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Abstract. Gelsolin is an actin regulatory protein 
which is unique among vertebrates in that it is found 
as both an intrinsic cytoplasmic protein and as a se- 
creted plasma protein. We demonstrate that plasma 
and cytoplasmic gelsolins are derived by alternative 
transcriptional initiation sites and message processing 
from a single gene 70 kb long, containing at least 14 
exons. Their message and amino acid sequences are 
identical except at the 5' end/NH2 termini. The cyto- 
plasmic-specific 5' sequence is derived from two exons 

that encode untranslated sequence, while the plasma 
message-specific 5' sequence is derived from a single 
exon that encodes untranslated sequence, the signal 
peptide, and the first 21 residues of the plasma pro- 
tein. The two transcriptional initiation sites are sepa- 
rated by >t32 kb. Biosynthetic and RNase protection 
studies indicate that a number of cell types make both 
plasma and cytoplasmic gelsolin in widely varying 
amounts and ratios. 

ELSOLIN is a multifunctional actin-binding protein 
which was first identified in rabbit macrophages and 
subsequently found in a wide variety of vertebrate 

cells (Yin and Stossel, 1979; Yin et al., 1981; Stossel et al., 
1985; Carron et al., 1986; Nodes et al., 1987). Gelsolin binds 
actin monomers, nucleates actin filament growth, and caps 
the fast-growing end of actin filaments, thus preventing actin 
monomer exchange (Bryan and Kurth, 1984; Janmey et al., 
1985; Byran and Coluccio, 1985; Stossel et al., 1985). In ad- 
dition, it severs actin filaments by nonproteolytically break- 
ing the bond between actin monomers in a filament. Gelsolin 
is activated by I~M Ca 2§ and its effects on actin could cause 
profound changes in the cytoskeleton of a cell. Recent studies 
have indicated that, besides Ca 2+, other regulatory mecha- 
nisms may also affect gelsolin-actin interactions in cells 
(Chaponnier et al., 1987). In vitro studies show that poly- 
phosphoinositides inhibit actin severing by gelsolin and dis- 
sociate actin-gelsolin complexes (Janmey and Stossel, 1987; 
Janmey et al., 1987). These observations suggest that gelso- 
lin may be regulated by a two-signal mechanism involving 
changes in Ca 2§ and polyphosphoinositide concentration, 
and may have an important role in the reorganization of the 
cytoskeleton during receptor-mediated signaling. 

A closely related, slightly larger form ofgelsolin has been 
found in the plasma of every vertebrate species examined 
(Chapponier et al., 1979; Norberg et al., 1979; Harris et al., 
1980). As it binds actin with high affinity and severs actin 
filaments, plasma gelsolin may be essential for the clearance 
of actin filaments released into the bloodstream or extracel- 
lular space during tissue injury and cell senescence. Consis- 
tent with this hypothesis, gelsolin-actin complexes have been 

demonstrated in the serum of rats treated intravenously with 
oleic acid, which causes an acute lung injury syndrome, and 
in the serum of patients with the adult respiratory distress 
syndrome (Smith et al., 1988). 

Plasma gelsolin is present at •220 pg/ml in human plasma 
(Smith et al., 1987). The source of such a substantial amount 
of extracellular gelsolin has not yet been defined. Biosyn- 
thetic labeling studies have shown that the human hepatoma 
cell line, HepG2, secretes large amounts of plasma gelsolin 
and synthesizes only a small amount of cytoplasmic gelsolin 
(Yin et al., 1984). We have recently isolated full-length 
plasma gelsolin cDNA clones from a HepG2 library and 
showed that plasma gelsolin mRNA encodes a 27 amino acid 
NH2-terminal peptide wit h characteristic features of a sig- 
nal peptide, which is not found in the mature protein (Kwiat- 
kowski et al., 1986). At the protein level, plasma gelsolin is 
very similar to cytoplasmic gelsolin, except that it contains 
a 25 amino acid residue extension (plasma extension) at its 
NH2 terminus, which appears to account for the 3-kD size 
difference between the two proteins on SDS-polyacrylamide 
gels (Yin et al., 1984). The plasma gelsolin amino acid se- 
quence, as inferred from cDNA cloning, is identical to all 
available amino acid sequence (from three regions of the pro- 
tein, encompassing 89 amino acids) of rabbit macrophage 
gelsolin, confirming that the two proteins have similar pri- 
mary structures. Furthermore, Southern blotting studies 
show that 5' and 3' fragments of the plasma gelsolin cDNA 
bind to a single band in restriction enzyme-digested human 
DNA, suggesting that a single gene encodes both human 
plasma and cytoplasmic gelsolin (Kwiatkowski et al., 1986). 

The existence of gelsolin as an intrinsic cytoplasmic and 
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closely related secreted protein is unique among vertebrates. 
Its dual localization is distinct from that described for 
fibronectin or IgM, which are either secreted or inserted into 
the membrane. However, an example of secreted and cyto- 
plasmic variants of the same protein has been described in 
yeast. The yeast sucrose-hydrolyzing enzyme invertase is 
both an intracellular and secreted protein and was demon- 
strated to be derived from a single gene by alternative pro- 
cessing of message RNA, with selective addition of a signal 
peptide on the secreted form (Perlman and Halvorson, 1981; 
Carlson et al., 1983). 

To determine how the two forms of gelsolin are derived 
from the same gene and assess the extent of their structural 
homology, we have isolated cytoplasmic gelsolin cDNA and 
gelsolin genomic clones. We report that plasma and cytoplas- 
mic cDNA clones are identical at every base apart from their 
5' region, where they diverge entirely. Analysis of genomic 
clones establishes that a single gene encodes plasma and cy- 
toplasmic gelsolin, with organization of this 5' region [(cyto- 
plasmic) exon 1] intron [(cytoplasmic) exon 2] intron [(plas- 
ma) exon 3] intron [(common) exon 4] over a region of 35 kb. 
RNase-mapping analysis, S1 nuclease analysis, and primer 
extension studies indicate that initiation of transcription of 
plasma gelsolin message occurs at the 5' end of exon 3, estab- 
lishing that the two gelsolins have distinct transcription initi- 
ation sites. The common 3' remainder of the gene comprises 
another 32 kb and >t10 exons. We also show that human fibro- 
blasts, uterus, macrophages, and all cell lines examined con- 
tain message for both plasma and cytoplasmic gelsolin, with 
amounts correlating with biosynthetic rates for the two pro- 
tein forms. 

