate PI 175311.
We have discussed the differential expression of the genes in the context of the known
metabolic pathways associated with oxalate metabolism in plants. Our results provide a
global view of the regulatory molecular mechanisms associated with oxalate accumulation
in spinach. Additionally, the findings of this study could aid in mining genes regulating
oxalate metabolism and engineering crops with reduced levels of oxalates.
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2. Results
2.1. Validation of Contrasting Oxalate Contents in Spinach Genotypes

Little is known about how inherently high levels of oxalate could impact other phys-
iological processes, or the plant’s nutrient status. Hence, a phenotypic characterization
preceded the sampling of tissues for RNA-Seq analysis. The oxalate concentrations ex-
pressed in fresh and dry weight bases of the leaf laminae and roots of both of the genotypes
showed significant differences (Table 1). PI 175311 accumulated 44% and 48% higher
oxalate content in its leaves than Bloomsdale on a fresh and dry weight basis, respec-
tively, validating the contrasting oxalate phenotypes. The oxalate content in roots was
also 29% higher in PI 175311 than in Bloomsdale. The exchangeable cations (calcium,
Ca; magnesium, Mg; and potassium, K) and total Kjeldahl nitrogen (TKN) content were
significantly higher in the leaf laminae of PI 175311 (Table S1; Supplementary Materials).
The gas exchange parameters in the leaves of 6-week-old spinach plants of both genotypes
showed no apparent differences in the net photosynthetic rate, stomatal conductance,
or transpiration rate, implying uncompromised photosynthetic performance (Table S2;
Supplementary Materials).

Table 1. Oxalate content (mg/100 g) in leaves and roots of PI 175311 and Bloomsdale (n = 5;
Mean ± Std Error).

Fresh wt Dry Wt.

Tissue PI 175311 Bloomsdale p-Value PI 175311 Bloomsdale p-Value

Leaves 1312.9 ± 85.0 785.5 ± 89.2 0.0037 104.4 ± 5.7 54.4 ± 3.1 0.0287

Roots 450.0 ± 11.5 287.1 ± 33.3 0.0347 40.2 ± 3.0 20.8 ± 2.6 0.0347

2.2. Transcriptome Sequencing, Assembly and Quality Assessment

A total of 12 independent cDNA libraries—three each from the leaf laminae (XS1L1,
XS1L2, and XS1L3 for PI 175311; XBDL1, XDL2, and XDL3 for Bloomsdale) and roots
(XS1R1, XS1R2, and XS1R3 for PI 175311; XBDR1, XBDR2, and XBDR3 for Bloomsdale)—
were subjected to the Illumina HiSeq platform. The raw reads were deposited in the
Sequence Read Archive at the GeneBank database SRA ID: SRP252185 (Gene Expression
Omnibus GSE146711). On average, 62.7 and 59.3 million raw reads were generated for
leaf and root tissues, respectively, for PI 175311, while 56.8 and 59.4 million reads were
generated for leaf and roots tissues, respectively, for Bloomsdale (Table S3; Supplementary
Materials). On average, the Q20 and Q30 percentages across all reads were more than
98% and 95%, respectively (the sequencing error rate was less than 0.02%). Over 87% of
reads were mapped to the reference genome (Table S4, Supplementary Materials) available
at SpinachBase (http://www.spinachbase.org; accessed on 13 April 2019). On average,
86% of reads were uniquely mapped, while 4% were multi-mapped (Table S4) to the
reference genome for both tissue types and genotypes. The high Pearson’s correlation
among biological replicates (Figure S1; Supplementary Materials) confirmed the RNA-Seq
data’s reliability. The gene expression levels among leaf and root tissues between the
genotypes were comparable (Figure S2; Supplementary Materials). The results overall
suggest high quality and coverage, providing a foundation for further analyses.

