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A dry immersion model 
of microgravity modulates platelet 
phenotype, miRNA signature, 
and circulating plasma protein 
biomarker profile
Laura Twomey1,2,14, Nastassia Navasiolava3,14, Adrien Robin3, Marie‑Pierre Bareille4, 
Guillemette Gauquelin‑Koch5, Arnaud Beck4, Françoise Larcher6, Gerardene Meade‑Murphy7, 
Sinead Sheridan8, Patricia B. Maguire9, Michael Harrison10, Bernard Degryse2,12, 
Niall M. Moyna11,12, Claude Gharib13, Marc‑Antoine Custaud3 & Ronan P. Murphy2,12*

Ground based research modalities of microgravity have been proposed as innovative methods to 
investigate the aetiology of chronic age-related conditions such as cardiovascular disease. Dry 
Immersion (DI), has been effectively used to interrogate the sequelae of physical inactivity (PI) and 
microgravity on multiple physiological systems. Herein we look at the causa et effectus of 3-day 
DI on platelet phenotype, and correlate with both miRomic and circulating biomarker expression. 
The miRomic profile of platelets is reflective of phenotype, which itself is sensitive and malleable 
to the exposome, undergoing responsive transitions in order to fulfil platelets role in thrombosis 
and haemostasis. Heterogeneous platelet subpopulations circulate at any given time, with varying 
degrees of sensitivity to activation. Employing a DI model, we investigate the effect of acute PI on 
platelet function in 12 healthy males. 3-day DI resulted in a significant increase in platelet count, 
plateletcrit, platelet adhesion, aggregation, and a modest elevation of platelet reactivity index (PRI). 
We identified 15 protein biomarkers and 22 miRNA whose expression levels were altered after DI. A 
3-day DI model of microgravity/physical inactivity induced a prothrombotic platelet phenotype with 
an unique platelet miRNA signature, increased platelet count and plateletcrit. This correlated with a 
unique circulating protein biomarker signature. Taken together, these findings highlight platelets as 
sensitive adaptive sentinels and functional biomarkers of epigenetic drift within the cardiovascular 
compartment.
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ASµm2	� Aggregate size in µm2 units
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OPEN

1Technological University Dublin, Dublin 9, Ireland. 2Cell & Molecular Physiology Group, School of Health & 
Human Performance, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland. 3Univ 
Angers, CHU Angers, CRC, Inserm, CNRS, MITOVASC, SFR ICAT​, 49000  Angers, France. 4MEDES, Toulouse, 
France. 5Centre National d’Études Spatiales (CNES), Paris, France. 6CHU Angers, Laboratoire de Biochimie, 
Univ Angers, 49000  Angers, France. 7Department of Pharmacology and Therapeutics, University College Cork, 
Cork, Ireland. 8Department of Sports Science & Physical Education, The Chinese University of Hong Kong, 
Hong Kong, China. 9Conway‑SPHERE Research Group, Conway Institute, University College Dublin, Dublin, 
Ireland. 10Department of Sport and Exercise Science, Waterford Institute of Technology, Cork Road, Waterford, 
Ireland. 11Vascular Physiology and Clinical Exercise Medicine Group, School of Health & Human Performance, DCU, 
Glasnevin  D9, Ireland. 12Centre for Preventive Medicine, DCU, Glasnevin  D9, Ireland. 13Institut NeuroMyoGène, 
Faculté de Médecine Lyon‑Est, Université de Lyon, Lyon, France. 14These authors contributed equally: Laura 
Twomey and Nastassia Navasiolava. *email: ronan.murphy@dcu.ie

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-01335-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21906  | https://doi.org/10.1038/s41598-021-01335-x

www.nature.com/scientificreports/

CFU-Mk	� Colony-forming unit (CFU) assays of megakaryocyte progenitors
cGMP	� Guanosine 3,5-cyclic monophosphate
CVD	� Cardiovascular disease
DBP	� Diastolic blood pressure
DI	� Dry immersion
DKK1	� Dickkopf-related protein 1
ECM	� Extracellular matrix
EMP	� Endothelial derived microparticles
Hb	� Haemoglobin
HCT	� Haematocrit
HR	� Heart rate
HSC	� Haematopoietic stem cells
HSP27	� Heat shock protein 27
IL6	� Interleukin-6
KEGG	� Kyoto encyclopaedia of genes and genomes
LOX-1	� Lectin-like oxidised low-density lipoprotein receptor-1
MFI	� Mean fluorescent intensity
miRNA	� MicroRNA
MP	� Microparticles
MPV	� Mean platelet volume
MV	� Microvesicles
ncRNA	� Noncoding RNA
NEMO	� NFKappa-B essential modulator
NPX	� Normalised protein expression
NTA	� Nanoparticle tracking analysis
PAR4	� Protease activated receptor 4
PCT	� Plateletcrit
PDW	� Platelet distribution width
PEA	� Proximity extension assay
PEAR1	� Platelet-endothelial aggregation receptor 1
PFP	� Platelet free plasma
PGE1	� Prostaglandin E1
PI	� Physical inactivity
PLCR	� Platelet large cell ratio
PLT	� Platelet count
PPP	� Platelet poor plasma
pre-miRNA	� Preliminary miRNA
pri-miRNA	� Primary miRNA
PRI	� Platelet Reactivity Index
PRKAR2B	� Protein kinase CAMP-dependent type II regulatory subunit beta
PRP	� Platelet rich plasma
RBC	� Red blood cell count
SBP	� Systolic blood pressure
SC%	� Surface covered
SIRT2	� Sirtuin 2
SRC	� Proto-oncogene tyrosine protein kinase
T2DM	� Type 2 diabetes mellitus
TAC​	� Tetrameric antibody complex
TF	� Tissue factor
VASP	� Vasodilator-stimulated phosphoprotein
VO2max	� Maximal oxygen uptake
WBC	� White blood cell count
ΔDE	� Differentially expressed
μG	� Microgravity

Deciphering the aetiology of chronic diseases presents a continual challenge for basic, translational and clinical 
research. Pertinent to these endeavours is our understanding of cardiovascular disease (CVD) and associated 
co-morbidities. Efforts in coping with the health burden of CVD requires in depth knowledge of the causative 
risk factors in order to develop cost-effective preventive, management and treatment strategies. CVD risk factors 
can track from childhood into adulthood and are strong predictors of subclinical disease in early life1. Up to 80% 
of CVD may be prevented if modifiable risk factors, e.g. physical inactivity are evaded2.

The haemostatic system is a complex ancestral pathway which is physiologically adapted to maintain hae-
mostasis and protect vascular integrity. Risk factors perturb homeostasis, contributing to chronic inflammation 
and CVD in which platelets play a pivotal role. Moreover, platelets have diverse roles and are involved in many 
inflammatory conditions. Therefore, depending on the physiological context and the environmental architecture, 
platelet function may be protective or, conversely, contribute to adverse thrombotic and inflammatory outcomes.

