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Abstract I studied the possibility of using amino acid-

based surfactants as emulsifiers at the same time as

preservatives. Fourteen lipopeptides were synthesized

employing a solid phase peptide synthesis procedure. All

compounds were designed to be positively charged from

?1 to ?4 and acylated with fatty acid chain—palmitic and

miristic. The surface activity of the obtained lipopeptides

was tested using a semi-automatic tensiometer to calculate

parameters describing the behavior of lipopeptides in the

air/water interface. Such parameters as CMC, surface ten-

sion at the CMC point (rCMC), effectiveness (pCMC), and

efficiency (pC20) were measured. Emulsifying properties

of all lipopeptides were also examined. The studies reveal

that the surface active properties of synthesized compounds

strongly depend on the length of alkyl chains as well as on

the composition of amino acid polar heads. The critical

micelle concentration decreases with increasing alkyl chain

length of lipopeptides with the same polar head. The

effectiveness and efficiency decrease when the number of

amino acids in the polar head increases. All lipopeptides

established a very weak emulsification power and created

unstable water/Miglyol 812 and water/paraffin oil emul-

sions. Results suggest that lipopeptides cannot be used as

emulsifiers; nonetheless, it is possible to use them as aux-

iliary surfactants with disinfectant properties in combina-

tion with more potent emulsifiers.

Keywords Lipopeptides � Amino acid-based surfactants �
CMC � Surface tension � Emulsion stability

Introduction

Biosurfactants are a large class of naturally occurring

compounds produced by numerous bacteria, yeasts and

fungi. They can be divided into several groups, e.g.

rhamnolipids, glycolipids, lipopolysaccharides and

lipopeptides [1–4]. Lipopeptides consist of an amino acid

polar head and lipophilic tail, which is mostly formed by a

fatty acid chain. In recent years, due to their high com-

mercialization potential, this group of compounds has been

widely studied and their biological and physicochemical

properties precisely described [5–8].

Some naturally occurring lipopeptides, e.g. daptomycin,

are already commercially available. Daptomycin is a

lipopeptide antibiotic with activity toward most strains of

staphylococci and streptococci. It is administered when

methicyllin-resistant Staphylococcus aureus or van-

comycin-resistant Enterococcus infection occurs [9, 10]. A

further example of a commercially available lipopeptide

with surfactant-like structure is biologically active poly-

myxin produced by Gram-positive bacteria—Paenibacillus

polymyxa. This lipopeptide antibiotic is currently the last-

line therapy of multidrug-resistant Gram-negative bacteria

infections [11].

Surfactin is a powerful natural lipopeptide surfactant. It

is produced by various strains of the gram-positive, endo-

spore-producing Bacillus subtilis. It has excellent surface

active properties and proven anti-bacterial, anti-viral, anti-

fungal and anti-mycoplasma activity [12–14]. Biosurfac-

tants can also be exploited in environmental applications

such as bioremediation. The surface-active lipopeptides are

able to increase the surface area of water-insoluble organic

pollutants and thus increase the rate of their degradation by

enhancing the growth of microorganisms. There are also
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advanced ongoing studies on the application of biosurfac-

tants in the oil recovery industry [7, 15–17].

Aminat-G is a personal care and cosmetic product

containing cationic surfactant ethyl-Na-dodecanoyl-L-

arginate hydrochloride (LAE), which exhibits antimicro-

bial activity. In September 2005, LAE was classified by the

US Food and Drug Administration (FDA) as a substance

safe for use in food. Due to its antimicrobial activity,

biodegradability, low toxicity to aquatic organisms and

lack of irritation to eyes and skin at the recommended

concentration, LAE has been approved by the European

Union as a preservative. In addition, LAE is a possible

ingredient for use in anti-dandruff shampoos, deodorants

and antibacterial soaps [18].

The aim of this study was to obtain, via chemical syn-

thesis, a group of cationic lipopeptides of simple alkyl

chains, palmitoyl (Palm) and myristoyl (Myr), which

would simultaneously fulfill the roles of preservative and

emulsifier. All compounds were designed, similarly to

Aminat-G, to possess amphipathic structures and positive

charge, the features responsible for surface active proper-

ties and antimicrobial activity. Fourteen cationic lipopep-

tides, with already tested antimicrobial activity [19],

(Tables 1, 2) were synthesized. Their surface-active and

emulsifying properties are characterized in this paper. Due

to their chemical similarity to LAE, some of these sub-

stances could be potentially employed as new cosmetic

antimicrobials.