2.3. Analysis of Differentially Expressed Genes (DEGs) in Contrasting Oxalate Genotypes

The DEG analysis of leaf and root tissues identified 2308 and 1686 differentially
expressed genes in the leaf and root tissues, respectively, of PI 175311 (Figure 1). The
numbers of upregulated (1126) and downregulated (1182) genes were comparable in the
leaf tissue (Tables S5 and S6; Supplementary Materials). On the other hand, in the root
tissue, 616 transcripts were upregulated, while 1070 were downregulated (Tables S7 and S8;
Supplementary Materials). As presented in the Venn diagram (Figure 2), 861 and 360 DEGs
expressed in leaf and root tissues, respectively, were uniquely upregulated; meanwhile,

http://www.spinachbase.org


Int. J. Mol. Sci. 2021, 22, 5294 4 of 17

905 and 784 unique DEGs were downregulated in leaf and root tissues, respectively. Using
the PlantTFDB database (http://planttfdb.gao-lab.org/; accessed on 15 April 2020), we
identified 63 and 33 potential transcription factors (TFs) upregulated in leaf and root tissues,
respectively (Figure S3; Supplementary Materials), while 77 and 72 TFs were downregu-
lated in leaf and root tissues, respectively. Ten unique TFs were up- and downregulated in
both leaf and root tissues. TFs from the MADS family [48] were prominent in leaf tissues,
while bLBH members led in root tissues (Figure S4; Supplementary Materials).
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Figure 1. The volcano maps showing the number of differentially expressed genes in PI 175311 vs. Bloomsdale leaf (A) and
root (B) tissues. Red dots represent upregulated genes, and green dots represent downregu-lated genes (p < 0.05). The x-axis
shows the fold change of genes between different samples (padj < 0.05), and the y-axis coordinate indicates the statistically
significant degree of changes in gene expression levels at −log10(padj p-value).
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Figure 2. The Venn diagram shows the number of differentially expressed genes (DEGs) in each
group and the overlaps between groups. (Lvs Up—Upregulated in leaf; RT Up—Upregulated in root;
Lvs Down—Downregulated in leaf and RT Down—Downregulated in root). The number in the circle
represents the total number of DEGs, and the overlap represents the DEGs in common.
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2.4. Functional Annotation and Classification of Transcriptome

The DEGs were characterized by using the Gene Ontology (GO) knowledgebase
(http://geneontology.org/; accessed on 13 April 2020) to differentiate cellular, molecular,
and biological functions between the two genotypes. GO enrichment bar charts show
the top 30 enriched functions for up- and downregulated DEGs in the leaf (Figure 3) and
root (Figure 4) tissues of PI 175311. The molecular functions (MF) included pectinesterase
activity (GO:0030599), various enzymatic activities (GO:0003824, GO:0016788, GO:0016787,
GO:0052689, and GO:0004553), and antiporter activity (GO:0015297); among the biologi-
cal processes (BP) related to cell wall organization, structure, modification (GO:0042545,
GO:0071555, GO:0045229, and GO:0071554), and membrane transport (GO:0055085, GO:004
4765, and GO:1902578), along with cell wall and related external encapsulating structures
(GO:0030312, GO:0005618, and GO:0005578) among cellular components (CC) were en-
riched in the upregulated unigenes in leaf tissues (GO with corrected p-value < 0.05
was significantly enriched in DEGs). On the other hand, only the biological processes
related to fatty acid metabolism (GO:0006633, GO:0006631), monocarboxylic acid biosyn-
thesis (GO:0072330), and protein phosphorylation (GO:0006468) were enriched among
the downregulated DEGs in leaf tissues. Although none of the GO terms were enriched
explicitly in the DEGs upregulated in root tissues, biological processes related to response
to stress (GO:0006950), oxidative stress, and the oxidation–reduction process (GO:0006979,
GO:0055114), as well as several molecular functions associated with oxidoreductase activi-
ties (GO:0016491, GO:0016684), peroxidase activity (GO:0004601), and heme- (GO:0020037)
and tetrapyrrole (GO:0046906)-binding functions, were enriched in the downregulated
DEGs in root tissues.
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http://geneontology.org/


Int. J. Mol. Sci. 2021, 22, 5294 6 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. GO enrichment bar chart of DEGs: Gene Ontology (GO) of (A) upregulated and (B) downregulated differentially 
expressed genes (DEGs) in PI 175311 leaf tissue. The y-axis represents the enriched GO term, x-axis represents the number 
of DEGs enriched in the listed term. Colors represent different GO types: biological process, cellular component and mo-
lecular function. * GO with corrected p-value < 0.05 significantly enriched in DEGs. 