Platelets are small, anucleate cells that travel as resting discoid fragments in the circulation. Their average 
circulating life span is 8–9 days and they are derived from haematopoietic stem cells (HSC) located in the bone 
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marrow niche. Studies have identified the existence of multiple stem cells types within the various bone cellular 
niches3,4. Nevertheless, the dynamics and differentiation steps by which HSCs give rise to the diverse cell types 
are difficult to characterise due to modelling limitations as well as the complexity of the cellular and molecular 
processes involved5,6.

Platelet biogenesis, is an finely orchestrated series of cellular processes known as megakaryocytopoiesis and 
thrombopoiesis. These distinct, non-mutually exclusive processes are driven by temporal, spatial and stochastic 
patterns of gene expression, thought to be determined by precise epigenetic mechanisms. Epigenetics involves 
the intricate interplay between genes and the exposome and is fundament to developmental biology. Several 
recent studies have demonstrated that epigenetic alterations, mostly encompassing DNA methylation, histone tail 
modifications, and the biogenesis and effector function of microRNAs and other non-coding RNAs (ncRNAs), 
play integral role in both primary and secondary haemostasis5,7,8.

Epigenetic mechanisms display a plasticity in that they are amenable to perturbations throughout our lifespan 
and drive cell proliferation, differentiation, function and adaptation from conception into adulthood. Environ-
mentally induced epigenetic modifications, such as those elicited by nutrition, stress, pollution, medication and 
physical inactivity, can influence morbidity and mortality associated with chronic illness and numerous adult 
onset diseases9.

Epigenetic control of haemostasis and thrombosis via mechanisms such as DNA methylation and histone 
modification is a new domain. Limitations in this area of research have hindered progress, as analysis of these 
processes requires DNA, which is lacking in platelets6. New studies have implicated several key molecular path-
ways involved in platelet aggregation as being regulated by DNA methylation. Examples of such biochemical 
arbiters of platelet phenotype and function include the platelet receptors platelet-endothelial aggregation receptor 
1 (PEAR1)10, protease-activated receptor 4 (PAR4)11, glycoprotein VI12, and P2Y1213. Qualitative and quantitative 
analysis of discernible platelet phenotypes based on multi ‘omics’ are being associated with a variety of physiologi-
cal conditions and sensitivity to anti-thrombotic therapeutics8,14,15. Various platelet derived parameters known 
as platelet indices are being employed as a measure of platelet heterogeneity and as surrogate index markers of 
megakaryocytopoiesis variation16. The molecular basis and significance of platelet phenotypic variation remain 
vague as they do not lend themselves to lex parsimoniae.

Scientific studies to elucidate the impact of the exposome on platelet biogenesis are emerging as exciting and 
active fields of research. Our understanding of the adaptive mechanisms underlying the physiological, cellular 
and molecular responses to physical inactivity, such as altered platelet phenotype is vague. Our knowledge of 
physical inactivity is somewhat indirect and is mainly based on the positive effects of exercise training on the 
sedentary population17. As a sedentary lifestyle is often associated with obesity and overweight, some mecha-
nisms involved in the pathogenesis of physical inactivity are similar to that of obesity such as insulin resistance, 
hypertension, and increased inflammation18.

One model being explored to decipher the aetiology of CVD is microgravity (μG). Gravity is a continual 
force impacting biology and physiology, with living organisms adapting to alterations across the gravitational 
continuum. Variations in gravitational levels are perceived at the molecular and cellular levels, inducing adap-
tive responses that influence dynamic physiological functions. Fighting gravity requires daily physical exercise, 
thus exposure to μG is associated with enhanced inactivity19. μG provides a unique model to study the effects 
of global enhanced physical inactivity and deconditioning imposed on healthy subjects17,20–27. Dry immersion 
reproduces most of the effects of microgravity, inducing rapid and profound deconditioning20,24, similar to those 
observed in spaceflight26,28.

To date there have been no in-depth systematic studies on the effect of DI on platelet biogenesis and con-
comitant phenotype. Herein, we endeavoured to elucidate the impact of physical inactivity and haemoconcen-
tration induced by 3-Day DI on platelet phenotype as well as the cellular and molecular mechanistic alterations 
implicated in these adaptations.

Methods
Subjects.  Twelve healthy non-athletic men aged 26 to 39  years (age 32 ± 1.4  yr, weight 75 ± 2  kg, height 
178 ± 2 cm, BMI 23.6 ± 0.4 kg/m2, maximal oxygen uptake V̇O2max 39 ± 1.1 mL/min/kg, mean ± SEM) partici-
pated in this study. All participants were non-smokers, had no history of cardiovascular or other chronic dis-
eases, were not taking medication prior to the experiment, and received a comprehensive clinical assessment. 
All subjects were informed about the experimental procedures and gave their written consent. The experimental 
protocol conformed to the standards set by the Declaration of Helsinki and was approved by the local Ethic 
Committee (CPP Sud-Ouest Outre-Mer I, France) and French Health Authorities (n° ID RCB: 2014-A 00904-
43).

General DI protocol.  The study was conducted at the MEDES space clinic, Toulouse, France. General DI 
protocol is described in detail previously29. Briefly, protocol included three days of ambulatory baseline meas-
urement before immersion (B-3, B-2, B-1), three days (72 h) of dry immersion (DI1, DI2, DI3) and two days of 
ambulatory recovery (R0, R + 1). The subjects were asked not to exercise during the 8 days of the experiment. 
Two subjects in two separate baths underwent DI simultaneously. Thermoneutral water temperature (32.5–
33.5  °C) was continuously maintained. Light-off period was set at 23:00–07:00. Daily hygiene, weighing and 
some specific measurements required extraction from the bath. During these short out-of-bath periods, subjects 
maintained the − 6° head-down position (“strict” protocol). Total out-of-bath supine time for the 72 h of immer-
sion was 4.7 ± 0.16 h. Otherwise, during DI, subjects remained immersed in a supine position for all activities 
and were continuously observed by video monitoring. Blood pressure (BP), heart rate (HR), and body weight 
were measured daily at 07:00. Leg echography has been performed daily to ensure the absence of thrombophle-



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21906  | https://doi.org/10.1038/s41598-021-01335-x

www.nature.com/scientificreports/

bitis. Onset and end of immersion both occurred at 09:00, therefore morning measurements and samplings on 
DI1 were performed before immersion, and on day R0—still under immersion. Water intake was ad libitum and 
diet was the same for all participants (standardized to body weight in energy and nutrients). Daily caloric intake 
was approximately 2820 kcal for baseline and recovery and 2270 kcal for the immersion period. Daily intake for 
sodium and potassium was approximately 3–4 g. This 3-day DI allowed for several studies on different domains 
performed by 8 research groups25,27,29–33.