Materials and Methods 

Cell Culture and Biosynthetic Labeling 

Human monocytes were isolated from the blood of healthy donors afar  in- 
formed consent and maintained in culture for 3-7 d as described (Cole et 
al., 1982). During this time, they become adherent to the surface, extend 
processes, and phagocytose particles, thus acquiring properties of mature 
macrophages and herein are referred to as macrophages. Human uterus was 
obtained from surgical specimens of patients undergoing hysterectomy. Pri- 
mary cultures of human neonatal foreskin fibroblasts were established and 
maintained in culture as described (Goldring et al., 1979), and used between 
passages 4 and 15. HepG2 cells were maintained as described previously 
(Yin et al., 1984). The human epidermoid carcinoma line A431 and the hu- 
man colonic adenocarcinnma cell line HT29 were both obtained from 
American Type Culture Collection, Rockville, MD, and maintained as 
recommended. 

Confluent macrophage and fibroblast cultures were labeled for 3 h with 
L-[35S]methionine (1.0 Ci/mM, 100 laCi/mi; New England Nuclear, Bos- 
ton, MA) in DME lacking methionine. Supernatant and cellular lysate frac- 
tions were collected and equivalent amounts were immunnprecipitated with 
an anti-gelsolin monoclonal antibody coupled to sepharose beads (Chapon- 
nier et al., 1987). Immunoprecipitated proteins were separated by elec- 
trophoresis on linear gradient 5-10 % polyacrylamide-SDS gels (Laemmli, 
1970). 

RNA Isolation and General DNA Methods 
RNA was isolated as described (Chirgwin et al., 1979). Briefly, fresh tissue 
was minced on ice into 0.5-g pieces and homogenized in an eightfold excess 
volume of guanidinium thiocyanate solution at top speed for 1 m using a 
polytron homogenizer (Brinkman Instruments Co., Westbury, NY). 1 g CsCI 
was added per 3.5 ml homogenate and after clarification, was layered over 
a cushion of 5.7 M CsCI and centrifuged in a rotor (model AH650; Sorvali 
Instruments Div., Du Pont de Nemours & Co., Inc., Newton, CT) at 35,000 
rpm for 8 h. For tissue culture cells, a fivefoid excess volume of guanidinium 
thiocyanate solution was added to the drained dish and addition of CsCI was 

omitted. The RNA precipitate was rinsed with 70% ethanol, resuspended 
in TE, and ethanol precipitated. RNA was quantitated by UV spectroscopy 
(OD 260) and inspection of ethidium bromide stained formaldehyde gels. 
Poly A + RNA was selected by chromatography over an oligo (dT) cellulose 
column (Aviv and Leder, 1972). Phage DNA preparation, plasmid DNA 
preparation, restriction and other enzyme use was as described (Maniatis 
et al., 1982). Labeled probes were prepared from gel-purified subcloned 
cDNA and genomic inserts by the random hexanucleotide method (Feinberg 
and Vogelstein, 1983). DNA and RNA (formaldehyde) agarose gels were 
transferred to Genescreen Plus, dried, prehybridized, probed, and washed 
as recommended by the manufacturer (New England Nuclear, du Pont Co., 
Wilmington, DE). 

Construction and Screening of Libraries 

A kGTII cDNA library was prepared as described (Ginsburg et al., 1985) 
from poly A + RNA isolated from day-7 maerophages in culture. This li- 
brary was the generous gift of Alan Ezekowitz, Children's Hospital Medical 
Center, Boston, MA. An EMBL3 human genomic library was prepared 
from a size-fractionated partial Sau3A digest of genomic DNA and was the 
generous gift of David Bonthron, Children's Hospital Medical Center, Bos- 
ton, MA. 

DNA Sequencing 

eDNA and genomic clones were subeloned into M13mpl8 and Ml3mpl9 and 
sequenced by the dideoxy chain termination method (Sanger et al., 1977). 
All sequencing data presented is the result of determinations on both strands 
by forced cloning of appropriate small restriction fragments and/or deletional 
subcloning (Dale et al., 1985). Primers used include the universal primer 
(No. 1211; New England Biolabs, Beverly, MA), a series of 17 base oligonu- 
cleotides complementary to the plasma gleoslin eDNA sequence selected 
at 300-bp intervals along the cDNA and a 25-base oligonucleotide (com- 
plementary to bases 191-215 of the plasma gelsolin cDNA). The oligonucle- 
otides were prepared on an synthesizer (model 470A; Applied Biosystems, 
Inc., Foster City, CA) by the phospbotriester method. In some cases, ambig- 
uous sequences in GC-rich regions were sequenced by substituting 7-deaza- 
dGTP (Boehringer-Mannheim Diagnostics, Inc., Houston, TX) for dGTP 
in the reaction mixtures. 

Genomic Structure Determination 

Genomic structure was determined by a combination of methods. Eco RI, 
Bgl II, Hind III, and combined digests of isolated gennmic clones were 
transferred to Genescreen Plus and probed with fragments of the plasma 
and macrophage gelsolin cDNAs to identify fragments containing coding 
regions and to delineate a partial ordered map of restriction sites at the 
genomic level. To complete the map, restriction fragments of genomic 
clones were used to confirm overlapping regions of the clones and to localize 
fragments not containing exons. 

Primer Extension 

2 pmol of the 25-mer oligonucleotide (orientation antisense to plasma gelso- 
lin eDNA, bases 191-215) was labeled with 100 ~tCi y32p ATP using T4 
polynucleotide kinase, phenol/chloroform extracted and ethanol precipi- 
tated. 0.01 pmol of the labeled oligonncleotide was annealed to 0.5 gg 
polyA + RNA in 10~, 50 mM Tris-HCl, 0.3 M NaCI, pH 8.0, by heating to 
85~ for 5 min, then incubating at 60"C for 1 h. The annealed mixture was 
then ethanol precipitated and resuspended in 20~, 140 mM KC1, 100 mM 
Tris-HC1 pH 8.3, 0.5 mM dNTPs, 10 mM MgC12, 4 mM dithiothreitol 
DTT. 8.5 U AMV reverse transcriptase (Life Sciences, Inc., St. Petersberg, 
FL) and 20 U RNasin (Promega Biotech, Madison, WI) were added and 
the mixture incubated at 42"C for 1 h. The reaction mix was then treated 
with 1g 0.5 M EDTA and 3~ 1 M NaOH at 65"C for 30 rain to degrade 
the RNA, ethanol precipitated, and analyzed by gel eleetrophoresis on a 6% 
polyacrylamide/7 M urea gel. Molecular weight standards were prepared 
by T4 polynucleotide kinase/T32P ATP labeling of Hinf I and Msp I digests 
of pBR322. 