 
Figure 4. GO enrichment bar chart of DEGs: Gene Ontology (GO) of (A) upregulated and (B) downregulated differentially 
expressed genes (DEGs) in PI 175311 root tissue. The y-axis represents the enriched GO term, x-axis represents the number 
of DEGs enriched in the listed term. Colors represent different GO types: biological process, cellular component and mo-
lecular function. * GO with corrected p-value < 0.05 significantly enriched in DEGs. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used 
to determine the significantly enriched pathways for DEGs in this study. The KEGG en-
richment analyses showing the top 20 enriched pathways in up- and downregulated 
DEGs in leaf and root tissues are shown in Figures 5 and 6, respectively. The enriched 
pathways represented most plant metabolic pathways for compounds involved in biosyn-
thesis, catabolism, utilization, assimilation, detoxification, and generation of precursor 
metabolites (Table S9), indicating their role in the regulation of oxalate metabolism in 
spinach. Pathways such as “metabolic pathways” and “biosynthesis of secondary metab-
olites” were enriched in both up- and downregulated DEGs in the leaf and root tissues of 

Figure 4. GO enrichment bar chart of DEGs: Gene Ontology (GO) of (A) upregulated and (B) downregulated differentially
expressed genes (DEGs) in PI 175311 root tissue. The y-axis represents the enriched GO term, x-axis represents the number
of DEGs enriched in the listed term. Colors represent different GO types: biological process, cellular component and
molecular function. * GO with corrected p-value < 0.05 significantly enriched in DEGs.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used
to determine the significantly enriched pathways for DEGs in this study. The KEGG
enrichment analyses showing the top 20 enriched pathways in up- and downregulated
DEGs in leaf and root tissues are shown in Figures 5 and 6, respectively. The enriched
pathways represented most plant metabolic pathways for compounds involved in biosyn-
thesis, catabolism, utilization, assimilation, detoxification, and generation of precursor
metabolites (Table S9), indicating their role in the regulation of oxalate metabolism in
spinach. Pathways such as “metabolic pathways” and “biosynthesis of secondary metabo-
lites” were enriched in both up- and downregulated DEGs in the leaf and root tissues of
PI 175311, suggesting their involvement in regulating oxalate metabolism. The pathways
related to “starch and sucrose metabolism” involved in the synthesis of D-glucose, the
primary substrate for ascorbate synthesis [49], and “ABC transporters” were also enriched
in upregulated DEGs in leaf tissues, while “pentose and glucuronate interconversions”
involved in ascorbate synthesis were enriched in upregulated DEGs of both leaf and root
tissues. The role of the galacturonate pathway in contributing to the ascorbate pool has
been validated in plants [50–52].

2.5. Enrichment Analysis of Transcription Factors (TFs)

We performed TF enrichment analysis using PlantRegMap [48] in order to understand
the possible regulatory mechanisms of oxalate metabolism in spinach. TFs possessing
significantly overrepresented targets in the DEGs of both of the genotypes were identified.
TF enrichment analysis identified 102 and 85 TFs possessing significantly overrepresented
targets in the up- and downregulated DEGs, respectively, in the leaf tissues (Table S10;
Supplementary Materials), and 47 and 72 TFs in the up- and downregulated DEGs, re-
spectively, in the root tissues (Table S11; Supplementary Materials). The 625 upregulated
and 958 downregulated putative target genes in leaf tissues had associated GO annotation,
and were enriched for 70 and 71 GO terms, respectively, spread across several biological
processes (Table S12; Supplementary Materials). Similarly, 320 upregulated and 627 down-
regulated putative target genes in root tissues had associated GO annotation, and were
enriched for 71 and 147 GO terms, respectively, spread across several biological processes
(Table S13; Supplementary Materials). Among the total TFome, the families of enriched TFs
showing predicted interactions with the upregulated DEGs were overrepresented by the
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NAC and bZIP families, while for downregulated genes, MYB and TCP were prominent.
For root tissues, TFs belonging to the Dof and WRKY families were overrepresented for up-
and downregulated genes, respectively.
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2.6. Quantitative Real-Time PCR Validation of DEGs from RNA-Seq

To validate the RNA-seq results, we selected 13 DEGs to confirm their expression
patterns using quantitative real-time PCR. The fold changes of the selected genes using RT-
qPCR were consistent (Figure 7) with the results obtained via RNA-Seq analysis (R2 = 0.90
for leaf and R2 = 0.97, for root), indicating the reproducibility and reliability of the RNA-seq
data (Figure S5; Supplementary Materials).
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qPCR analysis.

