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Abstract: Pressure is a thermodynamic parameter that can induce structural changes in 

biomolecules due to a volumetric decrease. Although most proteins are denatured by 

pressure over 100 MPa because they have the large cavities inside their structures, the 

double-stranded structure of DNA is stabilized or destabilized only marginally depending on 

the sequence and salt conditions. The thermal stability of the G-quadruplex DNA structure, 

an important non-canonical structure that likely impacts gene expression in cells, remarkably 

decreases with increasing pressure. Volumetric analysis revealed that human telomeric DNA 

changed by more than 50 cm3 mol−1 during the transition from a random coil to a quadruplex 

form. This value is approximately ten times larger than that for duplex DNA under similar 

conditions. The volumetric analysis also suggested that the formation of G-quadruplex DNA 

involves significant hydration changes. The presence of a cosolute such as poly(ethylene 

glycol) largely repressed the pressure effect on the stability of G-quadruplex due to alteration 

in stabilities of the interactions with hydrating water. This review discusses the importance 

of local perturbations of pressure on DNA structures involved in regulation of gene 

expression and highlights the potential for application of high-pressure chemistry in nucleic 

acid-based nanotechnology. 

Keywords: DNA; G-quadruplex; high pressure; thermodynamics; volumetric analyses; 

hydration; molecular crowding 
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1. Introduction 

Biomolecules form tertiary structures through noncovalent intra- or intermolecular interactions. 

These noncovalent interactions are weak compared with covalent bonding and can be easily perturbed 

by temperature changes. Like temperature, pressure is a key factor of thermodynamics. From a 

physico-chemical point of view, pressure effects are mainly due to impacts on volumetric aspects of the 

system. According to Le Chatelier’s principle, the application of pressure shifts an equilibrium toward 

the state that occupies a smaller volume. Therefore, the properties of biomolecules like volume, 

compressivity, and expansibility that depend on hydration and molecular packing determine the effect of 

high pressure on the equilibrium between folded and unfolded states. Pressures for the analysis of 

biomolecule properties generally range from 0.1 MPa (atmospheric pressure) to 1 GPa. In this range, 

noncovalent bonding is affected, and high pressure can perturb the tertiary structure of biomolecules and 

cause the changes in structure or enzymatic activity. The effect of high pressure on protein structures has 

been relatively well characterized [1–4]. Most proteins denature or change conformation at high 

pressure even at low temperature. One can explain the decrease of the partial molar volume of proteins 

by the penetration of water molecules bound in cavities of structured proteins [5–10]. 

The discovery of high-pressure-induced protein unfolding and denaturation was made in 1914 [11]. It 

was not until 1964 that the first report of the effect of pressure on a nucleic acid secondary structure 

appeared [12]. The stability of nucleic acids is determined factors such as base pairing, base stacking, 

electrostatic interactions, the surrounded solution condition, and so on. Hydration is one of the most 

important factors to consider. As mentioned above, pressure largely affects the hydration of biomolecules. 

Analysis under high pressure can provide structural insight into hydrating water. In G-quadruplex 

formation hydration is a dominant factor for determination of the type of four-stranded conformation 

and stability. G-quadruplexes as well as other non-canonical structures of DNA (and RNA) can regulate 

biological processes such as transcription and translation [13,14]. Therefore the pressure effect on these 

structures is of interest as transient pressure differentials inside living cells might impact the stabilities of 

these and other non-canonical structure of nucleic acids. Furthermore, the different sensitivity of each 

DNA structure to pressure is possibly useful to develop nano-materials triggered by pressure effects. 

In this review, we focus our attention on the effect of hydrostatic pressure on the stability of nucleic 

acid structures. First, we discuss previous research into the pressure effect on double-stranded DNA by 

using thermodynamic, kinetic, and structural analyses. Second, we discuss what is known about the 

pressure effect on non-canonical structures of nucleic acids, especially the G-quadruplex, and describe 

how high pressure study of nucleic acids may lead to control of gene expressions of cellular functions, 

and permit to design novel materials of nucleic acids. 

2. Pressure Effect on Canonical Duplex of Nucleic Acids 

2.1. Melting Analysis under High Pressure by Temperature Change 

To investigate the structural stability of nucleic acids, temperature change experiments are often used 

because helixes of DNA and RNA can reversibly unfold upon heating and refold upon cooling. Because 

of hypochromism, the helix form of nucleic acids has a different ultraviolet (UV) absorption (different 

molar extinction coefficient) from the random coil form. Analysis of the circular dichroism (CD) 
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spectrum over a range of temperatures is also widely used because CD is highly sensitive to the 

structural transitions of nucleic acids. Thus, UV and CD melting curves can be used to study the thermal 

stability of nucleic acids. The temperature at the midpoint of absorbance change is called melting 

temperature, Tm. In physical terms, Tm corresponds to the temperature at which ∆G = 0 of the 

equilibrium between folded and unfolded conformations of nucleic acids. When pressure is applied, the 

equilibrium can shift resulting in either a Tm increase or decrease. Considering the Clapeyron equation:  

dTm/dP = Tm∆Vtr/∆H (1)

where the volumetric parameter ∆Vtr [15] for formation of the folded structure of nucleic acids can be 

obtained from several series of Tm measurements at different pressures. To calculate the ∆Vtr value, ∆H 

is required. ∆H can be calculated from the helix-coil transitions as the van’t Hoff enthalpy from the 

optical and spectropic data. The value of ∆Hcal obtained from calorimetry can also be utilized. When 

∆Tm/∆P is positive and ∆H is negative, ∆Vtr must be negative, which means the stability of nucleic acid 

is promoted with increasing pressure. 