Experimental Procedures

Lipopeptide Synthesis, Purification and Analysis

All reagents and chemicals were of analytical grade. Water

was obtained from a Milli-Q system (Merck Millipore,

Germany) equipped with a 0.22 lm filter and had a resis-

tivity of [18.2 MX cm. Amino acid-based cationic

surfactants were synthesized employing a solid-phase

peptide synthesis (SPPS) procedure and the 9-fluorenyl-

methoxycrbonyl (Fmoc) methodology (Fig. 1) on Fmoc-

Rink Amide AM resin (1.5 mmol/g, Iris Biotech, Ger-

many). The following amino acid derivatives were used to

assemble the amino acid fragments of the lipopeptides:

lysine (Lys, K) with e-amino group protected with tert-

butyloxycarbonyl (Boc) group—Fmoc-Lys(Boc)-OH, and

glycine (Gly, G)—Fmoc-Gly-OH. The Fmoc group was

detached by a 20% solution of piperidine in N,N-

dimethylformamide (DMF). Peptide bond formation was

carried out with a two-fold excess of Fmoc-protected

amino acid in a N,N-dimethylformamide/dichloromethane

(DCM) mixture (1:1 v/v) with diisopropylocarbodiimide

(DIC) and 1-hydroxybenzotriazole (HOBt). The reaction

was monitored with the chloranil test. Cleavage from the

resin was achieved by trifluoroacetic acid (TFA) with tri-

isopropylsilane (TIS) and water (95/2.5/2.5) for 2 h.

Cleaved lipopeptides were precipitated with cold diethyl

ether and freeze-dried [20]. They were then purified via

semi-preparative reverse-phase high performance liquid

chromatography (RP-HPLC) on a Nucleodur C8 ec col-

umn, 10 9 250 mm, 100 Å (Macherey–Nagel, Germany).

Synthesized compounds were eluted with a linear gradient

20–60% of phase B (phase A—0.1% TFA in water, phase

B—0.1% TFA in acetonitrile), at a flow rate of 3 mL/min,

at 214 nm. Purified lipopeptides were analyzed via RP-

HPLC on a Chromolith Performance RP-18

(100 9 4.6 mm) monolithic column (Merck, Germany)

with a linear gradient 2–98% of phase B, at a flow rate of

2 mL/min, at 214 nm. Fractions with purity greater than

95% were pooled and freeze-dried. Lipopeptides were

further characterized and identified via matrix assisted laser

desorption ionization time-of-flight mass spectrometry

(MALDI TOF, Biflex III, Bruker, Germany) and Fourier

transform infrared spectroscopy (FT/IR-4100, Jasco, Ger-

many). Infrared spectra were recorded over the range

4000–800 cm-1 using the potassium bromide tablet

Table 1 Selected parameters characterizing synthesized lipopeptide surfactants acylated with palmitic fatty acid

No. Lipopeptide Net charge CMC pC20 rCMC (mN/m) pCMC (mN/m) Emulsion stability (s)

(mmol/L) (lg/mL)

1. Palm-K-NH2 ?1 0.29 111.2 3.40 36.5 35.0 44

2. Palm-KK-NH2 ?2 1.07 547.60 3.23 45.1 26.4 62

3. Palm-KKK-NH2 ?3 4.8 3.07 9 103 2.41 49.9 21.6 47

4. Palm-KKKK-NH2 ?4 14.6 11.2 9 103 1.88 50.9 20.6 42

5. Palm-KG-NH2 ?1 0.29 127.80 3.95 40.8 30.7 40

6. Palm-KGK-NH2 ?2 1.89 1.07 9 103 2.90 47.1 24.4 44

7. Palm-KGKG-NH2 ?2 3.70 2.3 9 103 2.55 47.6 23.9 50
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method in the transmittance mode. Tablets were prepared

from 100 mg of KBr and 1.5 mg of the tested lipopeptide.