RNase Protection 
Uniformly 32p-labeled RNA probes were synthesized as described using 
the pGEM3 and pGEM4 plasmids and SP6 RNA polymerase (Melton et 
al., 1984). The plasmid constructs were (a) the 5' Eco RI-Bgl II 224-bp 
fragment of the plasma cDNA (bases 1-224, Fig. 2, b and c) was subcloned 
in the Eco RI-Bam HI site of pGEM3; (b) the 5'Eco RI-Bgl II 2U-bp frag- 
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ment of the macrophage cDNA (bases 1-211, Fig. 2, a and c) was subcloned 
in the Eco RI-Bam HI site of pGEM3. Probes were phenol/chloroform ex- 
tracted and ethanol precipitated. !% of the labeled probe was then hybrid- 
ized to 10 I~g RNA or poly A + equivalent in 10~ 80% formamide, 40 mM 
Pipes, pH 6.7, 0.4 M NaCI, 1 mM EDTA for 6 h at 45~ 0.1 ml of digestion 
buffer (10 mM Tris-HCl pH 7.5, 5 mM EDTA, 0.3 M NaCI, 4 ~tg/ml RNase 
A [Sigma Chemical Co., St. Louis, MOI) was then added and incubated 
at 37"C for 30 min. 7~. 10% SDS and 23. proteinase K (5 mg/ml) were 
added and incubated at 370C for 15 min, and the digestion product was ex- 
tracted with phenol/chloroform and ethanol precipitated. Protected frag- 
ments were analyzed by gel electrophoresis on 6% polyacrylamide-7 M 
urea gels using labeled Hinf I-digested pBR322 and synthesized labeled 
RNA probes (from Promega Biotech and generated from appropriate sub- 
clones) as standards, followed by autoradiography. 

S1 Nuclease Analysis 

For S1 nuclease analysis of gelsolin mRNA, hybrid genomic DNA-cDNA 
constructs were prepared. The cytoplasmic exon-specific construct (CEC) ~ 
is a hybrid consisting of bases 380-642 of exon 1 (Fig. 4 a) and bases 4-211 
of cytoplasmic cDNA (Fig. 2, a and c). The plasma-specific construct 
(PEC2) consists of bases 1-386 of exon 3 (Fig. 4 c) and bases 15-224 of 
plasma cDNA (Fig. 2, b and c; plasma cDNA numbering). The plasmids 
were digested with Sau3A, phosphatased with calf intestinal phosphatase 
(Boehringer-Mannheim Diagnostics, Inc.), end-labeled with ,r ATP 
with polynucleotide kinase, digested with Ban I and Msp I, respectively, 
and size-fractionated by PAGE. 10,000 cpm of isolated probe was hybridized 
to cellular RNA in a solution of 80% formamide, 0.05% SDS, l mM EDTA, 
10 mM Pipes pH 6.4, 0.4 M NaCI by heating at 90~ for 5 min, then 65~ 
for 30 min, and then incubated at 42~ for 8-12 h. S1 nuclease (3-100 U; 
New England Nuclear) was then added in 0.3 M NaCI, 30 mM sodium ace- 
tate pH 4.5, 3 mM ZnSO4, and digestion proceeded for 1 h at 22~ Di- 
gestion products were analyzed on 7 M urea-6% polyacrylamide-sequenc- 
ing gels. Probes were also sequenced by the Maxam and Gilbert procedure 
(1977), and run on the same gel. 

Resul ts  

Comparison of  Cytoplasmic and Plasma 
Gelsolin cDNA 

We have previously shown that HepG2 synthesizes primarily 
plasma gelsolin (Yin et al., 1984), and the predominance of  
this message form in these cells is indicated by the fact that 
many plasma but no cytoplasmic gelsolin cDNA clones were 
isolated from our HepG2 library (Kwiatkowski et al., 1986). 
In contrast, human macrophages and dermal fibroblasts syn- 
thesize primarily cytoplasmic gelsolin and secrete a small 
amount of  plasma gelsolin (Fig. 1). As shown previously, cy- 
toplasmic gelsolin migrates on SDS-polyacrylamide gels as 
a 90-kD polypeptide, while secreted gelsolin has an apparent 
molecular mass of  93 kD. Using a 400-bp 5' fragment of the 
plasma gelsolin cDNA as probe, six cytoplasmic gelsolin 
clones were isolated from a human macrophage cDNA li- 
brary out of 500,000 plaques screened. The clone with larg- 
est insert is 2.6 kb long, and contains 154 bp of sequence up- 
stream of the first codon (val) of  cytoplasmic gelsolin (Fig. 
2 a and c). This codon is immediately preceded by an ATG/ 
met codon with flanking sequences matching the consensus 
for initiation (Kozak, 1984) at 7-9 bases. Since there are no 
other initiator methionines in this 5' region, nascent cytoplas- 
mic gelsolin is most likely translated with an NH2-terminal 
met (position -1)  which is subsequently cleaved to generate 
the mature protein. 

