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Abstract: The precise determination of the chemical composition in crops is important to identify
their nutritional and functional value. The current study performed a systematic delineation of the
rice metabolome, an important staple in Asia, to investigate the following: (1) comparative features
between brown and white rice; (2) variety-specific composition (Ilpum vs. Odae); and (3) cultiva-
tion of region-dependent metabolic content. Global metabolic profiling and data-driven statistics
identified the exclusive enrichment of compounds in brown rice compared to white rice. Next, the
authors investigated a variety-governed metabolic phenotype among various geo-environmental
factors. Odae, the early-ripening cultivar, showed higher contents of most chemicals compared to the
late-ripening cultivar, Ilpum. The authors identified regional specificity for cultivation among five
areas in Korea which were characterized by polishing degree and cultivar type. Finally, the current
study proposes a possible linkage of the region-specific metabolic signatures to soil texture and total
rainfall. In addition, we found tryptophan metabolites that implied the potential for microbe–host
interactions that may influence crop metabolites.

Keywords: brown rice; white rice; primary metabolites; secondary metabolites; variety; cultivation
region; metabolomics

1. Introduction

Cereal grain is the third most widely produced agricultural product [1]. Oryza glaber-
rima or Sativa seeds are popularly grown in the African and Asian regions. Oryza Sativa
has two major subspecies (japonica and indica) with a tremendous number of varieties.
Japonica rice is the most widely cultivated rice in East Asia, particularly in Korea, China,
and Japan [2].

In addition to caloric intake, the basal role of food, taste, and functional value are
emerging interests among consumers and are mainly determined by the chemical composi-
tion. The compositional characteristics of food materials are affected by multiple complex
factors. Similar to other agricultural products, the metabolite profiles of rice are dominated
by genotype (variety) and geo-environmental characteristics (e.g., amount of rainfall, tem-
perature, and soil) [3–5]. In particular, the metabolite contents are significantly different
according to polishing processing (the transition of brown rice to white rice). Rice bran
and germ are removed during the milling process. They contain various types of beneficial
nutrients and are, thus, major contributors to the characterization of the metabolic profiles
of rice.
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Accordingly, five cultivation regions in Korea were chosen and paired with two Korean
representative cultivars (Ilpum and Odae). The major difference between the varieties is
their ripening period. Originally bred from the Ilpum cultivar, the cultivar Odae is an
early-ripening cultivar which is mainly cultivated in Kangwon Province, a relatively cold
area (northeastern area of Korea) [6]. Ilpum, a late-ripening cultivar, is ideal for cultivation
regions with higher temperatures (e.g., Kyungsang Province, southern Korea).

The current study applied metabolomics as the major analytical approach. This
method is an omics technology that is capable of directly tracing ‘chemicals’, and can
thus comprehensively determine the nutritional characteristics of food. Although a few
studies have conducted targeted or untargeted metabolite profiling of rice, this is the first
to conduct a comprehensive metabolic evaluation of rice while simultaneously considering
its major determinant factors. A recent study proposed that rice had discriminant lipid
molecules, but was limited to its geographical origin (China and Korea) for discriminant
model purposes [2]. Likewise, an earlier study reported discriminant metabolites of rice
from different geographical origins in China based on nuclear magnetic resonance (NMR)
spectroscopy [7]. Other studies showed the metabolic variation between japonica and in-
dica using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-
Mass Spectrometry (GC-MS) [8]. This study was conducted on 12 cultivars from India
based on GC-MS [9], and on 17 cultivars from 11 countries using LC-MS [10]. Compara-
bly, we explored the metabolic profiles of rice compartments (brown vs. white rice) and
varieties (Odae vs. Ilpum) [6] coupled to five different cultivation regions in Korea. The
results implied that the metabolites of rice seeds exhibit unique traits that are interactively
determined by cultivar and cultivation region in brown and white rice.

2. Materials and Methods
2.1. Sample Collection

Rice samples were harvested in 2018 and collected by the National Institute of Crop
Science. The samples included two varieties (Ilpum and Odae) with two polishing types
(brown and white rice). These samples were cultivated in Chuncheon (Gangwon-do,
Korea), Suwon (Gyeonggi-do), Cheongju (Chungcheongbuk-do), Sangju (Gyeongsangbuk-
do), and Jeonju (Jeollabuk-do). The information is summarized in the Supplementary
Information (Supplementary Materials Table S1).