3. Discussion

Oxalic acid, an ubiquitous dibasic acid in plants, is actively involved in several
processes regulating abiotic metal stress, ion balance, and insect defense. Oxalic acid is a
reducing agent, and its conjugate base chelates many divalent cations—such as Ca, Mg,
zinc (Zn), manganese (Mn), and iron (Fe)—forming oxalate. Ca oxalate is the primary
form found in spinach [32]. Among the micronutrients, there were significant increases in
Ca, Mg, and K in high-oxalate PI 175311 (Table S1; Supplementary Materials), consistent
with the significance of oxalate in calcium regulation and ion balance [38]. The role of
oxalate in sequestering excess Ca2+ by storing large amounts in vacuoles in the form of Ca
oxalate crystals—thereby prohibiting increases in Ca2+ levels in other compartments and
maintaining the concentration gradient between the organelles—has been proposed [5,53].
The higher total nitrogen level in PI 175311 is consistent with a previous report [27] showing
higher nitrate accumulation, along with high oxalate levels.

The RNA-Seq data analysis identified a set of up- and downregulated DEGs in both
sets of tissues, which improved our understanding of the underlying molecular mech-
anisms associated with contrasting oxalate phenotypes. No significant changes in the
photosynthetic performance in both genotypes were consistent, with the results showing
no such changes in rice plants accumulating different oxalate levels [54]. Although no
previous studies have identified coordinated transcriptional regulation of the genes asso-
ciated with oxalate metabolism in plants, the subset of TFs identified in this study could
help identify target genes for the manipulation of oxalate content in spinach or other plant
species. Although analysis of the expression patterns of photorespiratory genes using a
bioinformatic approach suggested strong co-expression, and conserved cis-elements in
their 5′ upstream regions [55], this does not necessarily suggest co-regulation by common
TFs. Several studies have identified transcription factors that conditionally regulate indi-
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vidual genes associated with intrinsic processes such as photorespiration, the glyoxylate
cycle, or ascorbate metabolism. For example, the transcription of rice ICL is regulated by
WRKY71 during salt-stress-induced senescence or ABA treatment [56].

Several pathways for oxalate production through the cleavage of isocitrate, hydrolysis
of oxaloacetate, oxidation of glycolate/glyoxylate, and cleavage of ascorbic acid have
been proposed in plants [28]. However, a clear picture confirming the significance of
these pathways in oxalate metabolism in spinach has not yet emerged. The validation
of the contrasting oxalate phenotype established a framework for the understanding of
the molecular regulation of oxalate metabolism under normal physiological conditions
in spinach. Here, the relative contribution of genes associated with pathways involved
in oxalate synthesis or catabolism is discussed based on the differential gene expression
profiles of plants with contrasting oxalate phenotypes.

3.1. Oxalate Biosynthesis
3.1.1. Cleavage of Isocitrate

In plants, glycolate and glyoxylate, which serve as precursors for oxalate synthesis,
are produced through photorespiratory and photorespiration-independent metabolic reac-
tions. An alternate route to photorespiration that compensates for glyoxylate formation
via anaplerotic reactions has been validated in rice [39]. Glyoxylate is also produced by
isocitrate via isocitrate lyase (ICL), a key enzyme involved in the glyoxylate cycle. The
forms of the ICL enzyme in the germinating oil-storing seeds are different from those in
green leaves, where it interconverts glyoxylate, succinate, and isocitrate [57]. The RNA-seq
analysis revealed a six-fold (Log2) upregulation in the expression of ICL (Spo13898) in the
high-oxalate-accumulating leaves of PI 175311 (Figure 7; Table S5). The role of ICL in oxalate
synthesis has been demonstrated in tobacco [58] and Rumex obtusifolius [59]. Consistent
with our results, overexpression of ICL in rice led to increased oxalate synthesis [39] and
upregulation of ICL and malate synthase (MLS) in the absence of functional glycolate oxi-
dation [60]. Furthermore, the concurrent upregulation of genes (Table S5) involved in fatty
acid oxidation—such as fatty acid beta-oxidation multifunctional protein (MFP2; Spo21149);
acyl-coenzyme A oxidase (Spo01759); and 3-hydroxy acyl-CoA dehydrogenase (Spo21149),
required to generate acetyl-CoA for the glyoxylate cycle—are consistent with increased
ICL expression in PI 175311. It has been demonstrated that oxalate accumulation positively
correlates with increasing amounts of nitrogen, especially NO3, in spinach [20–22,24–27].
Previously, we analyzed transcriptomic responses in leaf and root tissues in response to
nitrogen perturbation in spinach [61]. Consistent with the upregulation of ICL in PI 175311
in this study, high NO3 treatment also resulted in the upregulation of ICL in leaf (3.3-fold
log2 scale) and root tissues (1.45 fold Log2 scale). Taken together, ICL seems to play a
pivotal role in oxalate biosynthesis in spinach.