As would be expected for cytoplasmic gelsolin message, 
the macrophage cDNA is distinct from the previously re- 
ported HepG2 plasma gelsolin cDNA (Fig. 2 b). It does not 
encode the 27 amino acid signal peptide nor the unique 
25 amino acid sequence at the amino terminus of  plasma gel- 

Figure 1. Immunoprecipitation of 
secreted and intracellular gelsolin 
from human macrophages and 
fibroblasts. Day-7 human macro- 
phages and passage-7 foreskin fi- 
broblasts were labeled with [35S]- 
methionine, and culture superna- 
tants and cellular lysates were 
immunoprecipitated with anti- 
gelsolin-Sepharose beads. Radio- 
labeled bands were detected by 
autoradiography. Lane 1, macro- 
phage lysate; lane 2, macrophage 
supernatant; lane 3, fibroblast su- 
pernatant; and lane 4, fibroblast 
lysate. Molecular mass standards 
in kilodaltons are indicated. The 
prominent 42-kD band in the fi- 
broblast lysate most likely is actin 
bound to gelsolin. 

solin (plasma extension) (Kwiatkowski et al., 1986). There 
are 145 bases of unique macrophage cDNA sequence and 158 
bases of unique plasma cDNA sequence. Comparison with 
the corresponding protein sequence indicates that the diver- 
gence occurs at residue 21 of  the 25 residue plasma gelsolin 
extension, and is upstream of the initiation met of  cytoplas- 
mic gelsolin (Fig. 2 d). In contrast, the remaining 2.44 kb 
of  the macrophage cDNA, encompassing 10 bases of  5' un- 
translated region, the entire coding region of  cytoplasmic 
gelsolin, and the 3' untranslated region is identical to that of 
plasma gelsolin. Thus, the calculated molecular mass of cy- 
toplasmic gelsolin is 80.5 kD (vs. 83.0 kD for plasma gel- 
solin). 

Mapping the Genomic Structure of  Gelsolin 

The perfect sequence identity of the 3' 2.44 kb of the cyto- 
plasmic and plasma gelsolin message strongly suggested that 
they are products of a single gene, in accord with previous 
indirect evidence based upon Southern blot analyses (Kwiat- 
kowski et al., 1986). The specific differences in their 5' 
regions were therefore likely to be generated by alternative 
exon splicing. To determine the genomic structure of  gelsolin 
and the pattern of splicing involved, seven distinct overlap- 
ping clones were isolated from a human genomic library pre- 
pared in EMBL3 (Fig. 3) by screening with the labeled 
cDNAs as probes and chromosome walking in the 5' region 
of  the gene. Mapping studies show that they encompass the 
entire gelsolin gene, spanning a length of 70 kb. There are 
at least 14 distinct exons, and the first exon that is common 
to plasma and cytoplasmic message is actually exon 4, lo- 
cated in the middle of the gene. 

Genomic fragments containing the first 5 exons within the 
first 40 kb of  the gene were subcloned and sequenced to per- 
mit their precise localization (Fig. 4).~ The unique 145-bp 5' 
cytoplasmic untranslated cDNA sequence is spliced together 
from two different exons separated by 13 kb. The first 58 bp 
of the cDNA sequence is derived from exon 1, while bases 
59-145 are derived from exon 2. The contiguous cDNA se- 

1. These sequence data have been submitted to the EMBL/GenBank Data 
Libraries under the accession number Y00817. 
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a 50 
AGCTGAGCGCAGCTGGACCCAGCAGCCGCTGTCTCCAGTGCCGCAGCAGCAGGTAGTGCTCATAGCTCTCTTTGTCCAGTGCTTCGGCCT 

100 
TGGTCCCAGCGCCTTCCCACGGAGCAGCACTCTTCACCCTGCACAGCCTTGTTAG 

b 50 
GCCGTGTCGC•ACCATGGCTCCGCACCGCCCCGCGCCCGCGCTGCTTTGCGCGCTGTCCCTGGCGCTGTGCGCGCTGTCGCTGCCCGTCC 

100 150 
GCGCGGCCACTGCGTCGCGGGGGGCGTCCCAGGCGGGGGCGCCCCAGGGGCGGGTGCCCGAGGCGCGG 

C 150 200 
CCCAACAGCATGGTGGTGGAACACCCCGAGTTCCTCAAGGCAGGGAAGGAGCCTGGCCTGCAGATCTGGCGT 

(M) V V E H P E F L K A G K E P G L Q I W R 

d 
Cytoplasmic 

Plasma 
UT SP PE 

Figure 2. Comparison of 5' sequences of macrophage and plasma cDNA clones. (a) 145 bases of sequence unique to macrophage cDNA 
clones. (b) 158 bases of sequence unique to plasma gelsolin cDNA clones (Kwiatkowski et al., 1986). (c) Sequence common to both groups 
of cDNA clones. The deduced sequence of human macrophage gelsolin is shown in the single letter code. The first ATG present in the 
macrophage sequence is shown in boldface. Numbering is according to the macrophage cDNA sequence. (d) Diagram of unique and 
common regions of these cDNA clones. (Open box; UT) untranslated; (cross-hatched box) translated in plasma gelsolin only; SP, signal 
peptide; PE, plasma extension; (solid box) translated in both messages; (M) methionine. 
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Figure 3. Map of gelsolin gene. D N A  size markers are shown at top in kilobases. Overlapping genomic  clones are shown at bottom. Eco 
RI, Bgl II, Hind III, and Sag I restriction enzyme sites are as indicated. Exons and splicing patterns to generate plasma and cytoplasmic 
gelsolin message are as indicated. Positions of  exons 1-5 are localized precisely by D N A  sequence whi le  exons 6-14 are localized only 
to within restriction fragments by blotting studies. 
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exon  1 
1 GAGCTCGCTTGCCC~AAGTTACAGGACTAGTCGATGTCTGGGGTTCCA~q`CCAGGCCTTCTGACTCCGAG~CGCCTGCTT`~`~TGGTCC~CTTT~GGACC I00 

101 AGGGATGCACTTGGCATTTTCGTTACTTCATTCGGAATGAG~TGGGAATCGCT~TT~T~CTTATTC~CTTcCGT~GA~W~GAAT~TCC~CT~TTTGCA 200 

201 TG~AGCCTATGTCA~TCTT~GAGGG~TTTG~T~CTGAAGTC~GTT~T~T~AGGGCTGAAAT~TGCCT~0~TG~TGCTA~TT~AGCATT~CT~GCTTG 300 

301 ~C~GTC~ATCTGAGCT~TTTG~C~AG~AGCTCAGGAG~TG~TGGGTCT~T~GAC~CTAGG~C~TTCA~ATCT~CCCT~GTG~T~CGG 400 
401 GC~TCAGTTT~TC~AGGGGAAAG~AGAGGGCTTGGTTGGTG~CTTCCTGCGAGKTGAAGCGAGGGGT~CcCTGGACGAAGGc~AGCTTGGAGCCACc~ 500 