2.2. Metabolite Extraction

Rice grains (20 mg per sample) were lyophilized and pulverized using Mixer Mill
MM400 (Retsch GmbH & Co., Haan, Germany). The powder was mixed with 1 mL
of extraction solvent (methanol:isopropanol:water, 3:3:2, v/v/v) followed by sonication
(5 min) and centrifugation (5 min, 16,100× g at 4 ◦C). The supernatant (400 µL for GC-TOF
MS and 50 µL for Liquid Chromatography-Orbitrap Mass Spectrometry (LC-Orbitrap MS)
was completely dried by a speed vacuum concentrator (SCANVAC, Lynge, Denmark).

2.3. Gas Chromatography Time-of-Flight Mass Spectrometry Analysis

For the first derivatization step, the dried extract was mixed and incubated with 5 µL of
40 mg/mL methoxyamine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) in pyridine
(Thermo, Waltham, MA, USA) (90 min at 800 rpm at 30 ◦C). For the second derivatization,
the mixture was reacted with 45 µL N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA
+ 1% TMCS; Thermo, USA) for 1 h [5,11]. Fatty acid methyl esters (mixture of 13 FAMEs,
C8–C30) were added to the reactant as retention index markers. The derivative (0.5 µL)
was injected with an Agilent 7693 Automatic Liquid Sampler (ALS) (Agilent Technologies,
Wilmington, DE, USA) in splitless mode. The metabolites were chromatographically
separated on an RTX-5Sil MS column (Restek, Gellefonte, PA, USA) while being controlled
by an Agilent 7890B gas chromatograph (Agilent Technologies) [5,12]. Mass spectrometric
data (85–500 m/z at 17 spectra s-1) were acquired by a Leco Pegasus High Throughput
(HT) time of flight mass spectrometer (LECO Corporation, St. Joseph, MI, USA). The
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transfer line and ion source temperatures were set to 280 ◦C and 250 ◦C, respectively, with
a detector voltage of 1850 eV (300 s solvent delay). For quality control purposes, a mixture
of 33 compounds was analyzed every six samples.

Data preprocessing was conducted by ChromaTOF software v. 4.50 (LECO Corpo-
ration, St. Joseph, MI, USA). Then, the data were exported to our server computer for
postprocessing, which included a data format conversion (text and NetCDF file) and eval-
uation (peak alignment, quality check, and quant ion selection). These analyses were
based on the Binbase algorithm [13]. Peak height, based on a quant ion, was used for the
quantitative value of each metabolite and was annotated against the Fiehn Library. Refer
to our previous reports for details [5,12].

2.4. Liquid Chromatography-Orbitrap Mass Spectrometric Analysis

The dried extract was reconstituted with 50 µL of 80% MeOH. The reconstituent was
chromatographically separated by a Waters Acquity Ultra Performance Liquid Chromatog-
raphy (UPLC) BEH C18 column (2.1 mm × 150 mm, 1.7 µm) and an Ultimate-3000 UPLC
system (Thermo Fisher Scientific, MA, USA). The mobile phase consisted of A (water
with 0.1% formic acid, v/v) and B (acetonitrile with 0.1% formic acid, v/v). The gradient
was set to the following: 0–2.0 min, 0% B; 2.0–30.0 min, 0–100% B; 30.0–32.0 min, 100% B;
32.0–32.1 min, 100–0% B; 32.1–35.0 min, 0% B. A Q-Exactive Plus instrument (Thermo
Fisher Scientific, Waltham, MA, USA) was used in positive mode for mass spectrometric
analysis. A full mass spectrum (MS) scan was conducted and ranged from 100–1500 Da (res-
olution of 70,000 FWHM), and MS/MS was performed in a data-dependent manner (High
Energy Collision Dissociation (HCD): 30 eV, resolution of 17,500 FWHM). Data processing
was performed using Compound Discoverer (version 3.1, Thermo Fisher Scientific, MA,
USA). Peak alignment was performed within a mass tolerance of 5 ppm, and a retention
time shift was allowed for 1 min. For compound identification, mass windows of 5 ppm
and 10 ppm were applied for MS1 and MS2, respectively, with 70% similarity scores against
the mzCloud library [5,12]. Pooled samples were injected every eight samples and further
analyzed for quality control purposes.

