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ABSTRACT Serratia marcescens is an opportunistic pathogen that typically infects
the respiratory and urinary tract, with the majority of cases being hospital acquired.
The study of S. marcescens phages may help control drug-resistant S. marcescens
strains. In this study, we announce the complete genome sequence and the features
of S. marcescens siphophage Scapp.

Serratia marcescens is an opportunistic pathogen that typically infects the respiratory
and urinary tract, with the majority of cases being hospital acquired (1–3). Many

strains of S. marcescens identified in intensive care unit patients in U.S. hospitals possess
resistance to most available antibiotics (4). The study of S. marcescens phages may help
control drug-resistant S. marcescens strains.

The siphophage Scapp was isolated using an S. marcescens strain from activated
sludge collected from the water treatment plant in College Station, TX. Host bacteria
were cultured on nutrient broth or agar (Difco) at 37°C with aeration. Phages were
isolated and propagated by the soft agar overlay method (5). Phage genomic DNA was
prepared using a modified Promega Wizard DNA cleanup kit protocol, as described
previously (6). Pooled indexed DNA libraries were prepared using the Illumina TruSeq
Nano low-throughput (LT) kit, and the sequence was obtained by the Illumina MiSeq
platform using the MiSeq v2 500-cycle reagent kit, following the manufacturer’s
instructions, producing 447,621 paired-end reads for the index containing the phage
genome. The quality of the reads was checked in FastQC 0.11.5 (https://www
.bioinformatics.babraham.ac.uk/projects/fastqc/), and reads were trimmed with the
FastX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) and assembled in SPAdes
3.5.0 (7). The assembled genome was closed by PCR using primers 5=-AAACAACGGAG
TGGGAAGAG-3= and 5’-CAGGGTCTATCACGCAGTAAAT-3= facing away from the center
of the assembled contig and by Sanger sequencing of the resulting product, with the
contig sequence manually corrected to match the resulting Sanger sequencing read.
Protein-coding genes were predicted using Glimmer 3.0 (8) and MetaGeneAnnotator
1.0 (9) and corrected manually if needed. The tRNA genes were predicted using
ARAGORN 2.36 (10). Protein functions were predicted by comparing sequence homol-
ogy to proteins found using BLASTp 2.2.28 (11), and conserved domains were analyzed
using InterProScan 5.15-5.40 (12). All analyses were performed under default settings
using the CPT Galaxy (13) and WebApollo (14) interfaces (cpt.tamu.edu).

The complete 42,969-bp Scapp genome was assembled at 192.1-fold coverage. It
has 59 protein-coding genes, an overall coding density of 93%, and a GC content of
56%. Using the progressiveMAUVE algorithm (v2.4.0) (15), Scapp shows less than 20%
DNA sequence similarity to any other phage in the NCBI nucleotide (nt) database. The
Scapp genome begins with an �6,000-bp region that contains novel genes with no
sequence similarity to other proteins in the NCBI nonredundant (nr) database. At the
protein level, phage Scapp is most closely related to phages APSE-2 (GenBank accession
number EU794049) and a prophage-like element (GenBank accession number

Citation Koehler BT, Hopson H, Kongari R,
Bonasera R, Hernandez-Morales AC, Liu M.
2019. Complete genome sequence of Serratia
marcescens siphophage Scapp. Microbiol
Resour Announc 8:e00417-19. https://doi.org/
10.1128/MRA.00417-19.

Editor John J. Dennehy, Queens College

Copyright © 2019 Koehler et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Mei Liu,
meiliu@tamu.edu.

Received 8 April 2019
Accepted 15 April 2019
Published 9 May 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 19 e00417-19 mra.asm.org 1

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://cpt.tamu.edu
https://www.ncbi.nlm.nih.gov/nuccore/EU794049
https://doi.org/10.1128/MRA.00417-19
https://doi.org/10.1128/MRA.00417-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:meiliu@tamu.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00417-19&domain=pdf&date_stamp=2019-5-9
https://mra.asm.org


HQ377374) associated with insect symbionts. Some of the structural proteins of phage
Scapp are related to common enterobacterial siphophage proteins (BLASTp E value,
�10�3), such as those found in phages N15, T1, and Lambda. These genes include
those encoding head assembly, major capsid, tape measure, major tail, tail tip, and four
minor tail proteins. An endonuclease, a transcriptional regulator, and a transposase are
located next to the lysis cassette but do not interrupt any genes. An adjacent holin-
antiholin pair and an endolysin (D-alanyl-D-alanine carboxypeptidase) were identified.
The o-spanin is embedded in the i-spanin, and this spanin complex is located separately
from the other lysis genes.

Data availability. The genome sequence of phage Scapp was deposited under
GenBank accession number MH553517. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA222858, SRR8788475, and SAMN11259833, respectively.
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