501 G~AGcAG~cGA~GGGA~GG~TGG~G~T~T~A~C~G~cTGc~GGC~G~C~G~C~CGA~GGCGG~T~Cc~CCC~C~Cc~TGcccACC~GGc 600 

601 ~G~GCGCaccacAA~GCC~CG~CCCGCCG~CCGGAA~AG~TGAGcGCAG~T~GACC~A~-A~t~cT~TcTc~TA~GGGAG 700 

701 G•GCG•GGCCCCGGCCCC•GGCATCTGGGGGTCCCGGGCTGATTTGAGTCCTTCCTCTC••TTCCTTCCCG•TCCTATCTCG••CGCGCCTGGAGCTC 798 

exon 2 

1 AGGTAGTGAGTG CGGTGTTG CTGGATGTG TGTG CAAGTACTGATTGTGTGACCC CTGGTGGAaGGGAGGAAAGGGGTTGAAAeATCAAATGG GGATTTGA I00 

101 C CAGATGAC CTTGAACT CC C C CTGAG GCT GACATT CTGTG C C CTTTGTTTACAGGTA~TGCTCATAGt~fCTCTTT~TCCA~TI~'TTC~C~TCCCA 200 

201 GCGCCTT~CCACGGAGCAGCACTcTTCA~CCTGCACAG~TGTTAGGTAGGTAGAG~AATA~AGA~A~TGTTGTC~T~TTT~C~G~CTGG~G~ 300 

301 AGGGAAG CCTGGAGGGGACTTCAGTGGTGGAAGCAGCCGCTGTAGCCACAGTGGATTCAGTGGGAGTCCCTGAGGT 376 

exon  3 
1 AAGCTTTCAAAAATTGTTAGTTCATGTTATTTTTTTGCTGGAGGTGTTAGGTGCGGAGAGGCGAGGGGGC~CGCG~G~GTCGCAGGAGG~CAGCTG~GC 100  

lOl ~cGccGccGc~cGTGcc~GcGcccA~TAGT~GcAcAcA~crAGcGccTGccG~ATGTcA~a~aaT~TGQ~T~c~c~GAa~Ga~G~G 200 