In the early studies, the effects of pressure on natural DNAs were investigated. Due to availability, 

calf thymus DNA has been analyzed intensively to study the thermodynamic parameters with changing 

pressure. Weida and Gill reported Tm changes of calf thymus DNA under high pressure followed using 

CD technique. In the presence of 30 mM NaCl, the value of dTm/dP was 4.49 × 10−2 K·MPa−1 [15,16]. 

This corresponds to a ∆Vtr value of −4.5 cm3·mol−1 (Table 1). Gunter and Gunter carried out similar 

experiments in the presence of 140 mM KCl and obtained the values of 2.34 × 10−2 K·MPa−1 and  

−2.7 cm3·mol−1 for dTm/dP and ∆Vtr, respectively (Table 1) [17]. Nordmeier revealed the dependency of 

salt concentration on the volumetric parameters [18]. In a series of KCl concentrations, the magnitude of 

∆Vtr increased with increasing the salt concentration (Table 1). DNA isolated from C. perfringens was 

examined by Hawley and MacLeod, who showed that the values of ∆Tm/∆P were positive and increased 

linearly with NaCl concentration (Table 1) [19]. Thus, the structure of natural DNA was stabilized by 

pressure and salt. The properties of natural DNA depended on pressure in the opposite direction; protein 

structure is generally unfolded by pressure. For example, the −∆Vunfolding (corresponding to ∆Vtr in this 

review) of RNase A is 45 cm3·mol−1 and that for SNase is 80 cm3·mol−1 [20–22]. These results mean that 

under pressure the volumes of these proteins (including the volume of hydration) become much larger 

and that their tertiary structures tend to unfold.  

In further investigations, the effect of pressure on nucleic acids of various sequences and lengths were 

characterized. Macgregor et al. intensively investigated the effect of pressure on synthetic nucleic acids 

by UV melting under high pressure (Figure 1). Poly[d(A-T)] in the presence of 20 mM NaCl showed a 

positive value of ∆Tm/∆P and a negative value of ∆Vtr with a similar magnitude to that of calf thymus 

DNA in the presence of 5 mM KCl (Table 1) [18]. With increasing concentration of NaCl, these 

parameters linearly increased [23]. Salt concentration had a relatively large effect on ∆Tm/∆P and ∆Vtr 

values for poly(dA)·poly(dT) [23], suggesting that the hydration of homopolymers differed from that of 

natural DNA (Table 1). Although poly[d(G-C)] has a very high Tm value (over 100 °C), the use of high 

pressure enabled measurement of the ‘real’ Tm due to the prevention of boiling. In the presence of  

52 mM NaCl, the value of ∆Tm/∆P was 4.8 times larger and the magnitude of ∆Vtr value was 5.3 times 

larger than those of poly[d(A-T)] in the presence of 50 mM NaCl (Table 1) [23]. In the presence of 1 M 

NaCl, however, the changes in these values of poly[d(G-C)] were only 1.7 times larger than those of 
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poly[d(A-T)], which indicated that the salt dependence of ∆Vtr for poly[d(G-C)] is smaller than that for 

poly[d(A-T)]. The value ln Kobs/ln [cation] is equal to the number of cations taken up during the 

formation of duplexes, where Kobs means the observed equilibrium constant for the formation of the 

duplex [24]. From this result, it was therefore concluded that a GC base pair binds fewer ions during 

folding than does an AT base pair. 

Table 1. Pressure effect of melting temperature and volumetric parameters on natural and 

synthetic DNAs. 

DNA Salt Concentration 
∆Tm/∆P  

(10−2 K MPa−1) 
∆Vtr 

(cm3 mol−1) 
Ref. 