Surface Active Parameters

The critical micelle concentration of each lipopeptide

surfactant was determined from surface tension measure-

ments performed on a semi-automatic EasyDyne (Kruss,

Germany) tensiometer [21]. Solutions of known concen-

trations were progressively diluted and examined by the Du

Nouy ring method. Temperature was maintained at

25 ± 0.2 �C using a thermostated water bath. The CMC

values were calculated by plotting the surface tension

against the log of the concentration of the lipopeptide

surfactant. All measurements were conducted in

unbuffered aqueous solutions. The accuracy of the surface

tension measurements was 0.1 mN/m.

Emulsification Properties

The emulsification properties of the synthesized

lipopeptides were measured by mixing 10 mL of sur-

factant solution (1%) in water and 5 mL of oily phase for

2 min, 300 rpm, at 20 �C in a homogenizer (Si-

lentCrusher M, Heildolph, Germany). Two oily phases,

paraffin oil and triglyceride (Miglyol 812), were

employed to obtain two different emulsion systems. The

emulsification power has been expressed as the time

required for visible separation of 9 mL of water phase

from the oily phase [22, 23].

Fig. 1 Synthesis of selected

lipopeptide acylated with

palmitic fatty acid

Table 2 Selected parameters characterizing synthesized lipopeptide surfactants acylated with myristic fatty acid

No. Lipopeptide Net charge CMC pC20 rCMC

(mN/m)

pCMC

(mN/m)

Emulsion stability (s)

(mmol/L) (lg/mL)

8. Myr-K-NH2 ?1 1.02 362.66 3.64 38.1 33.4 42

9. Myr-KK-NH2 ?2 4.40 2.13 9 103 2.52 46.6 24.9 55

10. Myr-KKK-NH2 ?3 11.70 7.16 9 103 2.00 49.9 21.6 44

11. Myr-KKKK-NH2 ?4 18.04 13.35 9 103 1.81 50.4 21.1 40

12. Myr-KG-NH2 ?1 1.06 437.36 3.46 41.2 30.3 41

13. Myr-KGK-NH2 ?2 2.80 1.5 9 103 2.77 46.0 25.5 46

14. Myr-KGKG-NH2 ?2 6.90 4.12 9 103 2.28 48.0 23.5 51
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Results and Discussion

The potentiometric titration curve of lysine indicates that e-

amino group, in the wide pH range between 0 and 10.5, is

protonated. The -log of dissociation constant of the e-

amino group of lysine does not change significantly under

the influence of peptide bond formation, and for peptides

and lipopeptides it is about 10 [24]. Since the e-amino

group of lysine, forming a hydrophilic head of tested

lipopeptides, in the wide pH range of 0–10 is positively

charged, the net positive charge of each lipopeptide is

equal to the number of lysine residues incorporated in the

hydrophilic head. It means that, in the conditions of the

experiments performed here, all the lipopeptides were

positively charged. The net charges of tested lipopeptides

are summarized in Tables 1 and 2.

To confirm the identity of the synthesized compounds,

the MALDI-TOF and FT/IR methods were used. The

MALDI-TOF technique is characterized by mild ionization

of the sample, therefore there was no fragmentation of

tested substances. Thus the interpretation of mass spectra

was confined to comparing the mass of molecular peak

[M ? H?] with the calculated molecular mass of the

lipopeptide. All the lipopeptides obtained by SPPS corre-

sponded to designed structures. Giacometti et al. [25] and

Sarig et al. [26] also used the MALDI-TOF method of

identifying synthetic peptide compounds and found it suf-

ficient. Some research studies report the possibility of

additional confirmation of the identity of peptide com-

pounds by performing, e.g., amino acid analysis [27, 28].

FTIR spectroscopy was used to confirm the identity of the

functional groups of synthesized lipopeptide surfactants.

The FT/IR spectra of all lipopeptides showed the absorp-

tion bands at: 3303–3287 cm-1 corresponding to the

presence of the –NH stretching vibrations, 2928–

2848 cm-1 reflecting the stretch (–CH) of CH2 and CH3

groups in the aliphatic chains, 1679–1632 cm-1 corre-

sponding to amide I (C=O) bonds, 1543–1529 cm-1 indi-

cate the presence of amide II (N–H) bonds. Detailed data

describing selected physicochemical properties of tested

lipopeptides are presented below.