2.5. Statistical Analysis

Statistical analyses were conducted on all continuous variables (metabolites). The
data matrix from Gas Chromatography-Time of Flight Mass Spectrometry (GC-TOF MS)
and LC-Orbitrap MS were log-transformed. Treemap was generated using Microsoft Excel
(Microsoft, Seattle, WA, USA) based on compound classification (class and subclass) by
the Human Metabolome Database (HMDB). Student’s t-test was performed using EXCEL
(Microsoft Office 2016). Multivariate statistics, including principal component analysis
(PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA),
were performed using SIMCA 15 (Umetrics AB, Umea, Sweden). The OPLS-DA model
was validated based on five-fold cross-validation. A chemical enrichment analysis was
performed to evaluate statistical significance at the level of chemical class based on the
ChemRICH program [5,14]. Box and whisker plots were generated using GraphPad Prism
7 (GraphPad Software Inc., San Diego, CA, USA). Percentages of variation of metabolite
profiles were calculated by permutation multivariate analysis of variance (PERMANOVA)
with the Adonis function in the R package, Vegan [15]. False discovery rate (FDR) was
computed to adjust for multiple hypothesis testing by Benjamini-Hochberg. Pathway
overrepresentation analysis was performed based on the hypergeometric test and relative
betweenness centrality in the server, MetaboAnalyst 4.0 [16].

3. Results and Discussion
3.1. Integrative Metabolic Profiles of Rice Seeds Based on GC-TOF MS and LC-Orbitrap MS

Untargeted metabolic profiling was performed by gas chromatography time-of-flight
mass spectrometry (GC-TOF MS) and liquid chromatography Orbitrap mass spectrom-
etry (LC-Orbitrap MS). A total of 156 metabolites were acquired in the combined MS
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analysis. The identified compounds were classified by chemical taxonomy (HMDB,
http://www.hmdb.ca) (accessed on 20 November 2020). Major subclasses included amino
acids, peptides, and analogs (30%); carbohydrates and carbohydrate conjugates (17%);
fatty acids and conjugates (7%); and purines and purine derivatives (4%) (Figure 1). The
subclass amino acids-peptides-analogs was further categorized into L-alpha-amino acids,
alpha-amino acids, alanine, and derivatives, while carbohydrate-carbohydrate conjugates
consisted of O-glycosyl compounds, sugar alcohols, sugar acids, and derivatives. For
statistical analysis, the datasets were combined following MS total useful signal (MSTUS)
and were implemented in Normalization and Evaluation of Metabolomics Data (NOREVA),
allowing comparisons to be made among datasets from different MS platforms.

Figure 1. Chemical classification of rice metabolic profiles based on chemical taxonomy. The classification was conducted
by chemical taxonomy from Human Metabolome Database (HMDB) (http://www.hmdb.ca) (accessed on 11 July 2020).

First, the metabolomic phenotype was characterized based on unsupervised multivari-
ate statistics (PCA). The score plot by PCA shows the unbiased separation of the profiles
according to the polishing degree (brown vs. white) by component 1 (47.2%) and the
variety (Odae vs. Ilpum) by component 2 (10.7%) (Figure 2A). The authors did not identify
a region-dependent cultivation cluster except for partial discrimination within the brown
rice of the Odae cultivar (blue circles). However, cultivar dominated the rice metabolic
phenotype over potential geoenvironmental factors (different cultivation regions) which
differed from other crops cultivated in Korea [5,12]. The percentage of metabolic variation

http://www.hmdb.ca
http://www.hmdb.ca
http://www.hmdb.ca
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explained by each factor (polishing type, variety, and cultivation region) was determined
based on permutation multivariate analysis of variance (PERMANOVA) with the Ado-
nis function. Consistently, the analysis confirmed that the highest level of the explained
variance across the metabolome was due to the polishing process (37.5%), followed by the
variety (13.5%), and cultivation region (4.6%) (Figure 2B).