201 GGG~TGC~G~GCC~TGTCGGGTCGAT~GGGTGGGAACCCAGATGT~T~CAAGATC~GAGA~AGATC~G~G~G~CT~CCTGGG~GCG~T~Cc 300 

301 GGCTTGGGCGGGATGGGCGGGCGGCTACTTAAGGTCGGCGACCCGAGGCCGCGgctG~CGACTGGGTCCCCTGcC~I~Tt~3~ACcATGGCTcC~AC~G 400 

401 CCCCGCGCCCGCGCTGCTTTGCGCGCTGTCC~CL'GCTGTGCGCGCTGTCGCTGCCCGTCCGCG~C~~C~TCC~~ 500 

501 GCG~CCCAGGGG~3GGTGC~GCC~TGAGTGCC~GGGGGGC~CCGGGGCTC~GGAGTAACT~T~TATTGTAAGTT~TTG~AGATACAG~GCTA 600 

601 GGAAAAGGGGAGTAATTCAGGTCTAGAATGGAAAAACTGTTTTGTTGCTTTGTAAGTAT•TCTTG•TGCTTCCGGGGCTCTGG•T•GCAGACGAGGGTGG 700 

701 GAGC•TCGGGG•CCTGGCTGTTCCTTCC•AGGAAG•TAAC•TCACCTTGGC•GGATTT•TTTT••••TGT••T••T•TAA•AT•TTACCTC•TGT•T••T 800 

801 GAATTCT~CTTTCCTTCTCTGATTTTTT~TCC~T~TG~CTCA~TT~T~TC~TT~T~TCTTCTGATGTCTTCTT~CATTTACGATT~TTGTTfTCATTT 900 

901 GATCT•T•T•CTTCTCCAATATTT•CTT•TTT•TTGTATGA•CTCG•CTGT•TG•TTATGGT•ATTATTAT•ATTTCTT•TCTC•TTTCTGCTGTCTTCC 1000 

1001 CTGCCCTGTCTGGTTT•GTGTTTTT••A•••TT•TGC•TGAGTTCTCCCCA••TTGTTTCT•TGACTTCTCT••TCTGATTTTTA•T•CCACCAGAT•T• 1100 

1101 TT•TCCGG••AGAGGTGACCTGCAC•TGCTGATTTTTGTCCT•GACTC•AGCCTAACCCT•CTG•A•••T•C••GG••••AG••C•AGTG•ATGTGTAAT 1200 

1201 AGC•T••C•ATTTTTAAC•A•TT•ATCTC•AACAG•CT•CTGAAGACCCTGGTGCAT••T•TT•T••T•TT••AAGAAATGAAATTTGGGGTGGTGTGTT 1300 

1301 GTGGGGCAGGAGGGAGGAGGCAGACAG•GCAGGAGGC•ACTTGGACTCAGCCATTTGGA•CCTT•TTGGGGGTATGATGGGGATGGGTA•AGAGAGGAGA 1400 

1401 GGGGGCTCCTGTGGA 

e• 4 
1 TTGCACTCCAGACTGGACAACAGTGCGAGACTCTGTCTe GAAAAAAAGAAAGAAAGAAAAGAAAGGAGCAGGGAGGTAGAG I00 

101 CCCTCTGTACCCTCCATCACCAGAAAAAGCCTGAAGAGGGGCTGAGTAGGAGGGACAGATGCTGGCCAGGG•ACAGAGGTTTTGAAGCATAAAACT•TTG 200 

201 CCCTGTTTGCTGACTCGTTGAGACAGGGTGCCCAGAAGGGGATAGACTT•C•TGGGG•GTGGGGAGAG•AGGAGGCTCAAGTGAGATG•TCTTGGTGCTA 300 

301 GAAACCGCCCTCCCTCATGCCTGGGGTCTCT~CCTGCCAGGA~CTGCC~CG~TTAGG~T~TGC~CTGT~T~ATC~CAGcCcAAcAGcATGGTGGTGGAA 400 

401 ~A~cc~GAGTTCcT~AA~cAF.~GGAAGGAGccT~Gc~J~AGATcTGGCGTGTGGAGAAGTTt~.GATCTGGT(~Cc~c~c~-``~~ 500 

501 TCTTcA~CGAcG~TA~GT~AT~TGAAGACAGTG~AGcTGAGGAA~3AAAT~A~C~c~A~TGAGG~TGG~C~G~ 600 

601 CCAACCCCCTTGCC~AGCCCC~ATT~TGAACAGTGCAGACCTTTGGGGCATGGT~CCCAGGGAGGGAACTGATTATTGAG~AC~TAGTATGTGCTGGG~ 700 

701 CCTTGACTGGTGGTT•ATGC•CTGAGA•GCTAGAGCCAG••TGG•CAAGTT•A•A••C••A•T•TG•C•CTAAC•CATGTTCTGT•CTTTGGCAA•TCAC 0 0 0  

801 TTAGTGTCCCTGTGGAGTGGACATGATGATAGCTCTGCACTACCTCACAGGAATGTTGTGAGCGTTAAA•A•CTTACTGTGA•ACTCAGAA•TGTGGGTG 900 

901 AATTGGAGACCCTGGACCTCTCCACAACTTCCCTGGCCCAGCTCCAGGCACTCCCCAGTTTG 

Figure 4. Genomic sequences of regions containing exons 1-4. Exon sequence, as identified by comparison with cDNA sequence, is shown 
in boldface. Sequences present upstream of exons 1 and 3 matching the Spl consensus (GGGCGG), in either orientation, are underlined. 
Transcription initiation sites in exons 1 and 3 are in lowercase, bases 608-612 and 354-356, respectively. 

quence (bases 146-350) is found another 23 kb downstream 
in exon 4, which also codes for bases 159-363 of the plasma 
gelsolin cDNA. The entire unique 5' plasma gelsolin se- 
quence, bases 1-158, is found in a single exon, exon 3, located 
2.3 kb upstream from exon 4. Clearly exon 3, as well as the 
large adjacent intervening sequence, must be spliced out of 
the macrophage gelsolin message RNA during processing of 
the primary transcript. 

RNase Protection Analysis of Gelsolin Message 
The identification of specific plasma and cytoplasmic gelso- 
lin exons and the genomic structure presented above are not 
sufficient to define transcriptional initiation site(s) of the two 
message forms. In addition, it remains possible, based on the 

data presented thus far, that one or both of the macrophage 
exons are present in the 5' region of plasma gelsolin message, 
but are missing from the plasma gelsolin cDNAs due to in- 
complete reverse transcription during cDNA synthesis. This 
is, however, unlikely because Northern blots probed with 
gelsolin cDNA indicated that HepG2 and macrophage mes- 
sages are of equal size (2.7 kb; data not shown), and only 
slightly larger than the cDNA clones. To examine specifi- 
cally the 5' ends of plasma and cytoplasmic gelsolin message, 
RNase protection analysis was performed using subcloned 
5' fragments of the plasma and cytoplasmic gelsolin cDNAs 
(Fig. 5). In each tissue or cell type examined, there was 
full-length protection (apart from 36 bp of vector sequence) 
of the plasma and cytoplasmic cDNA-derived labeled RNA 
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Figure 5. eDNA-derived RNase protection experiment. Uniformly labeled antisense RNA corresponding to macrophage cDNA (bases 
1-212, Fig. 2, a and c) and plasma eDNA (bases 1-225, Fig. 2, b and c) were hybridized with 10 gg total RNA. Protected fragments were 
separated on sequencing gels and detected by autoradiography. (a) Maerophage eDNA--derived RNase protection. Lane I, undigested mac- 
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probes, suggesting that the cells express both message forms. 
However, the intensity of the ,x,230-base fully protected band 
varies with the cell type. The plasma cDNA protection re- 
sults (Fig. 5 b) indicate that HepG2 and uterus contain abun- 
dant plasma gelsolin message, HT29 has an intermediate 
amount, and macrophages and fibroblasts have much less. 
Because the plasma probe also contains, in addition to 157 
bases of unique plasma cDNA sequence, 67 bases of com- 
mon sequence (Fig. 5 d),  it is partially protected from 
RNAse digestion when hybridized to cytoplasmic gelsolin 
message. Accordingly, a ~,,73-base protected band is observed 
in each case, corresponding to that predicted (plus a few 
bases of incompletely digested overhang). By comparing the 
relative intensities of the fully with partially protected bands 
(and allowing for the decreased amount of radioactivity of 
the shortened probe), we conclude that HepG2, uterus, and 
HT29 contain more plasma than cytoplasmic gelsolin mes- 
sage, while the reverse is true for fibroblasts and macro- 
phages. The plasma gelsolin message levels correlate with 
protein biosynthetic data presented previously (Yin et at., 
1984) and shown above (Fig. 1). In Fig. 5 b, lanes 2, 6, and 
7, a ,,~t50-base protected fragment was also Observed and its 
intensity appears to be proportional to that of the fully pro- 
tected band. It was not seen consistently and may be derived 
from partial digestion of the 230-base fragment. As ex- 
pected, no protection was observed with yeast RNA (Fig. 5 
b, lane 5). 

Parallel RNase protection analysis with the cytoplasmic 
cDNA-derived RNA probe confirms the authenticity of the 
macrophage cDNA sequence and the relative abundance of 
the two message forms (Fig. 5 a). Major bands of--220 (cy- 
toplasmic) and ,',~73 bp (plasma) are seen. Furthermore, 
these experiments exclude the possibility that exons 1 and 2 
are present at the 5' end of plasma gelsolin message, because 
the corresponding protected fragments are not found (58, 87, 
or 145 bp for exon 1, exon 2, or both, respectively). There- 
fore, exons 1 and 2 are contained only in cytoplasmic gelso- 
lin message. In Fig. 5 a, lanes 2, 4, and 6 a series of bands 
representing fragments of 190-200 bases are present. These 
were seen inconsistently and, as above, appear to be partial 
digestion products derived from full-length hybridization. 