Blood sampling.  Antecubital venous blood samples (trisodium citrate tube) were collected in the morning 
before breakfast, before DI (B-3; Pre), under DI on R0 (70 h of DI; End) and after DI on R + 1 (22 h following the 
accomplishment of 3-day DI; Recovery).

Blood count and platelet indices.  Immediately after blood sampling, complete blood count and “platelet 
count” was performed using the Sysmex XN-3000™ Haematology system. Blood count included RBC, WBC, Hb, 
Hct. Platelet indices included Platelet count (PLT), plateletcrit (PCT), platelet distribution width (PDW), mean 
platelet volume (MPV), platelet large cell ratio (PLCR) (www.​sysmex.​co.​uk).

Preparation of platelets.  The preparation of Platelet Rich Plasma, Platelet Free Plasma and leukocyte 
(CD45) depletion of platelets was as previously described34. CD45 depletion of platelets for RNA analysis was 
carried out using EasySep™ magnetic technology (StemCell). A detailed description with adaptions is outline in 
Supplementary Material.

Plasma volume estimation.  Percent change in plasma volume on R0 and R + 1 vs. B-3 was calculated 
using Hb and Hct count (Dill and Costill formula): DPV (%) = 100 × [HbB (1- 0.01Hcti)] / [Hbi (1- 0.01HctB)] 
– 100, where HbB and HctB are baseline Hb and Hct levels, and Hbi and Hcti are Hb and Hct on days R0 and 
R + 1, respectively.

Platelet‑free plasma isolation.  Platelet free plasma (PFP) was isolated for microvesicle work. In order to 
generate PFP, a double centrifugation method was employed. Blood was drawn using a 21G needle into a sodium 
citrate vacutainer (0.32% v/v final concentration). The first 3mls of blood was discarded to avoid contamination 
from cell fragments or tissue factor from venepuncture being collected. The blood sample was mixed by gentle 
inversions to ensure even distribution of the anticoagulant. Within 15  min of collection, it was centrifuged 
at 1550xg for 20 min at room temperature (20–22 °C) to pellet the cells. The supernatant PFP containing the 
microvesicles (MVs) was carefully aspirated leaving a layer of approximately 0.5 cm undisturbed on top of the 
cells. The collected PFP was centrifuged again at 13,000×g for 2 min to remove any contaminating cells or debris. 
The PFP was then collected, leaving 20% of the sample at the bottom of the tube to be discarded. The PFP was 
separated in 250 µl aliquots and stored at − 80 °C until further analysis, at which point it was thawed on ice.

Human protein biomarker assay—Proseek multiplex immunoassay.  Proseek biomarker assays 
were undertaken in collaboration with Olink, Sweden (www.​olink.​com). Proseek® multiplex CVD II96x96 & Pro-
seek® multiplex inflammation I96x96 are high-throughput multiplex immunoassays, each enabling analysis of 92 
CVD- or inflammation-related protein biomarkers using 1µL of sample and across samples simultaneously. This 
high level of multiplexing is achieved by proximity extension assay (PEA) technology. A pair of oligonucleotide-
labelled antibodies (Proseek probes) specific for each biomarker are allowed to pair-wise bind to each target 
protein in the sample. When two Proseek probes are in close proximity, a new PCR target sequence is created by 
a proximity-depended DNA polymerization reaction. This sequence can then be detected by real time PCR and 
measured. Proseek assays were performed by Olink Bioscience (Upsala, Sweden) to evaluate the expression of 
two panels of potential CVD and inflammatory biomarkers. Overlap between panels resulted in the total meas-
urement of 152 biomarkers in the PFP samples. Briefly, 1 μl of each sample or negative control was incubated 
with the conjugated antibodies at 4 °C overnight (day 1). On day 2, the PEA mixture was added and the products 
were extended and pre-amplified using PCR (ABI 2720 Thermal cycler, Life Technologies). The detection rea-
gent was added to 2.8 µl of the extended and pre-amplified product, mixed and then loaded into the Fluidigm 
Gene Expression 96 × 96 Dynamic arrays (Fluidigm Corporation) on one side and the Primer plate with specific 
primers on the other side of the chip. The chip was primed using Fluidigm IFC controller HX and afterwards 
loaded into a Fluidigm Biomarker system. Detection and sample analysis was performed by high-throughput 
real-time PCR analysis using the Fluidigm® BioMark™ HD System. This PCR platform enables simultaneous 
detection of 96 analytes in 96 samples creating 9,216 data points from a single run.

Proseek multiplex immunoassay: data analysis.  Raw data was analysed using Fluidigm PCR soft-
ware. The Proseek assay generated Cq values for each biomarker and data was normalized using the extension 
control and a background value. The data used for statistical analysis was expressed on a log2 scale, where a high 
value corresponded to a high protein expression and vice versa with a low value. The limit of detection (mean 
negative control plus 3 × standard deviation) was determined for each biomarker for each sample. The data was 
normalised and analysed using GenEx software (MultiD, Gothenburg, Sweden). All statistical analyses (dynamic 
principal component analysis and one-way ANOVA) were performed on normalized data.

miRNA isolation and amplification.  All RNA procedures were undertaken using the strictest sterile 
techniques using appropriate RNase free consumables and reagents. The mirVana® RNA extraction kit was used 

http://www.sysmex.co.uk
http://www.olink.com
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for isolation and purification of total RNA from platelet samples as per manufacturer’s instructions. Platelets 
were prepared as previously outlined and pelleted by centrifugation at 2000xg for 12 min at RT. 400 µl of total 
lysis binding solution was added to the cells at the commencement of the protocol. The total RNA was then 
eluted into a fresh collection tube by centrifugation at 10,000×g for 30 s using 100 µl of elution buffer, which was 
pre-heated to 95 °C. The RNA was analysed on a NanoDrop® Spectrophotometer and samples stored at − 80 °C.

Platelet microRNA and profiling.  Platelet miRNA profiles from 8 out of the 12 subjects (due to sam-
ple limitations) were assessed at the Pre-DI and End-DI time points (B-3 and R0). Total (non-normalized) 
leukocyte-depleted platelet RNA (ranging from 3.5 to 7.0 ng) was extracted from equal volumes of platelet rich 
plasma using the miRVANA RNA extraction kit. The miRNA profile was determined by RT-qPCR using Applied 
Biosystems OpenArray® plate technology on the QuantStudio™ 12 K Flex Real-Time System. For a complete 
miRNA profile, 754 human miRNAs were quantified.

miRNA profiling was carried out using the Applied Biosystems® TaqMan® Low Density Array (TLDA) Human 
miRNA A (v2.0) and B (v3.0) cards set. For analysis on the TLDA cards, total RNA was firstly extracted from 
platelets using the Ambion™ mirVana® miRNA isolation kit as per manufacturer’s instructions. Single stranded 
cDNA was synthesised from total platelet RNA using the Applied Biosystems TaqMan® miRNA Reverse Tran-
scription (RT) Kit. For a full miRNA profile two RT reactions were needed incorporating primers for both pool A 
and B miRNA panels. The RT reaction had a final volume of 7.5 µl and contained: 3 µl (1–350 ng) total RNA and 
4.5 µl of RT master mix. As the total RNA yield from platelets is generally lower than nucleated cells (less than 
350 ng), a preamplification step was carried out prior to committing the cDNA to the TaqMan miRNA arrays to 
uniformly pre-amplify desired cDNA prior to quantification with the TLDA cards. The sample was diluted with 
75 µl of 0.1 × TE buffer (pH 8) and used immediately for array analysis or stored for up at − 80 °C for future use.