3.1.2. Hydrolysis of Oxaloacetate

The ICL form present in green leaves interconverts glyoxylate, succinate, and isoc-
itrate [53,57], as well as the formation of oxaloacetate, which could serve as a precursor
for oxalate synthesis. The conversion of oxaloacetate to oxalate is catalyzed by oxaloac-
etate acetylhydrolase, or oxaloacetase (OAH/OXAC, EC 3.7.1.1), in Ascomycota fungi [62].
However, in the absence of detailed kinetic studies, the functional significance of OXAC
genes to oxalate metabolism in plants remains to be confirmed. Nevertheless, such activity
has been reported only once in the crude preparations of beetroot and spinach almost five
decades ago [63]. In contrast with the previous report [31], our RNA-Seq data did not show
induced expression of any of the three putative OXAC genes in high-oxalate PI 175311.
However, upregulation of putative oxaloacetate acetylhydrolase (OXAC2, Spo21624) in
PI 175311 roots (Table S7) can in part explain its tissue-specific activity and high oxalate
accumulation. Given the increased accumulation of oxalate in response to NO3, our previ-
ous study showing upregulation of OXAC2 in the spinach leaf tissue in response to high
nitrogen level [61] suggests the possible role of OXAC-mediated oxalate biosynthesis via
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oxalacetate only under specific conditions. A concomitant increase in most organic acid
intermediates (malate, citrate, 2-oxoglutarate, and succinate) along with oxalates in the
TCA (tricarboxylic acid) cycle in response to high nitrates further substantiated the role
of oxaloacetate in oxalate synthesis in spinach [64]. On the other hand, non-overlapping
upregulation of different isoforms (OXAC1 and OXAC3) in response to NO3 [31] may also
indicate differential tissue specificities and genotypic differences.

3.1.3. Oxidation of Glycolate/Glyoxylate

No significant differences in the photosynthetic rate or other gas analyzer measure-
ments between high-oxalate PI 175311 and Bloomsdale were observed (Table S2), possibly
implying the minimal contribution of photorespiratory intermediates to oxalate synthesis.
Glycolate oxidase (GLO/GOX) catalyzes the conversion of photorespiratory glycolate to
glyoxylate, and glyoxylate to oxalate, by utilizing its side reaction [53]. Unlike the previous
report [31] that showed increased expression of putative GLO genes in the leaf tissues
of high-oxalate lines, RNA-Seq analysis did not show differential expression of any of
the five spinach GLO genes, suggesting the presence of alternative routes of glyoxylate
synthesis. Conditions that altered photorespiration, such as high light intensity and high
CO2 [39], or mutation in GLO [44], did not change oxalate levels, further confirming the
occurrence of photorespiration-independent oxalate synthesis. Increased expression of ICL
in PI 175311 in this study suggests that in the absence of photorespiration, the glyoxylate
cycle provides anaplerotic reactions to compensate for glyoxylate formation. Nevertheless,
GLO side reactions can still participate in oxalate synthesis by catalyzing excess glyoxy-
late. The expression of another photorespiratory-cycle-related putative mitochondrial
alanine–glyoxylate aminotransferase (Spo12360) involved in the detoxification of glyoxy-
late was upregulated in PI 175311 leaves (Table S5). Toxic effects of excess glyoxylate
on inhibiting RuBP regeneration have been demonstrated in spinach chloroplasts [65].
Although the glyoxylate and glycolate shuttling across the organs is tightly regulated
during photorespiration in plants, it has been suggested that the excess glyoxylate leaking
out from peroxisomes can be rescued by glyoxylate reductase (GLY/GR) by reducing it to
glycolate [66,67]. In PI 175311, strong upregulation of three glyoxylate/succinic semialde-
hyde reductase-like genes (Spo04579, Spo00830, and Spo26769) was observed (Table S5), of
which the former two are truncated proteins, while the latter shared over 64% homology
with Arabidopsis GLY1. The presence of specific activities of NADPH-dependent GLY
isoforms in the cytosol and chloroplasts have been characterized in spinach [68] and Ara-
bidopsis [69,70]. As GLYRs are expected to play a role in the detoxification of glyoxylate
pools, it is not well understood how their specificities and localization could impact oxalate
synthesis in plants. Although there is not enough evidence to support the production of
glycolate or glyoxylate via Rubisco or the glyoxylate cycle in spinach roots, the expression
of GLO genes in spinach roots, as in Arabidopsis [71], suggests the possibility of localized
synthesis using transported substrates. Long-distance translocation of oxalate from source
to sink has been suggested in rice [72].