Lipopeptide 1: Palm-K-NH2; N-a-palmitoyl-L-lysine-

amide, yield 85%, white solid. RP-HPLC retention factor k

8.17 (gradient B 2–98%/30 min); MS (MALDI-TOF) m/z

384.4 [M ? H]?; MW (monois.) 383.4; FTIR: 3301, 2919,

2850, 1673, 1529 cm-1.

Lipopeptide 2: Palm-KK-NH2; N-a-palmitoyl-L-lysyl-L-

lysine-amide, yield 87%, white solid. RP-HPLC retention

factor k 7.02 (gradient B 2–98%/30 min); MS (MALDI-

TOF) m/z 512.5 [M ? H]?; MW (monois.) 511.5; FTIR:

3293, 2922, 2854, 1676, 1529 cm-1.

Lipopeptide 3: Palm-KKK-NH2; N-a-palmitoyl-L-lysyl-

L-lysyl-L-lysine-amide, yield 75%, white solid. RP-HPLC

retention factor k 6.58 (gradient B 2–98%/30 min); MS

(MALDI-TOF) m/z 640.5 [M ? H]?; MW (monois.)

639.5; FTIR: 3290, 2922, 2853, 1674, 1532 cm-1.

Lipopeptide 4: Palm-KKKK-NH2; N-a-palmitoyl-L-ly-

syl-L-lysyl-L-lysyl-L-lysine-amide, yield 70%, white solid.

RP-HPLC retention factor k 6.20 (gradient B 2–98%/

30 min); MS (MALDI-TOF) m/z 768.6 [M ? H]?; MW

(monois.) 767.6; FTIR: 3292, 2919, 2853, 1672,

1536 cm-1.

Lipopeptide 5: Palm-KG-NH2; N-a-palmitoyl-L-lysyl-L-

glycine-amide, yield 85%, white solid. RP-HPLC retention

factor k 8.24 (gradient B 2–98%/30 min); MS (MALDI-

TOF) m/z 441.4 [M ? H]?; MW (monois.) 440.4; FTIR:

3303, 2925, 2856, 1678, 1534 cm-1.

Lipopeptide 6: Palm-KGK-NH2; N-a-palmitoyl-L-lysyl-

L-glycyl-L-lysine-amide, yield 80%, white solid. RP-HPLC

retention factor k 7.07 (gradient B 2–98%/30 min); MS

(MALDI-TOF) m/z 569.4 [M ? H]?; MW (monois.)

568.4; FTIR: 3302, 2926, 2848, 1676, 1536 cm-1.

Lipopeptide 7: Palm-KGKG-NH2; N-a-palmitoyl-L-ly-

syl-L-glycyl-L-lysyl-glycine-amide, yield 75%, white solid.

RP-HPLC retention factor k 7.10 (gradient B: 2–98%/

30 min); MS (MALDI-TOF) m/z 626.5 [M ? H]?; MW

(monois.) 625.5; FTIR: 3298, 2928, 2856, 1672,

1538 cm-1.

Lipopeptide 8: Myr-K-NH2; N-a-myristoyl-L-lysine-

amide, yield 80%, white solid. RP-HPLC retention factor k

7.22 (gradient B: 2–98%/30 min); MS (MALDI-TOF) m/

z 356.4 [M ? H]?; MW (monois.) 355.4; FTIR: 3302,

2919, 2851, 1674, 1536 cm-1.

Lipopeptide 9: Myr-KK-NH2; N-a-myristoyl-L-lysyl-L-

lysine-amide, yield 82%, white solid. RP-HPLC retention

factor k 6.33 (gradient B 2–98%/30 min); MS (MALDI-

TOF) m/z 484.3 [M ? H]?; MW (monois.) 483.3; FTIR:

3290, 2926, 2856, 1676, 1538 cm-1.