A 7900HT PCR system was used for initial miRNA profiling and a QuantStudio™ 12 K Flex Real-Time PCR 
system was used for large scale profiling. DNA polymerase from the TaqMan® Universal PCR Master Mix ampli-
fies the target cDNA using sequence-specific primers and a probe on the TaqMan microRNA array. 100 µl of the 
master mix was dispensed into each chamber of the array. The card was centrifuged twice for 1 min at 1000 × g 
to fill each of the 384 wells of the card in an Eppendorf 5810R centrifuge. OpenArray® plate technology on the 
QuantStudio™ 12 K Flex Real-Time System (Paris, France) was used for large scale miRNA profiling.

Bioinformatics analysis of platelet microRNA data.  Bioinformatics methods were used to extrapo-
late biological meaning from miRNA that were significantly up or downregulated after the DI. First, microRNA 
target prediction was performed using online software tools Targetscan (http://​www.​targe​tscan.​org/​vert_​71/) 
and microRNA.org. Following this, involvement of these targets in pathways of interest from the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG)35,36 was analysed using the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) (http://​david.​niaid.​nih.​gov).

Platelet function assay with impact‑R cone and plate analyser.  The Impact-R device tests platelet 
function in anticoagulated whole blood under near physiological conditions. An image analyser measures the 
adhered platelets and results are expressed as a percentage of the well surface covered (SC%) as an index of 
platelet adhesion, and average size of the aggregates (AS µm2) as an index of aggregation. Blood samples drawn 
into sodium citrate vacutainers were analysed 1 h post-draw as per manufacturers recommendations. Blood 
samples were mixed for 1 min at 10 rpm prior to loading on the apparatus. A 130 µl aliquot of the blood sample 
was applied to the centre of the well followed immediately by the bell housing and cone on top. The selected 
programme was started (arterial shear rate of 1800 per second for 2 min). Platelet were stained with 500 µl of 
May Grunwald stain solution for 1 min. Images were then captured at random. Seven images were captured in 
total. The software analysed the captured images by eliminating the four least readable images and calculating 
the average of the remaining three. Results were expressed as SC and AS with a visual and graphical result pro-
vided for each test.

VASP/P2Y12 phosphorylation assay.  Flow cytometry experiments in this thesis were performed on a 
Accuri C6 (BD Biosciences). To ensure day-to-day sample reproducibility, all cytometers were calibrated daily. 
To determine the VASP phosphorylation state of whole blood, an adapted standardized flow cytometric assay 
(BioCytex, France) was employed37. The VASP-P analysis was performed within 4 h after blood collection as per 
manufacturer’s instructions.

Microvesicle quantification and analysis.  The NanoSight NS300 and Syringe Pump were used to quan-
tify microvesicles (exosomes and microparticles) in PFP samples. Nanoparticle tracking analysis technology 
(NTA) used in this device combines the properties of light scattering and Brownian motion to attain measure-
ments including concentration and size distribution of particles in a liquid suspension (Methods; Supplemen-
tary Material).

Statistical analysis.  Results are expressed as mean ± SEM. Statistical comparisons were performed using a 
variety of tests, depending on the experimental procedure. Main tests included independent t-tests, paired sam-
ples t-tests, repeated measures ANOVA and one-way ANOVA/one-way ANCOVA. Pearson product coefficient 
was used to examine relationships between variables. Statistical significance was set at a level of 0.05. SPSS v19 
statistical package was used to analyse results.

http://www.targetscan.org/vert_71/
http://david.niaid.nih.gov


6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21906  | https://doi.org/10.1038/s41598-021-01335-x

www.nature.com/scientificreports/

Results
Effect of dry immersion on physiological and haematological characteristics.  The overview of 
physiological responses to this 3-day dry immersion protocol has previously been reported29. Overall, DI was 
well tolerated, with no dropouts. Moderate back pain was reported at the beginning, as it is usually seen in dry 
immersion protocols. HR and BP remained within normal limits throughout the protocol. HR rose slightly at 
END-DI (57 ± 3 bpm) and RECOVERY-DI (57 ± 2 bpm) vs. PRE-DI (53 ± 2 bpm). SBP and DBP were not signifi-
cantly modified (Fig. S1; supplementary material). Body weight during immersion decreased by approximately 
1–2 kg (Fig. S1). Daily echo-doppler of the lower limbs did not reveal venous problems/thrombosis. Estimated 
plasma volume showed a 14 ± 2% decrease at END-DI vs. PRE-DI (p < 0.0001). At RECOVERY-DI plasma vol-
ume did not significantly differ from PRE-DI (+ 4 ± 2%, p = 0.103). Changes in haematological parameters in 
response to DI are shown in Fig. 1. There was a significant increase in WBC, RBC concentration, HGB and HCT 
at the end time point. There was a significant decrease in WBC, RBC concentration and HCT between post and 
recovery, almost to basal levels.

Effect of dry immersion on platelet indices.  There were no changes in platelet large cell ratio, Mean 
Platelet Volume and Platelet Distribution Width between any time points. There was a significant increase in 
platelet count and plateletcrit from PRE-DI to END-DI and subsequently, a significant decrease in these param-
eters from END-DI time point to RECOVERY-DI (Fig. 2).

Effect of dry immersion on platelet function.  Figure 3A,B (representative images from Impact-R (i) 
PRE-DI, (ii) END-DI and (iii) RECOVERY-DI show the effect of physical inactivity on platelet function. There 
was a significant increase in platelet adhesion from PRE-DI to END-DI time points and a subsequent decrease 

Figure 1.   Effect of dry immersion and physical inactivity on RBC and WBC characteristics. Graphs represent 
the mean ± SEM of each parameter at each time point. (A) White Blood Cell count, (B) Red Blood Cell count, 
(C) Haemoglobin and (D) Haematocrit. *P < 0.05. Paired samples t-test and repeated measures ANOVA 
(adjusted for age, BMI and VO2; n = 12, biological replicates).
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between the END-DI and RECOVERY-DI time points. There was also a significant increase in platelet aggrega-
tion from PRE-DI to END-DI.