1 
 

 
Figure 2. Metabolic phenotypes of the rice profiles using multivariate statistical analysis. (A) The score plot of the rice
profiles based on principal component analysis (PCA). The variance is best explained by the t1 vector (component 1,
47.2%) which separated the profiles according to polishing degree (white vs. brown rice). The cultivar (Odae vs. Ilpum)
were separated by the t2 vector (component 2, 10.7%). White rice (WR) and Brown rice (BR) indicate white rice and
brown rice, respectively. (B) The explained levels of total variation in the metabolic profiles of rice explained by the major
factors (polishing type, variety, and cultivation region) computed based on Permutational multivariate analysis of variance
(PERMANOVA).

Most compounds (127 out of 156 identified compounds) were more abundant in
brown rice than in white rice. The highest fold change was detected for cafestol (PubChem
CID: 108052, 12-fold difference) and reduced glutathione (PubChem CID: 124886, 10-
fold difference). Cafestol is a natural diterpene that is commonly found in coffee beans.
Diterpenes have been observed to have potential bioactivities, including anti-inflammatory
activity, hepatoprotective effects, and antitumor capacity [17], which may be due to its
increased levels of glutathione [17]. Thirteen compounds were found at 5- to 10-fold
increases, and 34 metabolites ranged from 3- to 5-fold differences. Others (72 metabolites)
were within the range of one- to two-fold changes (p < 0.05, Supplementary Materials
Table S2). In contrast, three compounds were found to be at significantly higher levels in
white rice than in brown rice ((2-hydroxypyridine (PubChem CID: 34037), glycerophospho-
N-palmitoyl ethanolamine (PubChem CID: 53393933), and lactic acid (PubChem CID: 612)).
The compounds were found to be 1.2- to 1.8-fold richer in white rice compared to brown
rice. The overall enriched metabolites in brown rice may provide molecular evidence for
better nutritional quality, and thus, potential health benefits [18].

3.2. Unique Metabolic Signatures According to Variety Type (Odae vs. Ilpum)

Variety was inferred as the second dominant factor from PCA and PERMANOVA
and was comparatively analyzed between Odae and Ilpum; based on Student’s t-test,
univariate statistics showed overall higher contents in Odae for both white and brown rice
(Supplementary Materials Tables S3 and S4). A previous study reported few differences
in the physiological properties and genetic variation in the Odae cultivar bred for early-
ripening traits in comparison to the Ilpum cultivar [6]. However, the metabolic profiles
were substantially different between the two varieties. The Odae cultivar showed 82%
and 72% of metabolites for brown and white rice, respectively, which was significantly
higher than those found in the Ilpum cultivar. In particular, the highest fold enrichment
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was observed for trigonelline (PubChem CID: 5570) in the Odae cultivar (fold change of
7.4 and 5.0 for brown and white rice, respectively). Plant alkaloids, which are abundant in
coffee, have been reported to have antidiabetic effects via hypoglycemic effects and the
inhibition of intestinal glucose uptake. In addition, the compound has been suggested to
have a neuroprotective effect by potential inhibitory activities, including γ-aminobutyric
acid (GABA) receptor, acetylcholinesterase, and amyloid-β peptide aggregation [19].

Using pathway overrepresentation analysis, the metabolic profiles were further char-
acterized. Despite the overall enrichment in the Odae cultivar, the white rice of the Ilpum
cultivar showed exclusive enrichment of the metabolites involved in arginine biosyn-
thesis (glutamine, PubChem CID: 5961; ornithine, PubChem CID: 6262) (Supplementary
Figure S1). Others were pyrimidine metabolism, steroid biosynthesis (squalene, PubChem
CID: 638072; cholesterol, PubChem CID: 5997), and sesquiterpenoid-triterpenoid biosyn-
thesis (squalene, PubChem CID: 638072). In addition, differential regulation of the same
pathways was found for arginine-proline metabolism in which agmatine (PubChem CID:
199) and ornithine (PubChem CID: 6262) were higher in Ilpum, whereas proline (PubChem
CID: 145742), putrescine (PubChem CID: 1045), and 4-guanidinobutanoate (PubChem CID:
500) were higher in Odae.