3.1.4. Oxidative Cleavage of Ascorbic Acid

The oxidative degradation of ascorbate involves cleavage of the C2–C3 bond of L-
ascorbic acid to L-threonate, which is converted to oxalate. Several studies have demon-
strated oxalate synthesis via ascorbate degradation [5,73–75], although the enzymes respon-
sible for this pathway have not been functionally characterized in plants. RNA-seq analysis
identified strong upregulation (3.5-fold log2) of the most abundant (based on FRKM) ascor-
bate peroxidase (APX; Spo08328), as well as two highly expressed ascorbate oxidases (AO;
Spo12052 and Spo12053), suggesting increased degradation of ascorbates in PI 175311
(Table S5). In plants, both APX and AO enzymes are involved in oxidizing ascorbates to
produce dehydroascorbic acid (DHA), converted to oxalate via a series of enzymatic and
non-enzymatic reactions [76]. Production of oxalate, threonic acid, and oxalyl-L-threonates
as end products of ascorbate degradation has been demonstrated in tomatoes [75]. The
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synthesis of oxalate from ascorbate was validated long ago in spinach seedlings using
radiolabeled precursors [77]. A recent study that monitored the fate of ascorbate degrada-
tion during the postharvest handling of spinach leaves using radiolabeled [14C] ascorbate
provides direct evidence of oxalate synthesis through ascorbate [78].

3.2. Oxalate Degradation

Oxalate catabolism in plants proceeds via three routes: CoA-dependent decarboxyla-
tion, oxalate-oxidase-mediated oxidation, and oxalate acetylation. [79,80]. Oxalate decar-
boxylase (OXDC) activity catabolizing oxalate to formate and CO2 has not been demon-
strated in plants, although heterologous overexpression of fungal OXDC reduced the
accumulation of oxalate in tomato fruits [81]. The previously reported [31] putative OXDC
(Spo06441, Spo19759, and Spo25084)-like genes in spinach share poor homology with known
fungal OXDC genes, suggesting the need for the functional validation of spinach enzymes
in order to ascertain the significance of OXDC in oxalate degradation. The absence of any
significant changes in the expression of these genes in the current study suggests a subordi-
nate role of decarboxylation in oxalate catabolism. Manipulation of plant oxalate content
through the activation of oxalate catabolic genes has been suggested [79,82]. Germin-like
oxalate oxidase (GXO) activity that converts oxalate to CO2 and H2O2 has been detected
in monocots [83,84], but not in dicots [85,86]. Despite the relatively high expression of
putative GXO/OXO-like genes reported in spinach leaf tissues [31], the corresponding
enzyme activities have not been detected in spinach [87]. The RNA-Seq analysis did not
show any change in the expression of the OXO genes in the leaf. The expression of putative
OXO2 in PI 175311 root tissues showed a trend for downregulation, although this was not
statistically significant (q-value = 0.10), suggesting the role of OXO in regulating oxalate
accumulation in roots by suppressing its catabolism. Previously, two oxalate-oxidase-like
germins (165 and 172) with possible roles in nitrate stress have been reported in spinach
roots [88]. The acetylation pathway is mediated by four enzymes: oxalyl-CoA synthase,
oxalyl-CoA decarboxylase, formyl-CoA hydrolase, and formate dehydrogenase. The first
enzyme in this pathway—acyl-activating enzyme 3 (AAE3)—involved in oxalate acety-
lation, has been characterized in Arabidopsis [79] and other plants [82,89]. Consistent
with previous studies [31], our qPCR analysis also showed a significant upregulation
(p-value < 0.05) of spinach AAE3 (Spo04424) in PI 175311 leaf and root tissues (Figure 7),
and a trend for upregulation in the RNA-Seq data (q-value = 0.07) (Table S2). Recent
studies characterizing downstream enzymes involved in the degradation of oxalyl-CoA
support the importance of the acetylation pathway in oxalate regulation in plants [90,91].
The induction of AAE3 in roots to avoid the harmful effects of oxalate in response to
aluminum stress [92] is consistent with its higher expression in PI 175311, suggesting its
role in oxalate homeostasis.