Effect of dry immersion on platelet VASP phosphorylation.  To assess if basal platelet VASP phos-
phorylation was affected by physical inactivity, the standardised P2Y12/VASP kit was used in a flow cytometry 
assay. The platelet reactivity index (PRI) represents changes in VASP phosphorylation. There was a small insig-
nificant increase in PRI post DI (Fig. S2). There were individual fluctuations in VASP phosphorylation during 
the DI, possibly reflective of inter-individual variability due to genetic architecture.

Effect of dry immersion on protein biomarker expression.  Protein biomarker expression of platelet 
poor plasma (PPP) was assessed using the Cardiovascular and Inflammatory protein biomarker panels (Olink 
Bioscience). The levels of 15 proteins differed significantly between time points (Table 1). Results are expressed 
as normalised protein expression (NPX) on a log2 scale. Therefore, a normalised increase of 1 is equal to a 
two-fold increase in protein amount. For 15 proteins out of 131 detected, expression levels differed significantly 
between different stages of the DI protocol. Seven of these proteins affected by DI are related to platelet func-
tion, namely Heat shock protein 27 (HSP27), Lectin-like oxidised LDL receptor (LOX-1), NF-Kappa-B essential 
modulator (NEMO), Proto-oncogene tyrosine protein kinase (SRC), Dickkopf-related protein (DKK1), Axin1, 
SIRT2, and IL-6. The changes in biomarker expression levels are displayed in Figs. 4 and 5.

Effect of dry immersion on platelet poor plasma microvesicles.  Platelet poor plasma (PPP) sam-
ples were analysed by Nanosight technology to determine MV size and concentration at each time point. There 
was a decrease in the average MV size and an increase in average MV concentration at post DI. There was a 
significant decrease in MV size standard deviation after the DI (Fig. S3). For further analysis, MVs were divided 
into three categories: Exosomes, microparticles and larger microparticles with modest increases in each category 
after DI, however the changes were not statistically different.

Effect of dry immersion on platelet microRNA expression.  miRNA expression profiles were ana-
lysed from non-normalized leukocyte-depleted platelet RNA (ranging from 3.5 to 7.0 ng) extracted from equal 
volumes of platelet rich plasma from 8 of the 12 subjects at the time points PRE-DI and END-DI. Western blots 
of miRNA regulatory proteins are shown in Fig. S4(A) and the number of miRNA either up or downregulated 
post-DI on the A and B are shown in Fig. S4(B). Heat maps comprised of the most highly expressed miRNA were 
then constructed for both the A and B panel of miRNA. This allowed visualisation of miRNA expression profiles 
between subjects, before the DI had been implemented. This is shown in Fig. S5A,B. A shift in colour from red 
to blue indicates decreasing expression of that miRNA.

Figure 2.   Effect of dry immersion and physical inactivity on platelet indices. Graphs represent the mean ± SEM 
of each parameter at each time point. (A) Platelet count, (B) Mean Platelet Volume, (C) Platelet Distribution 
Width, (D) Platelet Large Cell Ratio and (E) Plateletcrit. * P < 0.05. Paired samples t-test and repeated measures 
ANOVA (adjusted for age, BMI and VO2; n = 12, biological replicates).
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Identification of miRNA affected by physical inactivity.  By comparing the miRNA expression pro-
files of the subjects between PRE-DI and END-DI, we identified 22 significantly differentially expressed miRNA 
with a fold change of more than 1.2 (12 upregulated and 10 downregulated). Most reported miRNA fold changes 
are small (~ 1.5 fold). The miRNAs that were differentially expressed on the A card are shown in Fig. 6A,B, while 
the miRNA differentially expressed on the B card are shown in Figs. 6C & 7D.

Figure 3.   (A) Effect of dry immersion on platelet function assessed by Impact R analysis. Graphs represent 
the mean ± SEM of each parameter at each time point. (i) Platelet Adhesion and (ii) Platelet Aggregation. * 
P < 0.05. Paired samples t-test and repeated measures ANOVA (adjusted for age, BMI and VO2; n = 12 biological 
replicates, technical replicates n = 3 for each subject). (B) Impact R images from subject J at each stage of dry 
immersion. Image shows platelet adhesion and aggregation at (i) PRE-DI, (ii) END-DI and (iii) RECOVERY-DI.

Table 1.   Protein biomarkers which were differentially expressed after the DI. The column on the left displays 
differentially expressed proteins from the CVD panel and the column on the right displays differentially 
expressed proteins from the inflammation panel.

Cardiovascular biomarker panel (protein biomarker & main 
function)

Inflammatory biomarker panel (protein biomarker & main 
function)

Adrenomedullin (ADM)
Vasodilation and regulation of hormone secretion

Axin-1 (AXIN1)
Negative regulator of the WNT signalling pathway

Dickkopf related protein-1 (DKK1)
WNT signalling pathway inhibitor

Interleukin-6 (IL6)
Pro-inflammatory cytokine

Heat shock protein-27 (HSPB1)
Stress resistance, actin organization

STAM-binding protein (STAMBP)
Cytokine-mediated signalling

Lectin like oxidised LDL receptor-1 (OLR1)
Binds, internalises, degrades oxidized LDL

Sulfotransferase 1A1 (SULTA1)
Catalyse the sulphate conjugation of hormones, neurotransmitters

NF-Kappa B essential modulator (IKBKG)
Inflammation, immune genes

SIRT2
NB: Possible role in epigenetic gene silencing

Renin (REN)
Activation of angiotensinogen pathway

Matrix metalloproteinase-10 (MMP10)
Degradation of extracellular matrix

Proto-oncogene non receptor tyrosine kinase (SRC)
Regulation of cell growth

Matrix metalloproteinase -3 (MMP3)
Degradation of extracellular matrix

Tissue plasminogen activator (PLAT)
Disintegration of blood clots
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Bioinformatic analysis of differentially expressed miRNA.  To extrapolate biological meaning from 
miRNA that were significantly up or downregulated after the DI, bioinformatics was performed. This involved 
determination of putative targets using online software tools including Targetscan and microRNA.org. Following 
this, involvement of these targets in pathways of interest from the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) were analysed using the DAVID bioinformatics database. To help visualise the regulatory potential of 
each miRNA we examined, a table was constructed illustrating the number of potential genes the miRNA could 
target and the number of KEGG pathways the predicted targets were part of (Table S2).