Calf thymus [NaCl] = 30 mM 4.49 −4.5 [16] 
 [KCl] = 140 mM 2.34 −2.7 [17] 
 [KCl] = 5 mM 0.46 −0.51 [18] 
 [KCl] = 20 mM 1.4 −1.58  
 [KCl] = 50 mM 2.0 −2.27  
 [KCl] = 200 mM 2.9 −3.32  
 [KCl] = 500 mM 3.5 −4.02  
C. perfringens [NaCl] = 10 mM 0.54  [19] 
 [NaCl] = 50 mM 2.0   
 [NaCl] = 120 mM 2.6   
 [NaCl] = 360 mM 3.8   
 [NaCl] = 1.08 M 4.1   
 [NaCl] = 3.6 M 4.6   
poly[d(A-T)] [NaCl] = 20 mM 0.36 −0.36 [23] 
 [NaCl] = 50 mM 0.93 −0.90  
 [NaCl] = 200 mM 2.26 −2.14  
 [NaCl] = 1.0 M 3.86 −3.57  
poly(dA)·poly(dT) [NaCl] = 20 mM 2.49 −2.60 [23] 
 [NaCl] = 50 mM 3.15 −3.44  
 [NaCl] = 200 mM 3.86 −4.59  
poly[d(G-C)] [NaCl] = 52 mM 4.51 −4.80 [24] 
 [NaCl] = 107 mM 4.79 −5.16  
 [NaCl] = 300 mM 5.01 −5.50  
 [NaCl] = 1.0 M 6.41 −6.03  
poly(rA)·poly(rU) [K+] = 50 mM −1.07 0.96 [25] 
poly[d(I-C)] [NaCl] = 75 mM 0.28 −0.26 [26] 
 [NaCl] = 270 mM 1.36 −1.25  
 [NaCl] = 1.0 M 2.64 −2.39  

  



Molecules 2013, 18 13301 

 

Figure 1. Normalized UV melting curves at different NaCl concentrations; solid lines are 

data at 0.1 MPa and dashed lines are at 200 MPa [23]. (a) Poly(dA)·poly(dT): 20 mM  

(○, black); 50 mM (●, blue); 200 mM (□, red). (b) Poly[d-(A-T)]: 20 mM (○, black); 50 mM 

(●, blue); 200 mM (□, red); 1 M (■, green). 

 

The RNA duplex with AU base pairs is slightly destabilized upon pressuring. In the presence of  

50 mM K+, poly(rA)·poly(rU) had a ∆Tm/∆P of −1.07 × 10−2 K·MPa−1 and a ∆Vtr of 0.96 × 10−2 K·MPa−1 

(Table 1) [25]. Poly[d(I-C)], containing non-canonical base inosine behaves similarly to poly[d(A-T)] 

with a positive ∆Tm/∆P and a negative ∆Vtr value (Table 1) [26] although the magnitude of the values are 

smaller. In contrast, a methylphosphonate oligonucleotide, in which the charged oxygen of the 

phosphate group is replaced by uncharged methyl group, showed significant increase of ∆Tm/∆P [26]. 

These data emphasize that hydrating water has a prominent effect on the transition volume of nucleic 

acid unfolding processes. ∆Vtr can be described as follows: 

∆Vtr = ∆VM + ∆VT +∆VI (2)

where ∆VM is intrinsic volume change of the DNA, ∆VT is thermal volume change indicating the change 

of the void space of the DNA, ∆VI is interaction volume change (i.e., hydration volume change) [27]. 

∆VM and ∆VT basically depend on the structure of nucleic acids but ∆VI is very sensitive to the number 

and condition of hydration. RNA and modified nucleic acid can be a negative ∆Vtr because of a different 

contribution of ∆VI from that of DNA. 

2.2. Effect of High Pressure on the Conformation of a Duplex  

The type of conformation adopted by double-stranded DNA depends on the solvent conditions. 

B-form DNA changes to A-form in low concentrations of salt or in hydrophobic conditions. The 

alternate repeat of purine and pyrimidine base pairs forms a left-handed helix, or Z-DNA, in the presence 

of high concentrations of salt. As shown above, pressure effect on thermodynamics for the nucleic acids 

largely depends on hydration and salt conditions. This suggests that pressure could induce conformational 

changes. The B-Z transition was the first of this type of change observed under high pressure (Figure 2a). 

Kryzyzaniak et al. showed that poly[d(G-C)], which is B-form at atmospheric pressure, adopted the 

Z-form under 1 GPa [28]. They directly monitored the conformational change by using CD spectroscopy 

with pressuring up to 1 GPa. The conformational changes were monitored by CD spectra which showed 
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of stacked bases shortened by 0.15 Å/GPa and A-DNA hydrogen bonding also shortened by 0.04 Å/GPa. 

This is in contrast to effects of pressure on bonds in proteins; in proteins, salt bridges and H-bond lengths 

are usually shortened by ~0.1 Å/GPa [34–36]. These differences indicated that the adaptation of DNA to 

high pressure could be achieved by small variations of arrangements along the backbone. As pressure 

increases, the first shell of hydration is gradually compressed, but the pentagonal network of water 

molecules found in major groove is not disrupted. Thus, all the Watson-Crick base pairs and hydrogen 

networks within major grooves are preserved, which enables the DNA duplex to remain structured at 

even very high pressure.  