To exclusively delineate the metabolic differences derived from variety (Odae vs.
Ilpum), OPLS-DA was applied to separate linearly related (joint) and unrelated (orthogo-
nal) factors [20]. Indeed, the resultant score plot indicated that the polishing type-driven
variance was projected to the y-axis (unrelated vector), and the variance originating from
the variety was aligned with the x-axis (Figure 3A). The model showed that the highest
levels of explained variance and predictability were R2Y and Q2 at 0.978 and 0.935, respec-
tively, with an R2Y intercept value of 0.673 and a Q2Y intercept value of −0.811 (five-fold
cross-validation).

Figure 3. Cultivar-dependent metabolite profiles based on orthogonal projection to latent structures-discriminant analysis
(OPLS-DA). (A) The score plot of the rice profiles and (B) loading scatter plot based on OPLS-DA. The metabolites in the
yellow box present a high correlation with the Odae cultivar, whereas those in the blue box show a high correlation with the
Ilpum cultivar. Box and whisker plots of the metabolites in the yellow box (C) and the blue box. (D) WR and BR indicate
white rice and brown rice, respectively.
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The subsequent loading scatter plot, based on the OPLS-DA model, identified the
metabolites with variety specificity (Figure 3B). The metabolites close to the group node
(Odae) indicated a strong correlation with the Odae cultivar (yellow box). The metabolites
with the highest specificity were myristic acid (PubChem CID: 11005), isoferulic acid (Pub-
Chem CID: 736186), sphingosine (PubChem CID: 5280335), 2-amino-1,3,4-octadecanetriol
(PubChem CID: 122121), trigonelline (PubChem CID: 5570), and nicotinic acid (PubChem
CID: 938) (Figure 3C). Others showed higher abundances in Odae than in Ilpum but with an
interactive effect of the polishing degree. Likewise, the metabolites that were highly corre-
lated with Ilpum (blue box) showed higher abundances, and the differences were amplified
by the polishing type. The metabolites included squalene (PubChem CID: 638072), glu-
tamine (PubChem CID: 5961), and oxalic acid (PubChem CID: 971) (Figure 3D). In addition,
a global approach based on chemical structural similarity and ontology mapping identified
a chemical class, namely indoles, that showed variety-dependent abundances. This rela-
tionship was particularly identified in white rice (Supplementary Materials Figure S1B).
Significant differences were found for 6-methylquinoline (PubChem CID: 7059) and skatole
(PubChem CID: 6736) (p < 0.05) with the moderate enrichment of tryptamine (PubChem
CID: 1150) (p = 0.06). As a reactant of indole-3-acetate, skatole is biotransformed by acetate
carboxyl-lyase which is encoded in some microorganisms (e.g., the Clostridium genus).
The different content of the metabolites implies a putative interaction between crop and
microbiome. However, it is important to note that the indole derivative has been detected
in some flowers as well.

A previous report [6] determined that there was no significant difference in the
biochemical properties and DNA levels between the two varieties. Thus, comprehensive
metabolomic profiling proved to be a powerful method to discriminately characterize the
molecular traits and, ultimately, link them to physiology.