KEGG pathway analysis.  Maps of key pathways involved in platelet function and activation were down-
loaded from the KEGG database using DAVID. Pathways were chosen based on their involvement in platelet 
function and signalling, specifically in adhesion and aggregation, but also their inflammatory potential. Included 
in these were the Wnt signalling pathway, regulation of actin cytoskeleton, ECM interaction and Toll-like recep-
tor pathway, of which the Wnt signalling pathway appeared repeatedly in both the up and downregulated 
miRNA targets. Genes that were potential targets for multiple miRNAs were circled red, genes that were targets 
for a single miRNA were circled yellow. Potential miRNA targets of genes involved in the Wnt signalling pathway 
are shown in Fig. S6, potential miRNA targets of genes involved in the reorganisation of the actin cytoskeleton 
pathway are shown in Fig. S7 and potential miRNA targets of genes involved in the ECM receptor-interaction 
pathway are shown in Fig. S8.

miRNA targets of the Wnt signalling pathway.  The Wnt signalling pathway involved the largest num-
ber of differentially regulated miRNA post DI, as shown previously in Table 2. The protein biomarkers Axin1 and 
DKK1 were also differentially expressed END-DI. We used online databases to determine additional miRNA 
which could target Axin1 and DKK1 (Fig. 7A,B). The combined action of multiple down or upregulated miRNA 
potentially could have affected the gene and subsequent protein expression of Axin1 and DKK1.

Figure 4.   Effect of dry immersion on plasma cardiovascular protein biomarkers. The graphs represent 
mean ± SEM. (A) Heat shock protein 27, (B) Lectin like oxidised LDL receptor, (C) NF KappaB essential 
modulator, (D) Proto-oncogene tyrosine protein kinase and (E) Dickkopf related protein. * P < 0.05, Paired 
samples t-test and repeated measures ANOVA (adjusted for age, BMI and VO2; n = 12 biological replicates).
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Discussion
Despite the strong links between physical inactivity (PI) and CVD risk1, there remains a knowledge gap into 
the effects of PI in healthy subjects. This study allowed a unique opportunity to investigate the effects of acute 
PI, due to a ground based model of microgravity, on platelet phenotype. Exposure to μG induces a constella-
tion of adaptive physiological modifications, and in particular to the cardiovascular system. DI is characterised 
by enforced physical inactivity38. During DI, the signs of muscle disuse, bone remodelling and spine changes, 
extensive cardiovascular deconditioning and other alterations mimic the adaptation observed in astronauts. CV 
deconditioning is a state whereby the CV system does not react efficiently to challenge, distinguished by a reduced 
capability for exercise, orthostatic intolerance and tachycardia24. Initial reactions to DI occur in the first 12 h 
and are caused by immediate modifications in body fluid distribution and a removal of support structure20–23.

In the 1980’s, Kirichenko et al. demonstrated that 7 days of DI induced a significant increase in platelet count 
and hyper-coagulopathic changes to platelet hemostasis39,40. A 2011 study examined the effects of simulated 
microgravity on the miRNA profile of human lymphoblastic cells using a high aspect ratio vessel to model 
microgravity in space41. More recently, 42 miRNAs from cultured human blood lymphocytes from 12 healthy 
subjects were differentially expressed in microgravity stimulated cells compared to static cells, with resultant 
mRNA gene targets involved in inflammatory and apoptotic responses42. Malkani et al. elucidated the role of 
circulating microRNAs as both a potential biomarker for health risks associated with spaceflight and a counter-
measure to mitigate the damage caused to the body by the space environment43.

Haematological parameters.  Both spaceflight and its proxies result in an initial plasma volume decrease 
(approximately 10–15%) after which it remains stable22,44. We noted a 14% decrease in plasma volume post DI, 
with return to baseline at the recovery time point. Blood viscosity usually increases due to the decrease in plasma 
volume, with a corresponding decrease in RBC is required to maintain blood viscosity45. However, decreases in 
RBC due to altered erythropoiesis takes time, so haemoconcentration was still present at the end of immersion 
(END-DI), reflected by an increase in RBC. There were also significant increases in Hb and HCT during the 
immersion, although these values remained within the normal limits for healthy individuals. These findings 
were as expected, as lower plasma volume would result in increased concentrations of RBCs. In general, real and 
simulated microgravity results in changes to physical properties of RBCs20,46. Both a 7-day DI47 and 5-day DI48 
resulted in an increase in RBCs and altered morphological composition of red blood in healthy males. Navasio-
lava et al. reported a significant increase in RBC, Hb and HCT after seven days of DI, which returned to normal 
after recovery23. Unlike our study, they did not observe a significant difference in WBC. However, Bedendeeva 
et al. noted a 40% increase in leukocytes after DI49.

Figure 5.   Effect of dry immersion on inflammatory protein biomarkers. All data are expressed mean ± SEM. 
(A) Axin1, (B) SIRT2, (C) Interleukin-6, (D) Matrix metalloproteinase-3 and (E) Matrix metalloproteinase 
10. Axin1 and MMP-3 were specific to INF panel while Il-6, SIRT2 and MMP-10 were also found on the CVD 
panel. * P < 0.05, Paired samples t-test and repeated measures ANOVA (adjusted for age, BMI and VO2; n = 12 
biological replicates).
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Platelet indices.  The effects of DI on platelet indices were investigated as primary indicators of platelet 
phenotype, and also as surrogate markers of altered megakaryocytopoiesis (Fig. 2). There was an increase in 
platelet count (PLT) between PRE-DI to END-DI time points, probably reflecting the loss of plasma volume 
during the DI. There was a significant decrease in PLT between END-DI and RECOVERY-DI suggesting that 
platelet count returned to pre-immersion levels once subjects began to resume ambulatory activity. Navasiolava 
et al. found no significant difference in PLT after 7-days DI22. Other studies have indicated a significant increase 
in PLT after 7-day DI39,40. There were no changes in MPV, PDW or PLCR after three days of DI. There was a 
significant increase in plateletcrit from PRE-DI to END-DI and a significant decrease in plateletcrit from END-
DI to RECOVERY-DI. Plateletcrit appears to be one of the more sensitive platelet indices markers. Overall, the 
combined increases in PLT and PCT observed at the time-point END-DI may indicate altered megakaryocy-
topoiesis.

Platelet function.  The effect of PI on platelet function was quantified using the Impact R cone and plate 
analyser. We observed a significant increase in platelet adhesion from PRE-DI to END-DI suggesting stronger 
platelet-surface interactions in response to physical inactivity and DI. There was a significant decrease in SC% 
from END-DI to RECOVERY-DI indicating platelet adhesion levels had returned to their basal state. There was 
a significant increase in AS from PRE-DI to END-DI suggesting that PI/DI results in elevated platelet aggrega-
tion with increased activation of GPαIIbβ3 and increased affinity for fibrinogen binding. Platelet aggregation 
decreased slightly from END-DI to RECOVERY-DI. The reduction in blood volume as a consequence of reduced 
total body water in the body during microgravity has been suggested as a factor for thrombotic tendencies, 
which could have been a determinant of increased platelet activation in this study50.