Lipopeptide 10: Myr-KKK-NH2; N-a-myristoyl-L-lysyl-

L-lysyl-L-lysine-amide, yield 72%, white solid. RP-HPLC

retention factor k 5.93 (gradient B 2–98%/30 min); MS

(MALDI-TOF) m/z 612.5 [M ? H]?; MW (monois.)

611.5; FTIR: 3287, 2926, 2853, 1677, 1538 cm-1.

Lipopeptide 11: Myr-KKKK-NH2; N-a-myristoyl-L-ly-

syl-L-lysyl-L-lysyl-L-lysine-amide, yield 78%, white solid.

RP-HPLC retention factor k 5.57 (gradient B 2–98%/

30 min); MS (MALDI-TOF) m/z 740.2 [M ? H]?; MW

(monois.) 739.2; FTIR: 3288, 2926, 2853, 1677,

1539 cm-1.

Lipopeptide 12: Myr-KG-NH2; N-a-myristoyl-L-lysyl-

L-glycine-amide, yield 84%, white solid. RP-HPLC reten-

tion factor k 7.00 (gradient B 2–98%/30 min); MS
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(MALDI-TOF) m/z 413.4 [M ? H]?; MW (monois.)

412.4; FTIR: 3290, 2919, 2851, 1679, 1541 cm-1.

Lipopeptide 13: Myr-KGK-NH2; N-a-myristoyl-L-lysyl-

L-glycyl-L-lysine-amide, yield 74%, white solid. RP-HPLC

retention factor k 6.25 (gradient B 2–98%/30 min); MS

(MALDI-TOF) m/z 541.2 [M ? H]?; MW (monois.)

540.2; FTIR: 3293, 2921, 2853, 1679, 1540 cm-1.

Lipopeptide 14: Myr-KGKG-NH2; N-a-myristoyl-L-ly-

syl-L-glycyl-L-lysyl-glycine-amide, yield 70%, white solid.

RP-HPLC retention factor k 6.31 (gradient B 2–98%/

30 min); MS (MALDI-TOF) m/z 598.4 [M ? H]?; MW

(monois.) 597.4; FTIR: 3290, 2923, 2854, 1632,

1543 cm-1.

The surface tension properties of lipopeptides were

established from the surface tension plots vs. logarithm of

concentration of lipopeptides (Figs. 2, 3). The surface

tension studies of water solutions of lipopeptides 1–7

indicated that the surface activity depends on the amino

acid composition of the hydrophilic fragment. The lowest

CMC value was obtained for compound Palm-K-NH2

(0.29 mmol/L). It was found that CMC increases with the

amount of amino acids incorporated in the hydrophilic

head of the lipopeptide and the highest CMC (14.6 mmol/

L) was determined for Palm-KKKK-NH2. An identical

relationship was observed for lipopeptides 8–14. The

lowest CMC value was determined for Myr-K-NH2

(1.02 mmol/L) and the highest CMC value was recorded

for Myr-KKKK-NH2 (18.04 mmol/L). Figures 4 and 5

show the linear relationship between Log CMC and the

number of amino acids constituting the hydrophilic moiety

of the surfactant within lipopeptides 1–7 and 8–14,

respectively. It can be seen that CMC increases together

with the increase in the number of amino acids. This ten-

dency, observed for tested lipopeptides, occurs due to the

fact that with increases in the size of the hydrophilic heads

of the surfactants the tail becomes relatively shorter.

Tadros indicates that for all ionic surfactants, CMC

decreases with increasing alkyl chain length [21]. Brito

et al. also found that for lipopeptide surfactants, where the

hydrophilic fragment is a serine and tyrosine, CMC

decreases when the length of the attached hydrophobic
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chain increases [29]. Perez et al. obtained methyl esters of

e-acylated lipopeptide surfactants where the hydrophilic

fragment was a lysine residue and observed a linear

decrease in CMC with an increasing hydrophobic portion

of the molecule [30].