3.3. Metabolic Differences Associated with Geoenvironmental Factors (Cultivation Region)

Region-specific profiles were first evaluated based on OPLS-DA within predefined
factors (white rice-Ilpum, white rice-Odae, brown rice-Ilpum, and brown-Odae). Overall,
all four models indicated high levels of discrimination power (explained level) and practi-
cability (Figure 4). To note, the region-specific features were successfully delineated despite
the predominant factors (polishing type and cultivar). The brown rice of the Ilpum variety
cultivated in the Sangju (SJ) and Chuncheon (CC) regions showed a close association which
was discriminated from the other regions (Suwon (SW), Jeonju (JJ), and Cheongju (CJ))
(R2Y = 0.993, Q2 = 0.746) (Figure 4D). The metabolites of lyxitol (PubChem CID: 94154),
butane-2,3-diol (PubChem CID: 262), and xylitol (PubChem CID: 6912) were the strongest
contributors to the discriminant model. The white rice of the Ilpum cultivar was distinc-
tively clustered along with each region in which the SJ and SW regions were separated
from the CC, JJ, and CJ regions based on the first component (R2Y = 0.999, Q2 = 0.806)
(Figure 4C). The metabolites with the top Variable Importance for the Projection (VIP)
scores were 6-methylquinoline (PubChem CID: 7059) and tryptamine (PubChem CID:
1150) (VIP score > 1.6). Likewise, the Odae cultivar was regionally characterized by the
relatedness between SJ and SW for both brown and white rice (Figure 4A,B). The major
contributors were uric acid (PubChem CID: 1175), galactinol (PubChem CID: 11727586),
and succinic acid (PubChem CID: 1110) for brown rice, whereas 2,5-dihydroxypyrazine
(PubChem CID: 23368901), sorbitol (PubChem CID: 5780), and fructose (PubChem CID:
2723872) were the metabolites with the top VIP score for white rice.
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Figure 4. Cultivation-regional specificity of the rice profiles based on orthogonal projection to latent structures-discriminant
analysis (OPLS-DA). The score plot of the rice profiles cultivated in 5 different regions for Odae-white rice, (A) for Odae-
brown rice, (B) for Ilpum-white rice, and (C) for Ilpum-brown rice. (D) CJ: Cheongju (Chungcheongbuk-do), SJ: Sangju
(Gyeongsangbuk-do), SW: Suwon (Gyeonggi-do), CC: Cuncheon (Gangwon-do), JJ: Jeonju (Jeollabuk-do).

To further investigate the cultivation of region-dependent metabolic features, the
authors normalized the metabolite contents by autoscaling and summing them within each
chemical class. In general, the chemical, class-wise metabolic features were coordinated
with score plots computed by the OPLS-DA models.

3.4. Odae Cultivar Characteristics Related to Cultivation Region

Overall, the profiles of CC and JJ showed relatively enriched contents compared to
other regions. The white rice cultivated in JJ showed the highest levels of amino acids (red
bar) and carbohydrates (orange bar) in contrast to the SJ region (Figure 5B). The CC region
showed moderately higher levels of all chemical classes, whereas the CJ regions presented
lower levels except for carbohydrates. The SW region featured the highest level of fatty
acyls and the lowest level of carbohydrates. For brown rice, the profiles of the CC region
showed the highest contents in all classified groups. Likewise, the brown rice of CJ and
CC showed relatively higher contents. Three chemical classes (amino acids, carbohydrates,
and fatty acyls) were at the highest levels in the rice cultivated in the CC region. Similarly,
the higher contents of amino acids and carbohydrates were characteristic of the CJ and
JJ regions, whereas the SJ and SW rice presented the lowest abundances, particularly of
amino acids and carbohydrates (Figure 5C).
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Figure 5. The metabolic signatures with regional specificity. The metabolites were classified into 4 major classes and normal-
ized by autoscaling. The y-axis is the sum of the normalized intensities of the metabolites in each class. (A) Geographic map
of the cultivation regions in Korea. The relative abundances of 4 chemical classes in white rice and (B) brown rice (C) of the
Odae cultivar and white rice and (D) brown rice (E) of the Ilpum cultivar. (F) Total rainfall (from April to October 2018) and
(G) soil texture of 5 different cultivation regions. Information on the soil texture was acquired from the National Institute of
Agricultural Sciences (http://soil.rda.go.kr/soil/index.jsp) (accessed on 20 June 2020), and the triangle chart is presented
based on information from the United States Department of Agriculture (USDA). CJ: Cheongju (Chungcheongbuk−do),
SJ: Sangju (Gyeongsangbuk−do), SW: Suwon (Gyeonggi−do), CC: Cuncheon (Gangwon−do), JJ: Jeonju (Jeollabuk−do).

Ilpum cultivar characteristics related to cultivation region. For white rice, the Ilpum variety
cultivated in SJ showed the highest contents of amino acids, carbohydrates, and purines
(Figure 5D). The profiles of the SW region were at moderately high levels compared to
the other regions, while the rice in CJ was characterized by the lowest contents of all four
classes. Two regions, CC and JJ, showed similar patterns in which fatty acyls were at
moderately high levels, and the three other classes were at lower contents. The overall
enriched contents were determined in the brown rice of the SJ and CC regions. The rice
of the JJ region featured the lowest contents of amino acids, carbohydrates, and purines,
while all chemical classes showed moderate levels in the profiles of CJ and SW (Figure 5E).