Figure 6.   Differentially expressed miRNA at the post dry immersion time point. miRNA profiles were assessed 
only at the pre-DI and post-DI time points. This figure shows miRNA which were differentially expressed at the 
post-DI compared to pre-DI time point. All data are expressed mean ± SEM. Graph A shows miRNA that were 
up regulated after DI on the A card, and graph B shows miRNA that were downregulated after DI on the A card. 
Graph C shows B card up regulated miRNA, whilst graph D shows B card downregulated miRNA. * P < 0.05, 
Paired samples t-test and repeated measures ANOVA, n = 8 biological replicates.
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PI causes endothelial dysfunction as well as increasing soluble von Willebrand factor (vWF), tissue factor 
(TF) expression and endothelial microparticle production, facilitating platelet activation under disturbed flow, 
inferring that altered shear stress may not activate platelets directly51. Haemoconcentration and body fluid redis-
tribution experienced during DI may increase the risk of thrombosis and could also have contributed to enhanced 
platelet adhesion and aggregation observed after the DI20,23. The increase in blood viscosity after 24 h of DI may 
have been a contributory factor to the platelet hyperaggregability52. The use of a viscometer and in parallel with 
platelet function tests could provide informative data53. Interestingly, Kuzichkin et al. observed an increase in 
plasma fibrinogen concentration after short-term space flights and 7-day DI54. Assessment of fibrinogen levels 
and αIIbβ3 activation levels would provide an insight into the increased platelet aggregation END-DI55.

Platelet VASP phosphorylation.  VASP is an intracellular regulator of actin dynamics in platelets and 
plays a key role in regulating platelet adhesion and aggregation56. VASP is phosphorylated by cAMP- and cGMP-
regulated protein kinases and reflects with inhibition of platelet activation, inhibition of αIIbβ3 and a restriction 
of VASP to bind to F-actin57. Consequently, decreased VASP phosphorylation can result in platelet hyperreactiv-
ity. We observed a minor non-significant increase in the average PRI (5%) at END-DI suggesting a reduction in 

Figure 7.   Potential miRNA targeting genes involved in the Wnt signalling pathway. All data are expressed 
mean ± SEM, n = 8 biological replicates. (A) Downregulated miRNA which potentially target DKK1; (B) 
Downregulated miRNA which potentially target Axin1. The differentially expressed miRNA are shown with an 
asterisk above them, while other potential targets do not have an asterisk.

Table 2.   Involvement of differentially regulated miRNA in KEGG cell pathways. In silico bioinformatic 
analysis of differentially regulated miRNA. Table shows KEGG pathways common to a number of differentially 
expressed miRNA and which are involved in platelet function. Permission was kindly granted by the Kanehisa 
Laboratory for the use of KEGG software.

KEGG pathway

Wnt signalling
Regulation of Actin 
cytoskeleton ECM receptor interaction Toll like receptor

miR-888 miR-500 miR-145 miR-143 miR-34a* miR-143 miR-143

miR-299a-5p miR-203 miR-106b* miR-199a miR-744 miR-302a miR-15a

miR-484 miR-302a miR-34a* miR-500 miR-494 miR-199a miR-34a*

miR-199a miR-190b miR-24–2 miR-302a miR-15a* miR-484

miR-200a miR-15a* miR-374a miR-106b*
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VASP phosphorylation and increase in platelet activation (Fig. S2). Assinger et al. showed that VASP phospho-
rylation at basal levels on the Ser239 residue was significantly reduced in smokers58. In response to picomolar 
and nanomolar concentrations of PGE1, smokers still had reduced VASP phosphorylation, which was linked 
with elevated P-selectin expression. However, at maximal PGE1 concentrations they noted no difference between 
smokers and non-smokers. Similarly, using the VASP/P2Y12 kit, PRI (which uses maximal effective doses of 
PGE1) was virtually identical between the smokers and the non-smokers, suggesting that the assessment of VASP 
phosphorylation in the presence of submaximal quantities of PGE1 could be more beneficial. Physical inactivity 
could produce similar responses and require the same level of investigation.

Protein biomarker expression.  We also examined the effect of PI on platelet poor plasma (PPP) protein 
biomarkers. The expression profiles of these proteins were analysed at PRE-DI, END-DI and RECOVERY-DI. 
131 out of 157 of the proteins were detected in all samples, with 15 proteins significantly ΔDE between different 
stages of the DI (Table 1). Key proteins affected by physical inactivity included Heat shock protein 27 (HSP27), 
Lectin-like oxidised LDL receptor (LOX-1), NF-Kappa-B essential modulator (NEMO), Proto-oncogene tyros-
ine protein kinase (SRC) and Dickkopf-related protein (DKK1) (Fig. 4).

Numerous environmental and physiological stressors mediate the expression of heat shock proteins (HSPs). 
HSPs have been identified in atherosclerosis59 and post exercise60. HSP-27 was significantly elevated END-DI 
suggesting a stress response to the effects of acute physical inactivity. HSP27 has been proposed as a key player in 
actin polymerisation during platelet shape change, and phosphorylated HSP27 is released from human platelets 
upon collagen activation, and is associated with the acceleration of platelet aggregation61. Moreover, ADP induces 
phosphorylation of HSP27 with resultant platelet activation markers PDGF and sCD40L release62. Elevated HSP-
27 END-DI indicates that it was in response to the physiological stress of DI.

Lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor and is expressed 
on numerous cells, including platelets, in an activation dependent manner63. LOX-1 was significantly elevated 
END-DI. As LOX-1 recognises and binds to activated platelets, exposure of LOX-1 on the surface of activated 
platelets might encourage thrombus formation. Furthermore, inhibition of LOX-1 in platelets was shown to 
prevent platelet aggregation64. LOX-1 is associated with obesity and physical inactivity and could represent a 
marker of platelet activation in response to sedentary behaviour65.

DKK1 was significantly upregulated post DI. Platelets represent a major source of circulating DKK1, which 
is an antagonist of the Wnt signalling pathway and is released from platelet α-granules upon activation66. Plasma 
DKK1 levels are significantly higher in disease states including T2DM and atherosclerosis66. DKK1 can also 
influence platelet-mediated endothelial cell activation involving the Wnt/β-cat signalling pathway and NF-κB 
pathways.

A number of inflammatory proteins were also differentially regulated END-DI (Fig. 5). Axin-1 is a key mem-
ber of the Wnt signalling pathway, acting as a scaffold protein and a negative regulator of the Wnt signalling 
pathway67. As Wnt signalling negatively regulates platelet function and modulates the major platelet receptor 
GPαIIbβ3, we hypothesised that an increase in Axin-1 levels could also have contributed to platelet adhesion 
and aggregation levels in this study68–70.

IL-6, a pleiotropic inflammatory cytokine, was significantly increased END-DI. IL-6 has been adversely linked 
with sedentary time in a large study of > 500 participants aged ~ 63 years and at high risk for T2DM71 and is 
elevated after physical inactivity in our study. While platelets do not express IL-6, it can affect platelet activation72. 
IL-6 is also a potent thrombopoietic factor promoting maturation of human megakaryocytes in vitro73. A number 
of inflammatory and CVD proteins were ΔDE after 3-day DI, implicating causative effects on both immune and 
platelet function. Future proteomic studies would prove insightful.