The rCMC parameter provides information about which

value the surface tension is reduced to at a given CMC

concentration. The rCMC has a smaller value when the

pCMC is larger, so that the system exhibits improved effi-

cacy in reducing surface tension. For lipopeptides 1–7, the

efficiency decreases (Table 1) the more amino acids they

contain. The most effective is Palm-K-NH2, and this

decreases the surface tension of water to 36.5 mN/m and

the least effective is Palm-KKKK-NH2 (rCMC = 50.9 mN/

m). The efficiency of reducing surface tension rCMC

revealed for lipopeptides 8–14 (Table 2) also decreases

with the increasing size of the hydrophilic fragment. Myr-

K-NH2 (38.1 mN/m) most effectively lowers the surface

tension of water, and Myr-KKKK-NH2 (50.4 mN/m) the

least. The arginine-derivative surfactants, exemplified by

LAE, present strong relationship between the surface ten-

sion at the CMC and the hydrophobic chain length [31].

This behavior of lipopeptides can be explained by the

increasing hydrophilicity of the molecule. Considering the

aqueous phase as a polar phase and air as the non-polar,

more hydrophilic compounds will exhibit a stronger ten-

dency to be ‘‘inside’’ the aqueous phase. Therefore, less

hydrophilic molecules will be moved in the direction of the

non-polar phase—the air; hence, their improved effec-

tiveness in reducing surface tension. This is typical to

various series of ionic and nonionic [32–36] surfactants.

Better surface active properties have been described for a

naturally produced lipopeptide surfactant—surfactin. It

was found that surfactin can adopt a ball-like structure at

the air/water interface; therefore it may be considered more

as a hydrophobic nanoparticle than a typical surfactant.

This spherical structure allows for tight packing of the

molecules on the interface, and thus only a low concen-

tration of surfactin (20 lM) is needed to significantly

reduce the surface tension of water from 72 to 25 mN/m

[37, 38].

Parameter pC20 , shown in Tables 1 and 2, allows the

evaluation of the surface activity of a surfactant. It is

defined as the negative log of the total concentration of

surfactant required to reduce the surface tension by 20 mN/

m. pC20 determined for lipopeptides 1–14 decreases when

the number of amino acid residues increases. The highest

value (pC20 = 3.95) was observed for Palm-KG-NH2,

while the lowest (pC20 = 1.81) was noted for Myr-KKKK-

NH2. This means that tested lipopeptides with smaller

hydrophilic heads and longer hydrophobic tails have better

ability to adsorb at the water/air interface, which is char-

acteristic of all types of surface active agents [32–36].

Generally, stable emulsions are produced with use of

emulsifiers, which are mixtures of homologues having

hydrocarbon chains of different lengths. Mixtures of

emulsifiers are able to form densely packed films at the oil/

water interface that make them more flexible and more

resistant to the emulsion ageing process. In this study, high

purity lipopeptide surfactants were used to prepare emul-

sions. It was found that none of the lipopeptides created a

stable emulsion (Tables 1, 2). All of the emulsions broke

after less than 2 min. Examples of prepared emulsions are

presented in Fig. 6. This proves that tested lipopeptides

have weak emulsifying power and suggests that they can-

not be used as emulsifiers. All of the studied lipopeptides

have a net positive charge and behave like cationic sur-

factants, which, except for quaternary ammonium com-

pounds, exhibit weak emulsification efficiency [39].

Nonetheless, it is possible to use them as auxiliary sur-

factants with disinfectant properties in combination with

more potent emulsifiers.

Conclusions

Fourteen cationic lipopeptide surfactants were synthesized

and their physicochemical properties were characterized. It

was established that, for lipopeptides, surface active

properties depend on the length of the attached fatty acid

chain as well as the composition of the hydrophilic head.

Because lipopeptides are able to form micelles in aqueous

1 2 3 4

Fig. 6 Emulsion consists of

Miglyol 812 and water (1, 2)

and paraffin oil and water (3, 4)

stabilized with Palm-KK-NH2.

Pictures were taken just after the

homogenization process (1, 3)

and 2 min after the

homogenization process (2, 4)
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solutions, it is possible that they may reveal solubilizing

properties. It was found that lipopeptides do not show

sufficient emulsification power to create stable paraffin oil/

water or Miglyol 812/water emulsion systems. Considering

their antimicrobial properties, which have been published

elsewhere [19], and their ability to decrease the surface

tension of water, lipopeptides might be used as preserva-

tives and possibly as co-surfactants.
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