NMR analysis is a powerful technique for study of the effects of pressure on the structure of  

nucleic acids. NMR under high pressure [37–39] was used to investigate the structure of B-DNA  

(Figure 2c) [40]. The hairpin DNA d(CTAGAGGATCCTUTTGGATCCT) was used, and only the stem 

region was analyzed. Under 200 MPa, chemical shifts indicated a change in structure of 0.17 Å root 

mean square relative to the conformation at atmospheric pressure, which is at the lower end of the range 

of structural changes seen in proteins [37–39]. Only 0.042% reduction in volume was observed, 

corresponding to an intrinsic compressibility of 0.6 × 10−4 mL·mol−1·bar−1 per nucleotide. This value is 

very small compared to typical adiabatic molar compressibility measured for DNA solutions (30~70 × 

10−4 mL·mol−1·bar−1), suggesting that the compressibility of DNA comes from not DNA molecule itself 

but from the hydration layer surrounding DNA [41]. The biggest change was an increase of the width in 

the minor groove, suggesting that the hydrating water along the minor groove adopts a different structure 

with lower partial volume as pressure is increased. In general, the lengths of H-bonds between 

Watson-Crick base pairs were also reduced. The spacing between AT pairs is 2.6 times more sensitive to 

the pressure than that of GC pairs. This might be derived from the different numbers of H-bonds in the 

pairs. The overall length of the stem was slightly increased (1.2%) at high pressure, due to a slight slide 

of base pairs relative to each other. A structure obtained using X-ray crystallography at high pressure 

showed a significant reduction in stacking distance. The conflicting results on the effect of base stacking 

between the crystallography and NMR awaits further investigation. FT-IR technique has also been used 

to investigate the structural perturbation at high pressure. The IR spectra of poly(dA)·poly(dT) was 

recorded at 28 °C at up to 1.2 GPa [42]. Although some shifts of prominent band were observed due to 

the increase of hydration and base stacking, overall the structure was B-form. Therefore, except for the 

specific sequence under specific conditions, the structure of B-DNA endures perturbation by high 

pressure. The structure is slightly but certainly affected by pressure: H-bond lengths are shortened and 

the distance between stacked bases are increased or decreased. The hydration layer is also compressed, 

and high pressure can induce structural changes to water itself, which better suits the Z-form 

conformation. 

2.3. Melting of Duplex Induced by Pressure 

The melting and reannealing of duplex nucleic acids is important in reactions in living cells such as 

replication, transcription, and translation. In nanotechnology, nucleic acid nanodevices are generally 

based on the control of the stability of duplexes. As shown above, in general DNA polymer duplexes 

have positive ∆Tm/∆P and are stabilized under high pressure. If the value of ∆Tm/∆P is negative, it is 

possible that applying pressure will induce melting of nucleic acid structure.  
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As shown in Table 1, the heteroduplex of poly(dA)·poly(rU), a DNA/RNA hybrid, has a negative 

value of ∆Tm/∆P in the presence of 50 mM KCl [25]. At neutral pH and in low salt (28 mM Na+), this 

duplex melted sharply with a Tm of 31 °C under atmospheric pressure [43]. As pressure was increased at 

25 °C, the UV absorption at 260 nm of poly(dA)·poly(rU) increased beginning at around 50 MPa (Figure 3). 

At 20 °C, the increase of UV absorption began at about 100 MPa. These results suggest that the profile of 

the UV absorbance showed a hypochromic effect with increasing pressure due to the induction of the 

transition of poly(dA)·poly(rU) between the duplex and the coil form. Similar results were  

obtained from the analysis of poly[d(A-T)] and poly[d(I-C)], which showed low Tm values of  

36.0 °C and 29.0 °C at neutral pH in 5.2 mM Na+ solution under atmospheric pressure, and could be 

melted by increasing pressure [44]. Dubins et al. [45] simulated the coil-to-helix transition of nucleic 

acids from the ∆G(P, T) phase diagram; these calculations predicted destabilization of 

poly(dA)·poly(rU), poly[d(A-T)], and poly[d(I-C)] as pressure increased. The melting induced by 

pressure change is observed only for these specific polymers. For example, the oligonucleotides 

(dA)n(dT)n (where n = 11, 15, and 19), which were predicted to be sensitive to pressure melting [46], did 

not show transitions as pressure was increased. There have been no examples melting of DNA 

oligonucleotide duplexes by pressure. The existing data do suggest that pressure could affect some 

reactions of a genomic DNA. For example, the transcription may be started at a region along the 

genomic DNA partially melted by pressure. Pressure may also be useful in nanomaterials made with 

nucleic acids.  

Figure 3. Pressure-induced melting of DNA duplex of poly(dA)·poly(rU) at 20 °C (○) and 

25 °C (pH 6.7, 28 mM Na+) (●); poly(dAdT)·poly(dAdT) at 25 °C (pH 6.7, 5.2 mM Na+) 

(■); and poly(dIdC)·poly(dIdC) at 25 °C (pH 6.7, 5.2 mM Na+) (□) [43,44].  