4. Conclusions

The current study demonstrated that the transcriptomic analysis of spinach tissues
with contrasting oxalate phenotypes, under normal physiological conditions, indicates a
complex network of genes associated with intrinsic metabolic and physiological processes
that regulate oxalate homeostasis in spinach. The RNA-Seq analysis identified a total of
2308 leaf-specific and 1686 root-specific DEGs, suggesting several molecular mechanisms
that define the high-oxalate genotype. GO analysis of DEGs identified molecular functions
associated with various enzymatic activities and biological processes associated with trans-
port across membranes in the upregulated genes, along with fatty-acid-metabolism-related
processes in the downregulated DEGs in leaf tissues. KEGG pathway analysis revealed
enrichment of the metabolic and secondary metabolite pathways. The expression profiles
of genes associated with distinct physiological processes suggest that the glyoxylate cycle,
ascorbate catabolism, and photorespiratory pathway may collectively regulate oxalate in
spinach. The data indicate a pivotal role of isocitrate lyase in oxalate synthesis in spinach.
Alternative pathways through ascorbate or oxaloacetate degradation, utilizing photorespi-
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ratory intermediates, may also contribute to maintaining steady levels of oxalate under
certain conditions. The findings from this study provide the foundation for novel insights
into the broad-spectrum oxalate metabolism in plants.

5. Materials and Methods
5.1. Plant Growth and Estimation of Oxalates in Spinach

The spinach plants were grown in an environmentally controlled growth chamber
at the Texas A&M AgriLife Research and Extension Center, Uvalde, TX, USA. The seeds
of spinach accession PI 175311 (the North Central Regional Plant Introduction Station,
USDA-ARS, Iowa State University, Ames, IA, USA) and the Bloomsdale variety were
grown inside a controlled growth chamber in plastic containers containing Turface®-based
growing medium under 200 µmol·m−2·s−1 light intensity (12 h each light and dark periods)
at 23 ◦C and 60–70% relative humidity. The plants were fertilized using N-free Hoagland’s
nutrient solution (No. 2 Basal Salt Mixture HOP03-1LT, Caisson Labs, Smithfield, UT, USA).
The leaf and root samples collected from 6-week-old plants were frozen in liquid nitrogen
and stored at −80 ◦C until subsequent analyses. Three independent plants were used for
metabolich analysis, total RNA extractions, and physiological and biochemical analysis.

5.2. Estimation of Photosynthesis, Minerals, and Quantification of Free Amino Acids

The leaf photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Cs),
and intercellular CO2 concentration were measured using a LICOR-6400XT Portable Photo-
synthesis System (Lincoln, NE, USA), from the fully expanded leaves of 6-week-old plants.
The chlorophyll content was measured using a portable chlorophyll meter (SPAD-502,
Konica Minolta, Tokyo, Japan). The plant samples were analyzed for total N (TKN), NO3

−,
and NH4

+ using a Rusing EasyChem Plus analyzer (Chinchilla Scientific, Oak Brook, IL,
USA). The amino acid analysis was performed using a WatersTM Acquity H-class UPLC
system coupled with a WatersTM Xevo TQs MS–MS mass spectrometer with an electro-
spray ionization (ESI) probe following a pre-established protocol [93]. Data integration
and quantitation were carried out using Waters’ TargetLynx ™ software. The statistical
program JMP Pro 14 (SAS Institute, Cary, NC, USA) was used for statistical analysis.

5.3. Oxalic Acid Estimation

Oxalate content was then determined using an oxalate kit (KA4532; Abnova, Taipei,
Taiwan). Approximately 15 mg of leaf tissue was homogenized in liquid nitrogen using
a paint shaker and then extracted using ice-cold assay buffer, as per the manufacturer’s
protocol. Using this method, in the presence of the “oxalate convert” and “oxalate enzyme
mix”, oxalate forms an intermediate that reacts with a particular probe to generate color
at 450 nm. Oxalate standards were prepared in a 96-well flat-bottom microplate in order
to establish a standard curve (0–10 nmol). The amount of oxalate in the sample wells was
determined using a multi-well spectrophotometer (Multiskan GO microplate spectropho-
tometer, Thermo Scientific, Waltham, MA, USA) and comparing absorbance to the standard
oxalate curve. The oxalate concentration in spinach leaves was calculated as mg/100 g of
fresh weight for each sample.