Finally, the putative linkage between metabolic features and geographic traits was
investigated. Despite the minor geoenvironmental influence on the rice metabolic profiles,
a partial association was observed, particularly in the brown rice of the Odae cultivar.
This type of rice showed distinctive clusters by PCA (Figure 2). The subsequent score
plot analysis explicated the distinctions between the two areas (Supplementary Materials
Figure S2). Among the clustered regions (CC, CJ, and JJ), a comparable pattern of annual
rainfall was observed in the CC and JJ regions (Figure 5F). Moreover, the soil texture was
similar among the three regions (Figure 5G). The regions’ textural class was justified by the
relatively higher portion of loam. The high dependency of metabolite contents on soil type
has been reported in soybeans cultivated in Korea [5].

4. Conclusions

The main goal of the current study was to systematically deconvolute the complicated
layers of rice metabolic profiles that were overlaid by multiple factors (polishing degree,
variety, and cultivation region). Our results revealed the relative contribution of these
factors to the metabolic profiles of rice cultivated in five Korean regions. Unlike our
previous investigation of soybean and sesame seeds, rice metabolic profiles were more
strongly influenced by variety (early- or late-ripening cultivar) rather than cultivation
region, and all followed polishing degree (brown or white rice). Although we do not

http://soil.rda.go.kr/soil/index.jsp
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propose a comprehensive linkage between the region-specific metabolic profiles and geo-
environmental factors, the unique metabolic signatures were clearly identified according
to five cultivation areas. Although the five cultivation areas varied, the unique metabolic
signatures were not exclusively determined by the other components (e.g., polishing degree
and variety).

Utilizing comprehensive genotyping under well-defined environments, the current
study’s outcomes provide greater detail and mechanistic insight into the biochemical
consequences and metabolic physiology of rice that are complicated by multiple factors in a
crop-specific manner, including microbiome–plant interactions. In addition, this approach
can meet the growing public demand for the authentic discrimination of the variety and
cultivation region of agricultural products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10040711/s1, Figure S1: Pathway over-representation analysis of the metabolite pro-
files with significantly higher abundances in white (A) and brown rice (B) of Odae cultivar, and of
Ilpum cultivar (C and D). The analysis is performed based on the hypergeometric test and relative-
betweenness centrality in the MetaboAnalyst server v. 5.0. Figure S2: Chemical similarity enrichment
analysis of cultivar-specific metabolites (Odae vs Ilpum) in brown rice (A) and white rice (B). Node
size is proportional to the number of metabolites within each chemical class. Node color shows the
ratio of metabolites with higher abundance and lower abundance. Red or blue colors indicate rela-
tively higher ratio of higher abundance in Odae cultivar compared to Ilpum cultivar whereas purple
color presents relatively equivalent ratio. X-axis and y-axis present partition coefficient and statistical
significance (Kolmogorov–Smirnov test), respectively. Figure S3: Metabolomic phenotype of brown
rice of Odae cultivar. The score plot is generated based on principal component analysis (PCA). The
variance is best explained by t1 vector (34.1%), which separates the profiles according to regions as
follows: SW, SJ vs CC, CJ, JJ. CJ: Cheongju (Chungcheongbuk-do), SJ: Sangju (Gyeongsangbuk-do),
SW: suwon (Gyeonggi-do), CC: Chuncheon (Gangwon-do), JJ: Jeonju (Jeollabuk-do). Table S1: Culti-
vation regions of rice sample analyzed in the study. Table S2: List of metabolites that are significantly
different between the brown and white rice (fold-change is the ratio of brown rice to white rice). False
discovery rate (FDR) was computed for adjusting multiple hypothesis testing by Benjamini-Hochberg.
Table S3: List of metabolites that are significantly different between Odae and Ilpum cultivars in
white rice (fold-change is the ratio of Odae to Ilpum). False discovery rate (FDR) was computed for
adjusting multiple hypothesis testing by Benjamini-Hochberg. Table S4: List of metabolites that are
significantly different between Odae and Ilpum cultivar in brown rice (fold-change is the ratio of
Odae to Ilpum).
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