 

2.4. Kinetic Analyses 

Kinetic analyses of the coil-to-helix transitions provide informative insights into the mechanism of 

helix formation and melting regulated with pressure. Analysis of the hysteresis observed during UV 

annealing and melting processes is convenient for characterization of the kinetic properties of duplex 

formation (Figure 4a). The forward rate constant k1 (for the formation reaction) and the reverse rate 
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constant k−1 (for the melting reaction) can be calculated from the absorbance and temperature changes 

with time [47]. The rate can be described as: 

k = exp{(−∆V‡/RT)P} (3)

where R is gas constant [46]. By substituting k1 or k−1 into Equation (2), the activation volume ∆V‡
1 for 

the forward step or ∆V‡
−1 for the reverse step can be obtained, respectively. Upon application of 

pressure, k1 becomes larger and k-1 smaller, resulting in the negative value of ∆V‡
1 and positive value of 

∆V‡
−1, respectively [48–51]. These results suggested that an increase in base stacking induced by higher 

pressure accelerated the helix formation. The activation volumes also showed dependency on GC 

content of the strands. For 22-mer homopurine-homopyrimidine oligonucleotides [48], increasing the 

fraction of GC base pairs from 0.14 to 0.5 causes ∆V‡
1 to increase by a factor of three, whereas the value 

of V‡
−1 became 10 times smaller (Table 2). Furthermore, the subtraction of ∆V‡

−1 from ∆V‡
1 gives the 

transition volume ∆Vtr kinetic, which is equivalent to ∆Vtr obtained from the Clapeyron equation [Equation 

(1)]. Indeed, volumetric parameters obtained by the two methods are in agreement. 

Figure 4. (a) UV melting curves of 22-mer DNA used in [43]. The blue triangle and red 

closed circle represent annealing and melting process, respectively; (b) Transition volumes 

for each of six independent dinucleotide steps plotted as a function of the change in their 

solvent accessible surface area, ∆SA [46]. 

(a) (b) 

Table 2. Activation volume of 22-base duplexes in the presence of 20 mM NaCl [43]. 

Fraction of GC 
∆V‡

1  
(cm3 mol−1) 

∆V‡
−1  

(cm3·mol−1) 
∆Vtr kinetic  

(cm3 mol−1) a 
∆Vtr  

(cm3 mol−1) b 
0.5 −6.7 1.6 −8.3 −5.8 
0.32 −8.0 0.40 −8.4 −8.0 
0.23 −13 15 −28 −13 
0.14 −20 17 −37 −20 

a ∆Vtr kinetic calculated using the activation volumes; b ∆Vtr calculated using the Clapeyron equation  

(Equation (1)). The values given here are estimated to have the errors within ±15%. 
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Dubins and Macgregor examined the nearest-neighbor effect on the kinetics of the duplex formation 

under high pressure [51]. The nearest-neighbor model is based on the assumption that the stability of a 

nucleic acid duplex is determined by type of base pair and the adjacent base pairs, enabling prediction of 

the thermal stability of a duplex from sequence [52–54]. The activation volume (∆V‡
1 and ∆V‡

−1), the 

estimated transition volume ∆Vtr kinetic (=∆V‡
1 − ∆V‡

−1), and the transition volume calculated by 

Clapeyron equation (Equation (1)) ∆Vtr were determined for a 22-mer DNA duplex. For volumetric 

properties, the model that emphasizes the nature of the two bases in each dinucleotide step but does not 

distinguish the order (i.e., 5'-AC-3' and 5'-CA-3' are equivalent) was most appropriate. This trend can be 

explained if this property is dominated by the contribution of size of the dinucleotide step. Solvent 

accessible surface area, ∆SA, is widely used to characterize the surface size of a molecule accessible by 

solvent molecules [55–58]. Indeed, the ∆SA values of each base pair revealed a good correlation with of 

∆Vtr values of the duplex (Figure 4b). Thus, kinetic analyses provide the activation volumes of the 

formation and melting of coil-to-helix transition of nucleic acids. By analysis of these parameters, it was 

concluded that hydrating water and interactions between nucleotide bases and sizes of bases contribute 

to annealing and melting reactions of nucleic acids. 

2.5. Effect of Pressure on the Interactions between DNA and Protein  

Reactions that occur along DNA (or RNA) such as replication, transcription, and recombination are 

carried out by numerous proteins and enzymes. During the recognition process between nucleic acid and 

protein electrostatic interactions, conformational changes, and hydration changes may occur. Therefore, 

it was hypothesized that pressure can regulate the interaction between protein and DNA, and that study 

of the effects of pressure will provide thermodynamic information on the reaction. Restriction 

endonucleases, which are an excellent model of DNA interacting proteins, have reduced ability to bind 

and hydrolyze DNA under high pressure, but the specificity of the reaction is enhanced [59,60]. High 

pressure may promote hydration of the enzyme and the enzyme-DNA interface [61], weakening 

non-specific interactions more than specific ones. LacI repressor protein adopts a tetrameric conformation 

that is destabilized in the presence of DNA at high pressure [62]; in contrast, dimerization of LexA 

repressor is stabilized upon DNA binding at high pressure due to effects of the condensation of each 

monomer on DNA [63]. Recently, the effects of pressure and temperature on the binding of RecA to a 

single-stranded DNA were investigated [64]. A phase diagram of ∆G(P, T) of formation of a RecA-DNA 

complex was obtained that indicated that the dissociation of the complex depended on the stability of 

RecA protein rather than DNA. This result agreed well with the structural analysis of DNA under high 

pressure described above [33,40]. Pressure can perturb the interaction between DNA and its cognate 

protein by changing the hydration in the protein, but there are no reports about the pressure perturbation 

to DNA-protein interaction due to the physical alterations of nucleic acid properties by pressure. 