5.4. RNA-Seq Analysis of Spinach Leaves and Roots

Twelve independent libraries were created using total RNA samples from three repli-
cates of leaf and root tissues from PI 175311 and Bloomsdale. The samples were flash-frozen
in liquid nitrogen and ground to a fine powder using 3-mm-diameter steel balls (Abbott
Ball, West Hartford, CT, USA) in a paint shaker (Harbil, Wheeling, IL, USA). Total RNA
was extracted using an RNeasy® Plant Mini Kit (QIAGEN Sciences, Germantown, MD,
USA), as per the manufacturer’s protocol. The purity of the RNA was confirmed using the
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). The RNA Nano 6000 Assay
Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA) was used
to assess RNA integrity and quantitation. Sequencing libraries were generated using the
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NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA), follow-
ing the manufacturer’s protocol. The clustering of the index-coded samples was performed
on a cBot Cluster Generation System using a PE Cluster Kit cBot-HS (Illumina), according
to the manufacturer’s instructions. After cluster generation, the libraries were sequenced
on an Illumina Hiseq platform, and 150 bp paired-end reads were generated. Raw reads of
fastq format were processed in order to obtain clean reads by removing the adapter, reads
containing poly N (reads when uncertain nucleotides constitute more than 10 percent of
either read; N > 10%), and low-quality reads (reads when low-quality nucleotides (base
quality less than 20) constitute more than 50% of the read. The Q score (Quality value) of
over 50% bases of these read is ≤5) from the raw data. At the same time, the Q20, Q30, and
GC content of the clean data were calculated. Spinach reference genome and gene model
annotation files were downloaded from SpinachBase (http://spinachbase.org/, accessed
on 13 April 2019). The index of the reference genome was built using Bowtie v2.2.3, and
paired-end clean reads were aligned to the reference genome using TopHat v2.0.12. HTSeq
v0.6.1 was used to count the reads mapped to each gene. The FPKM [94] of each gene was
calculated based on the length of the gene and the number of reads mapped to the gene.
Differential expression analysis of the genes was performed using the DESeq R package
(1.18.0) [95]. Genes with a q-value (padj) (p-value after normalization) < 0.05 found by
DESeq were considered to be differentially expressed. Gene Ontology (GO) [96] enrichment
analysis of differentially expressed genes was implemented using the GOseq R package,
with which gene length bias was corrected. GO terms with p-values of less than 0.05 were
considered to be significantly enriched by DEGs. KOBAS software in the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway database [97] was used to test the statistical
enrichment of differential expression genes. The online tool Venny v.2.0.2 [98] was used to
show the distribution of differentially expressed genes using Venn diagrams. The RNA-
Seq dataset is accessible through the GEO Omnibus (https://www.ncbi.nlm.nih.gov/geo,
accessed on 10 May 2021) database (Series GSE146711). The transcription factor (TF) en-
richment analysis and the interaction between TFs and their target genes was evaluated
using PlantRegMap [48], and the number of TFs with significantly overrepresented target
number genes was retrieved (p-value < 0.01; Fisher’s exact test).

5.5. Validation by Quantitative Real-Time PCR

The expression patterns of 13 selected DEGs, based on their significance in RNA-
Seq analysis, were examined using quantitative real-time PCR (RT-qPCR) in both tissue
types. The gene-specific primers based on the selected unigene sequences (Table S14;
Supplemental Materials) were designed using Primer Premier 3.0 software. Total RNA was
extracted using an RNeasy® Plant Mini Kit (QIAGEN Sciences, Germantown, MD, USA),
as per the manufacturer’s protocol, followed by treatment with DNase1 (QIAGEN Sciences,
Germantown, MD, USA), and was then subjected to reverse transcription using iScript
RT Supermix (Bio-Rad Laboratories, Inc, Hercules, CA, USA). The quality and quantity of
the RNA were examined using a Denovix DS-11+ spectrophotometer (Wilmington, DE,
USA). Gene expression analysis via reverse transcription-qPCR was performed using a
BioRad CFX96 qPCR instrument and an SsoAdv Univer SYBR GRN Master Kit (Bio-Rad
Laboratories, Inc, Hercules, CA, USA). The spinach 18S rRNA was used as internal control,
and the relative expression levels (Cq values) of each gene were normalized by taking an
average of three biological replicates. The relative expression levels of each gene were
calculated using the 2−∆∆Ct method [99].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22105294/s1.
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