Transcription Initiates at Different Sites for  
Plasma and Cytoplasmic Gelsolin 

Having demonstrated that cytoplasmic and plasma gelsolin 
message contain distinct 5' exons, we sought to define their 
transcription initiation site(s) by primer extension and S1 
nuclease protection analysis. To define the transcription site 
of plasma gelsolin message, a hybrid exon 3-plasma cDNA 

construct (PEC2) was used in S1 nuclease analysis of uterine 
poly A + RNA (Fig. 6,/eft). At tow concentrations of S1 (Fig. 
6, left, lanes 3 and 4), five protected bands were seen. The 
upper bands disappeared with increasing S1 concentration, 
but the lower three bands remained through the highest con- 
centration used, which in comparison with the Maxam-Gil- 
bert sequence reactions (Fig. 6, left, lanes I and 2), indicate 
that plasma gelsolin message extends to bases 354-356 of 
exon 3 (Fig. 4 c). Primer extension products of uterine and 
HepG2 poly A + RNA using an oligonucleotide primer (plas- 
ma eDNA, bases 191-215), are seen in Fig. 6, left, lanes 7 
and 8, respectively. Although the oligonucleotide primer 
used will hybridize to both plasma and cytoplasmic gelsolin 
message, uterine and HepG2 poly A § RNA have mostly 
plasma message (Fig. 5), so the extension products seen are 
derived from plasma gelsolin message (see also below). 
Since the extension products are 9 bases shorter than the S1 
nuclease protected fragments, and the S1 nuclease probe be- 
gins 9 bases 5' of the oligonucleotide primer, we conclude 
that transcription of plasma message initiates in exon 3 at 
bases 354-356. The heterogeneity of bands seen in the S1 
nuctease analysis is also seen, to a lesser degree, in the 
primer extension analysis and suggests that initiation of tran- 
scription occurs at all three of these residues (G, C, T) for 
plasma gelsolin message. 

The region directly upstream of this initiation site contains 
multiple copies of the Spl promoter sequence (GGGCGG) 
(Fig. 4 c) (Dynan and Tjian, 1985) in both orientations and 
has extremely high GC content (76% in bases 38-571). It 
also contains a "TATA" boxlike sequence (Breathnach and 
Chambon, 1981) at the appropriate distance (bases 326-332) 
upstream of the plasma gelsolin mRNA start site. However, 
this sequence does not fit the consensus perfectly, and no 
"CAAT" box sequence is seen. 

The transcription initiation site for cytoplasmic gelsolin 
has not been located precisely. Primer extension analysis of 
tissues rich in cytoplasmic gelsolin message with the oligo- 
nucleotide primer described above and a second oligonucle- 
otide derived from exon I sequence (Fig. 2 a, bases %23) 
failed to give a clear result. With the first primer, multiple 
extension products that are shorter than the defined length of 
cytoplasmic gelsolin mRNA from the isolated eDNA are 
seen (data not shown); no extension was detected with the 
second oligonueteotide. SI nuclease analysis of macrophage 
RNA (Fig. 6 b), using a hybrid exon 1-cytoplasmic eDNA 
construct (CEC), indicated that transcription within exon 1 
extends to base ,x,610 (Fig. 4 c). The region upstream of this 
site contains multiple copies of the Spl consensus sequence 
and has 74% GC content, (bases 301-798, Fig, 4 a), but also 
does not contain a classic TATA or CAAT box. 

rophage eDNA probe; lanes 2-7, respectively, HepG2, fibroblasts, A431, macrophage, HT29, and uterus RNA hybridized with the macro- 
phage eDNA probe. The size of labeled DNA standards, loaded in lane 8, are indicated on the left. (b) Plasma eDNA-derived RNase 
protection; lane 1, undigested plasma gelsolin eDNA probe; lanes 2-7, respectively, HepG2, fibroblast, macrophage, yeast, uterus, and 
HT29 RNA hybridized with the plasma cDNA probe. DNA standards are indicated on the right. (c) Diagram illustrating macrophage 
eDNA-derived RNase protection. (Top to bottom) RNA probe including vector sequence; cytoplasmic cDNA; protected fragment resulting 
from probe hybridization to cytoplasmic message; protected fragment resulting from hybridization to plasma gelsolin message. (Open box) 
Cytoplasmic-specific sequence; (solid box) common sequence. (d) Diagram illustrating plasma eDNA-derived RNase protection. (Top to 
bottom) RNA probe including vector sequence; plasma gelsolin eDNA; protected fragment resulting from probe hybridization to plasma 
message; protected fragment resulting from hybridization to cytoplasmic message. (Open box) Plasma 5' untranslated sequence; (cross- 
hatched box) plasma specific-coding sequence; (solid box) common sequence. 
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Figure 6. Determination of plasma gelsolin transcription initiation site, and SI nuclease analysis of cytoplasmic gelsolin message. (Lej~) 
S1 nuclease and primer extension analyses of plasma gelsolin mRNA. The end-labeled hybrid exon 3-plasma gelsolin eDNA fragment 
(PEC2) was used for S1 nuclease analysis (see Materials and Methods). Lanes 1 and 2, Maxam-Gilbert sequencing reactions of PEC2 
(A > C, GA, respectively). Lanes 3-6, S1 nuclease analysis of 0.5 ltg poly A § human uterus RNA; after hybridization 3, 10, 30, and 
100 U SI nuclease was added to the samples loaded in lanes 3, 4, 5, and 6, respectively. Lanes 7 and 8, primer extension using a 25-base 
oligonucleotide complementary in sequence to bases 191-215 of the plasma cDNA, of uterine poly A + (1.0 lxg) and HepG2 poly A + (0.5 
t~g), respectively. (Right) S1 nuelease analysis of cytoplasmic gelsolin mRNA. The end-labeled hybrid exon 1-cytoplasmic gelsolin eDNA 
fragment (CEC) was used (see Materials and Methods). Lanes 1-4, SI nuclease analysis of 10 gg human macrophage RNA; after hybridiza- 
tion 3, 10, 30, and 100 U S1 nuclease was added to the samples loaded in lanes 1, 2, 3, and 4, respectively. Lanes 5-7, Maxam-Gilbert 
sequencing reactions of CEC (GA, CT, A > C, respectively). Lane 8, labeled MspI-digested pBR322 standards, with size in bases as indi- 
cated. Lanes 1-4 and 5-8 were contiguous on the same gel but autoradiograph exposures were 4 and 1 d, respectively. 