3. Non-Canonical Structures of Nucleic Acids under High Pressure 

3.1. G-Quadruplex 

The canonical structure of nucleic acids is a duplex stabilized by Watson-Crick base paring. Various 

non-canonical structures of nucleic acids have been identified and there is a growing body of evidence 
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that these structures are adopted under certain conditions by genomic DNAs and transcribed RNAs in 

living cells. The G-quadruplex has received significant attention [65]; it is formed by stacking of 

guanine quartets (G-quartets), four guanine bases in a coplanar arrangement stabilized by Hoogsteen 

base pairing [66–68]. Although G-quadruplex structures are polymorphic depending on the sequence, 

metal ions, and the cosolute [69–72], all G-quadruplex structures have stacks of G-quartets and a central 

cavity that binds a monovalent cation, such as K+ or Na+, through interactions with the O6 carbonyls of 

the guanines [73]. The G-quadruplex can be intra- or intermolecularly, and exhibits a much more 

compact conformation than single-stranded nucleic acids [74]. Sequences with the potential to form 

G-quadruplex structures are located throughout the genome [75,76], and G-quadruplex structures appear 

to be involved in the regulation of gene expression, which includes not only telomere maintenance but 

also regulation of transcription, recombination, replication, and translation [14,77–85]. Key factors for 

the stabilization of G-quadruplexes are the incorporation of a monovalent cation, the number of 

G-quartets, and the lengths of loops [86,87], but the major force determining the stability of a 

G-quadruplex is hydration [88–91]. Unlike folding of a nucleic acid duplex, water molecules are 

released during the folding of G-quadruplex [90,91]. Therefore, volumetric analysis using high pressure 

has proven very useful for analysis of the mechanism of folding and unfolding of G-quadruplexes.  

There are two excellent reports of the study of G-quadruplex structures under high pressure. The first 

was reported by Chalikian’s group [92]. This group studied the human telomeric (H-telo) oligonucleotide, 

d[A(GGGTTA)3GGG]. H-telo DNA forms a basket type G-quadruplex characterized by an antiparallel 

structure with one diagonal and two lateral loops [93]. The authors conducted UV melting under high 

pressure to monitor the unfolding process of H-telo oligonucleotide in the presence of Na+ ions. With 

increasing pressure, the melting temperature was remarkably decreased, indicating that ∆Tm/∆P was less 

than −10 × 10−2 K·MPa−1 (Figure 5a).  

Figure 5. (a) Dependencies of the Tm for G-quadruplex DNA on pressure in the presence of 

20 mM (▲), 50 mM (●), and 100 mM (■) NaCl [92]; (b) Graphical image of volumetric 

change of G-quadruplex based on Equation (4).  
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from coil to quadruplex [92]. It is possible that the volumetric characteristics of G-quadruplex DNA are 

also affected by molecular crowding agents. 

Table 3. The value of the molar volume change ∆Vtr of the transition for G-quadruplex DNA. 

DNA Salt or Cosolute ∆Vtr (cm3 mol−1) 
H-telo a [NaCl] = 20 mM 68 ± 2 
 [NaCl] = 50 mM 60 ± 2 
 [NaCl] = 100 mM 56 ± 2 
TBA b (Absence) 54.6 ± 4.2 
 40 wt% Ethylene glycol 12.5 ± 0.8 
 40 wt% PEG 200 12.9 ± 0.9 
 40 wt% PEG 4000 13.1 ± 1.0 

a Each solution was buffered with 10 mM sodium phosphate (pH 7.0), 0.1 mM EDTA, 0.1 mM NaN3, and each 

NaCl concentration [92]; b Each solution was buffered with 30 mM Tris-HCl (pH 7.0) and 100 mM KCl [100]. 

In our study, we used the thrombin binding aptamer (TBA; 5′-GGTTGGTGTGGTTGG-3′) [105], 

which folds into an intramolecular, antiparallel G-quadruplex structure in the presence of various 

monovalent and divalent cations and cosolutes [88,90]. Temperature-dependent UV melting under high 

pressure was analyzed first in the presence of 100 mM KCl. In the absence of cosolute (PEG), the 

thermal stability was decreased with increasing pressure up to 400 MPa (Figure 6a) as observed for the 

H-telo DNA [92]. In contrast, in the presence of 40 wt% PEG, little unfolding of the TBA DNA was 

observed even under high pressure (Figure 6b–d). Our thermodynamic analysis indicated that crowding 

conditions repress the pressure effect due to enthalpic contributions. A volumetric analysis using the 

Clapeyron equation revealed that, in the absence of cosolute, ∆Tm/∆P was −8.4 × 10−2 K MPa−1 and ∆Vtr 

was 54.6 cm3 mol−1, whereas in the presence of ethylene glycol, another crowding agent, ∆Tm/∆P was 