Platelet poor plasma microvesicles.  We investigated the effect of DI on the number and size of MVs in 
PPP. Figure S3 summarises the changes in circulating MVs in response to DI. There was no change in average 
MV size END-DI. We found non-significant increases in overall MV concentration. For separate analysis of 
MV subpopulations, MVs were divided into three distinct categories; Exosomes (30–100 nm), microparticles 
(100–255 nm), and large microparticles (> 255 nm). There were non-significant increases in exosome and MP 
concentrations END-DI. Interestingly, there was a non-significant increase in larger MP concentration END-DI, 
which could suggest the generation of larger and potentially more procoagulant MPs. Studies have shown that 
endothelial MP levels increased on the third day of a seven-day DI experiment22. It has been suggested that an 
endothelial dysfunction to NO and deterioration in hemodynamic conditions could contribute to increases 
in EMPs. The changes in endothelial vasodilatory capacity could also have resulted in platelet hyperreactivity 
and increased MV levels in our study. Platelet-derived MVs represent the most abundant MV source (70–90%) 
released into blood circulation, and we would expect to see a larger increase in PMPs produced END-DI. Future 
studies of MVs are warranted.

Platelet microRNA (miRNA).  To further understand the significance of DI on the molecular mechanisms 
which underpin platelet phenotype, we investigated miRNA profiles PRE-DI and END-DI, to determine if the 
miRNome for platelets was altered by physical inactivity. In brief, miRNA are short (18–24) nucleotide long non-
coding RNA molecules. They regulate gene expression by hybridising to the 3’ UTR of mRNA. The existence and 
functionality miRNA in the anucleate human platelets has been described and constitute 80% of all small RNAs 
in platelets74, expressing relatively high quantities of miRNA compared to their nucleated counterparts75. Platelet 
miRNA levels have been demonstrated to be associated with phenotype76.

Platelets expressed a total average of 436 miRNA PRE-DI and 438 END-DI, in line to previous similar pub-
lished studies74,75. We identified 22 miRNA which were significantly up or downregulated at END-DI (Fig. 6) 
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of which 10 miRNA were significantly downregulated and 12 miRNA which were significantly up-regulated. 
Interestingly, miR-374a family has been demonstrated to regulate Wnt/beta-catenin signalling77.

As platelets do not express the miRNA nuclear machinery Drosha and DGCR8, the de novo synthesis of new 
miRNA in platelets is negligible. Upregulation of miRNA in response to physical inactivity could be derived from 
the processing of pre-miRNA to mature miRNA or as a reflection of increased levels miRNA in their megakaryo-
cyte precursor. As platelets can release MV-containing miRNA upon activation, downregulated miRNA in this 
study may reflect this process. These findings suggest that platelet miRNAs correlate platelet activation in vitro 
and may have great potential as biomarkers.

Bioinformatics of differentially expressed DI regulated miRNA.  The fold change, number of con-
served targets, and number of pathways the predicted genes are linked to are included in Table S2 for each ΔDE 
miRNA. Table 2 shows the miRNA potentially involved in the pathways of interest and whether these specific 
miRNAs were up or downregulated with DI. Pathways were chosen based on their involvement in platelet func-
tion and signalling.

Of major interest from the findings of this study was the predicted and potential involvement of ΔDE miRNA 
on the Wnt signalling pathway, as both DKK1 and Axin-1 proteins were differentially expressed END-DI, and 
are involved in the Wnt pathway. The literature has described roles for Wnt-β-catenin69,70, and non-canonical 
Wnt signalling pathways in platelet function78. Recombinant Wnt3a ligand was shown to inhibit platelet adhe-
sion, shape change, dense granule secretion and inhibiting activation of αIIbβ3 resulting in decreased platelet 
adhesion to fibrinogen and subsequently reduced aggregation69.

DKK1 was one of the significantly upregulated proteins identified from the biomarker panel END-DI and 
we therefore sought to identify ΔDE miRNA that could target DKK1 (Fig. 7A). A number of these miRNA were 
downregulated in our study, again possibly indicating a simultaneous downregulation of multiple miRNA target-
ing DKK1 may act together increasing DKK1 expression. miR-302a, the most down regulated miRNA, has been 
shown to target DKK1. The increase in circulating DKK1 could negatively regulate the Wnt signalling pathway 
and ultimately, contribute to elevated platelet adhesion.

Axin-1, a key mediator of the Wnt/β-cat pathway, was identified as one of the proteins that was upregulated 
after DI79. Interestingly, two downregulated miRNAs, miR-203 and miR-200a were identified as potential regu-
lators of Axin-1. Additionally, a number of other miRNA predicted to target Axin-1 were also downregulated 
as shown in Fig. 7B. This has led us to hypothesis that the simultaneous downregulation of multiple miRNA 

Figure 8.   Schematic representation of the findings of this 3-day DI study. Dry immersion, a ground based 
model of microgravity, alters platelet phenotype to a pro-thrombotic state concurrent with an altered platelet 
miRNA signature. This finding is also reflected in an altered circulating plasma protein profile for both 
cardiovascular and inflammatory biomarkers. Art work by A. Robin & R. Murphy. 
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targeting Axin-1 may explain the observed increase in Axin-1 and result in reduced Wnt signalling in platelets 
with elevated platelet adhesion and aggregation.

Evidence of physical activity-specific microRNA signatures have seeded the notion that there must also be 
physical inactivity specific miRNA profiles80. Epigenetic variation could be a potential mechanism allowing 
for independent or perhaps synergistic effects of physical inactivity on platelet function. Hibler et al. recently 
described indications for epigenetic variation and miRNA expression as a link between physical activity and 
sedentary lifestyle81. We hypothesised that an epigenetic adaptation to DI and by association, physical inactivity, 
is also present inducing epigenetic changes in megakaryocytopoiesis and altered platelet phenotypes.

Conclusion
3-day DI induced a rapidly reversible shift to primed platelet phenotype in healthy men, reflected by increased 
adhesion and aggregation. We have identified 15 ΔDE protein biomarkers associated with 3-day DI. Their expres-
sion trends could be of importance for developing ‘biosignatures’ of physical inactivity and CVD risk. We also 
identified 22 ΔDE platelet miRNA END-DI. These DI related miRNA have potential targets involved in pathways 
associated with platelet function (Fig. 8). It is evident that the identification of unique signatures of several platelet 
miRNA, rather than a single miRNA in isolation may enhance diagnostic/prognostic accuracy82. The canonical 
Wnt signalling pathway may signify a novel endogenous mechanism for regulating platelet activity in response to 
DI. Thus it may provide a countermeasure to mitigate the damage caused to the body by the space environment.

Collectively, our results provide evidence for the early and robust deleterious impact of reduced daily activity 
on platelet function and phenotype, highlighting the vulnerability of the vasculature to a sedentary lifestyle. It 
also highlights the importance of physical activity and exercise medicine.
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