Discuss ion  

We demonstrate that human plasma and cytoplasmic gelso- 
lins are derived from a single gene through the use of unique 
transcriptional initiation sites and that the plasma specific 
exon (exon 3) is excluded from mature cytoplasmic gelsolin 
message during message processing. The final protein prod- 
ucts are identical except at their amino termini. In addition, 
we show by biosynthetic labeling and RNase protection stud- 
ies that a wide variety of cell types synthesize both forms of 
gelsolin in varying amounts. The simultaneous production of 
an intrinsic cytoplasmic protein and a secreted protein is 
unique among vertebrate cells. However, a similar situation 
has been described for the yeast sucrose-hydrolyzing en- 

zyme, invertase (Perlman and Halvorson, 1981; Carlson et 
al., 1983). Saccharomyces cerevisiae produce both a con- 
stant unregulated amount of intracellular invertase and a 
secreted invertase, which is highly regulatable in response to 
reduced extracellular glucose. The two proteins are encoded 
by two message forms transcribed from a single gene through 
the use of two distinct transcriptional initiation sites. The 
start site for secreted invertase is ~100 bases upstream of that 
for the intracellular form (Carlson et al., 1983). The organi- 
zation of the gelsolin gene is similar but remarkable for the 
presence of large introns between the plasma and cytoplas- 
mic exons, the wide separation of transcriptional initiation 
sites, and the use of  exon skipping to generate the cytoplas- 
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mic message. Exons comprising the first 400 bp of gelsolin 
message RNA are derived from over 35 kb of the genome 
and transcription initiation sites for the two message forms 
are separated by I>32 kb. The plasma specific 5' exon must 
be removed during cytoplasmic message RNA processing, 
since it is downstream of the cytoplasmic 5' exons. This ar- 
rangement implies that the splicing event that joins exons 2 
and 4 must be favored over that joining exons 3 and 4, such 
that cytoplasmic gelsolin message is generated in high yield 
when transcription initiates at exon 1. Similar alternative 
splicing mechanisms are well-recognized among mammal- 
ian genes (Breitbart et al., 1987), but how choices are made 
among alternative pathways is poorly understood. 

Translation of the cytoplasmic RNA begins at met-1 rela- 
tive to the mature sequence and this methionine is proteolyti- 
cally excised during processing. The amino-terminal amino 
acid sequences of pig plasma and pig platelet gelsolin have 
been recently reported (Weeds et al., 1986) and are interest- 
ing to compare with these data. Pig plasma gelsolin has only 
a 9 residue extension (vs. 25 in human plasma gelsolin) be- 
fore matching the pig platelet (and rabbit macrophage) se- 
quence. The last residue of the pig plasma extension is also 
a methionine, suggesting a similar genomic organization. 
Chicken plasma gelsolin does not contain a plasma exten- 
sion, and its amino-terminal sequence is identical to human 
cytoplasmic gelsolin at 9 of U residues (Nodes et al., 1987), 
indicating that gelsolin is highly conserved among both 
mammalian and avian species. 

We showed that, both at the protein and message levels, 
plasma and cytoplasmic gelsolins are present in a wide vari- 
ety of tissues but in highly variable amounts and ratios. Use 
of unique transcriptional initiation sites is one obvious 
method for providing for independent regulation of synthesis 
of the two protein forms. Both S1 nuclease protection and 
primer extension analysis indicate that plasma gelsolin mes- 
sage transcription initiates within the plasma specific exon 3, 
at 1 of 3 bases (Figs. 3, 4, and 6). The region upstream of 
this transcription initiation site is somewhat unusual in that 
neither a CAAT homology nor clear TATA homology (Breath- 
nach and Chambon, 1981) is seen. There is, however, a re- 
gion of some resemblance to the TATA element (bases 326- 
332) as well as multiple copies in both orientations of the Spl 
promoter consensus GGGCGG (Dynan and Tjian, 1985). 
TATA and CAAT elements, although common, are not uni- 
versally present in the 5' untranslated regions of mammalian 
genes. The hamster 3-hydroxy-3-methylglutaryl coenzyme 
A reductase gene (Osborne et al., 1985), for example, con- 
tains neither TATA nor CAAT elements. We were unable to 
obtain reproducible primer extension results using tissues 
rich in cytoplasmic gelsolin message but S1 nuclease analysis 
and the high GC content of the surrounding region suggests 
transcription initiates within exon 1. As for plasma gelsolin 
message, the region upstream of exon 1 contains multiple 
copies of the Spl promoter consensus. We predict these Spl 
sequences are essential for transcription of plasma and cyto- 
plasmic gelsolin message. Clearly other, as yet unidentified, 
distinct enhancer elements must be present near exons 1 and 
3 to account for the independent transcriptional regulation 
of the two message forms. The large separation between tran- 
scription initiation sites may be essential to permit this regu- 
lation. The relatively large size of the gelsolin gene (70 kb) 

is in sharp contrast to l~-actin which has only five small in- 
trons and an overall size of 2.8 kb (Ng et al., 1985). 

The presence of plasma gelsolin message in a variety of 
cell types, and its abundance in uterus, were unexpected. 
This result is in agreement with the recent report that chicken 
gizzard, a smooth muscle, devotes 1% of its total protein syn- 
thetic output to the production of chicken plasma gelsolin 
(Nodes et al., 1987). By comparison, chicken liver makes 
relatively little plasma gelsolin. A more comprehensive and 
quantitative analysis will be required to define major con- 
tributory sites of plasma gelsolin synthesis in man. Nonethe- 
less, these observations indicate that secreted gelsolin is syn- 
thesized in a variety of tissues and allow us to speculate that 
secretion of gelsolin may be locally regulated in response to 
external stimuli. In view of the hypothesized role of gelsolin 
in the clearance of actin released from dying cells, it may be 
advantageous to have gelsolin secreted directly at sites where 
high levels of cell death occur, exposing actin cytoskeletons. 
Our demonstration that cytoplasmic gelsolin message is 
present in all tissues examined confirms that gelsolin is 
widely distributed and that it may participate in the restruc- 
turing of the cytoskeleton and initiate motile responses in a 
variety of cells after receptor-mediated signaling. 
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