−1.9 × 10−2 K MPa−1 and ∆Vtr was 12.5 cm3 mol−1 (Figure 6e, Table 3). PEG200 and PEG4000 (PEGs 

with average molecular weights of 200 and 4,000, respectively) caused effects similar to that of ethylene 

glycol (Table 3). We hypothesize that the crowding reagents did not affect the structure-dependent 

volume of TBA DNA and that ∆VM, ∆VT and ∆VK+ are the same in the absence or presence of crowding 

regents. Thus, ∆VI reflects the effect of high pressure in the presence of cosolute. Considering the tiny 

decrease of bulk water volume V0 in the presence of ethylene glycol or PEG [106,107], the Equation (5) 

indicates that the cosolute may decrease the number of hydration water (nh) and/or increase radii of 

hydrating waters to expand its volume (Vh). Ethylene glycol or poly(ethylene glycols) decreases the 

volume change of the transition by one fourth due to the alteration of the number and/or radii of 

hydrating waters. The observed structural switching of DNA induced by pressure and cosolutes suggests 

that some gene expression may be regulated quadruplex by pressure changes in living cells. 
  



Molecules 2013, 18 13310 

 

Figure 6. Effect of cosolute on the transition of 40 μM TBA from a quadruplex to a coil 

under various pressures [99]. UV melting curves were obtained (a) in the absence of 

cosolute or in the presence of (b) 40 wt% ethylene glycol, (c) 40 wt% PEG200, and  

(d) 40 wt% PEG4000. The changes of absorbance at 295 nm were analyzed under 

atmospheric pressure (0.1 MPa, black), 50 MPa (blue), 100 MPa (light blue), 200 MPa 

(green), 300 MPa (orange), and 400 MPa (red). Each solution was buffered with 30 mM 

Tris-HCl (pH 7.0) and contained 100 mM KCl. (e) Dependencies of the Tm for G-quadruplex 

DNA on pressure in the presence of ethylene glycol (blue), PEG200 (green), PEG4000 (red), 

and in the absence of cosolute (black). 

 

3.2. Triple Helix  

An oligonucleotide duplex can incorporate another strand via Hoogsteen base pairing to form a triple 

helix, also called a triplex. Wu and Macgregor examined the thermal stability of poly(dA)·poly(dT)2 

under high pressure [23]. In the presence of 2 M NaCl, the triplex had a ∆Tm/∆P value of 4.50 × 10−2 K MPa−1 

and relatively large magnitude ∆Vtr (−7.81 cm3 mol−1). These parameters are obviously higher than those 

of poly(dA)·poly(dT) duplex. Thus, this result indicated that high pressure effectively stabilizes the 

triplex more than the duplex. An increase in the concentration of NaCl up to 3 M increased these 

parameters: ∆Tm/∆P was 5.80 × 10−2 K MPa−1 and ∆Vtr was −10.4 cm3 mol−1. A kinetic analysis of the 
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triplex formation was also reported [49]. The rate of k−1 for the unfolding process for the DNA triplex 

was affected by pressure more than was the rate of DNA duplex dissociation [48]. The activation volume 

for the triplex dissociation ∆V‡
−1 was remarkably large at +39.9 cm3 mol−1 [48]. These values were 

determined in a different buffer than used for analysis of the duplex and so cannot be directly compared.  

3.3. Hairpin DNA 

Hairpin DNAs or RNAs form intramolecularly and consist of a stem of Watson-Crick base pairs and 

a loop. The stability of a hairpin is determined by mainly by the sequence and number of base pairs within 

the stem region, but is affected by the loop sequence and by whether metal ions are bound [108–111]. 

Amiri and Macgregor investigated the stability of DNA hairpins under high pressure and determined 

volumetric parameters of hairpin DNAs containing different nucleation stacks and loop sequences. The 

systematic analysis revealed that the ∆Vtr values of transition of coil-to-helix were as small as those of 

duplex but some ∆Vtr values became positive at low sodium ion concentrations (Table 4).  

Table 4. Transition temperatures (Tm) at atmospheric pressure and the molar volume change 

of the transition for the hairpin DNA with each loop sequence. 

  Loop sequence     

  TA2T  TG2T  TC2T  

Nucleation 

stack 
Na+ (mM) Tm (°C) 

∆Vtr  

(cm3 mol−1) a 
Tm (°C) 

∆Vtr  

(cm3 mol−1) a 
Tm (°C) 

∆Vtr  

(cm3 mol−1) a 

AT/AT 10 42.1 0.44 42.8 1.41 44.9 −1.81 

 20 43.2 −0.18 44.0 0.25 46.1 −2.27 

 50 44.6 −0.83 45.5 1.55 48.7 −3.05 

 100 46.1 −1.46 46.8 −2.89 51.3 −3.76 

AA/TT 10 40.2 1.96 37.9 2.35 44.0 −0.78 

 20 41.5 1.15 41.1 0.86 45.4 −1.18 

 50 43.3 0.19 43.5 −0.85 47.9 −1.75 

 100 44.7 −0.74 45.1 −2.14 49.9 −2.35 
a The error was less than ± 0.32 cm3 mol−1. 

For example, the DNA having TC2T loop with AA/TT nucleation stack (5′-GGATAATCCTTTAT 

CC-3′) had a negative ∆etr value of −0.78 cm3 mol−1 in the each concentration of Na+ ion, whereas that 

with the TG2T loop with the same nucleation stack had a positive ∆Vtr of 2.35 cm3 mol−1 in the presence 

of 10 mM Na+ ion. Considering that ∆VM in the equation (2) was negligible for DNA duplex [112,113], 

∆VT and ∆VI are responsible for the contribution of each factor to ∆Vtr. Furthermore, ∆VT, corresponding 

to the solvent accessible surface area SA should be always negative because the coil form has a larger SA 

than the helix. Therefore, ∆VI (hydration volume change) determines the magnitude of ∆Vtr, which in 

turn depends on the loop sequence and nucleation bases. For example, a loop consisting of purine bases 

had a positive volume change at low salt. These results imply that there are some specific interactions 

between the loop and cations. The importance of hydration within a loop region was also demonstrated 

by osmotic pressure analysis, which revealed that the loop region within a G-quadruplex determines the 

thermodynamic stability and hydration of the structure [114].  

A simulation technique was also utilized to investigate the pressure effect on the folding/unfolding of 

the hairpin structure. Garcia and Paschek used replica exchange molecular dynamics (REMD) simulations 
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to predict a pressure-temperature (P-T) free energy diagram for the RNA hairpin r(GCUUCGGC) and 

found that the RNA hairpin was destabilized by increases of pressure [115]. The change in volume was 

4.1 cm3 mol−1, which was a relatively small change compared with that of the G-quadruplex. No other 

sequences of RNA or DNA have been studied by simulation techniques.  

4. Summary and Perspectives 

In summary, we have reviewed papers related to the effect of pressure on nucleic acid structural 

conformations and stability. Pressure acts to compress the biomolecules. Molecular volume, 

compressivity, and expansibility depend on hydration and molecular packing, and the partial molar 

volume of a biomolecule can decrease or increase upon folding. The canonical DNA duplex formed with 

Watson-Crick base pairs generally has a negative partial molar volume of the melting transition (∆Vtr), 

which indicates that applying pressure causes the duplex to be more stable. The typical magnitude of 

∆Vtr for DNA duplexes is small compared with that of proteins. Only in specific cases such as 

poly[d(A-T)] do nucleic acid structures have a positive value of ∆Vtr and can melting induced by 

pressure change be observed. Structural analyses revealed that the conformation and configuration of 

DNA duplex are not significantly perturbed under high pressure. These results agree with studies of the 

interactions between proteins and DNA under high pressure in which it was observed that the 

conformation of the protein is only affected by pressure.  

In contrast to the stabilities of duplexes, which are relatively unaffected by pressure, non-canonical 

DNA (and RNA) structures are more sensitive to the pressure effect. G-quadruplex DNA structures are 

characterized by a positive and large ∆Vtr value, indicating that the G-quadruplex tends to unfold with 

increasing pressure and is much sensitive to pressure than the duplex form of DNA. The magnitude of 

the ∆Vtr value is generally 10 times greater than that of a duplex and more similar to magnitudes of ∆Vtr 

measured for proteins. Other DNA structures such as a triplex and a hairpin DNA have smaller changes 

in volume than do the G-quadruplexes but are more sensitive to pressure than a duplex.  

Osmotic pressure analysis show that DNA duplexes take up water molecules during the  

folding process [103,105], whereas G-quadruplexes and other non-canonical structures release water 

molecules [90,116,117]. The origin of different ∆Vtr between DNA duplex and these structures comes 

from the hydration. Interestingly, the number of water molecules taken up or released does not 

correspond to the difference of magnitude in change of ∆Vtr value. These results suggest that the physical 

properties of hydrating water around G-quadruplex are quite different from those of duplex. Further 

analysis for the hydration on non-canonical nucleic acids is needed. 

Considering that G-quadruplexes and other non-canonical structures are sensitive to pressure 

changes, structural transitions induced by pressure may alter regulation of gene expression in cells. If 

local perturbations in pressure occur in cells, these changes may alter stabilities of duplex relative to 

non-canonical structures initiating or inhibiting cellular processes. As crowding conditions vary during 

the cell cycle [100], the stabilization of G-quadruplexes may depend on both cellular conditions and 

pressure. Recent study suggested that stress sensor protein Ras in human, which lives at atmospheric 

pressure, showed a relative small magnitude of transition volume of its reaction for the stress-signaling 

compared with those observed in G-quadruplexes [118]. And enzyme reaction such as replication and 

transcription may overcome the highly structured region of G-rich sequence with a help of relative low 
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pressure, because some enzymes translocate along DNA with disrupting the proteins bound on  

DNA [119]. Therefore, the effect of pressure on quadruplex DNA in living cell may happen even at 

relative low pressure stress, at most 100 MPa, which is an acceptable pressure for living cells on earth. 

To discover genetic expression systems triggered by pressure is highly interesting and desired.  

Moreover, from the viewpoint of nanotechnology, DNA is a promising material for construction of 

sensors and nanostructures. In our previous paper [99], we utilized the property of quadruplex and 

duplex DNA to make switching DNA materials by pressure changes. It may be more and more possible 

to use pressure as a trigger to induce signals through structural changes in G-quadruplexes.  
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