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Abstract Scientific disciplines such as medicinal- and

environmental chemistry, pharmacology, and toxicology

deal with the questions related to the effects small organic

compounds exhort on biological targets and the com-

pounds’ physicochemical properties responsible for these

effects. A common strategy in this endeavor is to establish

structure–activity relationships (SARs). The aim of this

work was to illustrate benefits of performing a statistical

molecular design (SMD) and proper statistical analysis of

the molecules’ properties before SAR and quantitative

structure–activity relationship (QSAR) analysis. Our SMD

followed by synthesis yielded a set of inhibitors of the

enzyme acetylcholinesterase (AChE) that had very few

inherent dependencies between the substructures in the

molecules. If such dependencies exist, they cause severe

errors in SAR interpretation and predictions by QSAR-

models, and leave a set of molecules less suitable for future

decision-making. In our study, SAR- and QSAR models

could show which molecular sub-structures and physico-

chemical features that were advantageous for the AChE

inhibition. Finally, the QSAR model was used for the

prediction of the inhibition of AChE by an external pre-

diction set of molecules. The accuracy of these predictions

was asserted by statistical significance tests and by com-

parisons to simple but relevant reference models.
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Introduction

Many scientific disciplines including medicinal- and envi-

ronmental chemistry, pharmacology, and toxicology

address questions related to the effects of small organic

compounds on biological targets, and the relation between

the molecules’ physicochemical properties and the

observed response. To investigate the chemical structural

reasons behind a specific effect and to predict what

chemical features an even more (or less) potent compound

should have, it is crucial to define a structure–activity

relationship (SAR). A SAR establishes a link between the

molecular chemical features and a particular measured

effect. In this paper, we focus on the importance of careful

considerations of the molecules that are used for SAR and

quantitative structure–activity relationship (QSAR) studies.

The molecules used to establish a QSAR dictate the quality

and usefulness of the model, as it is the properties of the

molecules that lead to the biological effect we want to
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model. A prerequisite for (Q)SAR modelling is that the set

of included molecules show substantial and statistically

significant differences in the measured (biological) effect.

The chance of differences in response likely increases if the

molecules’ structures are sufficiently diverse—although the

statistical significance is dependent on the underlying SAR

and the experimental errors of the effect measurements.

Furthermore, the chemical features of investigated mole-

cules need to be varied in such a way that their effects can

be resolved in the subsequent SAR/QSAR studies. There-

fore, we recommend careful selections and investigations

of the sets of molecules used for SAR/QSAR in order to

improve the usefulness of generated models. Here, we have

designed and synthesized a set of inhibitors of the enzyme

acetylcholinesterase (AChE) to illustrate the benefits of

performing a statistical molecular design (SMD) [1] to

create a solid molecular base for SAR and QSAR investi-

gations. We also show the benefits of a careful analysis of

the molecules’ properties before modeling, and the

assessments of the resulting QSAR in relation to simpler

models, here called reference models.

In medicinal chemistry projects, chemists commonly

have to select compounds to synthesize, typically less than

100, from a substantially larger theoretical pool of poten-

tially interesting molecules. These selected molecules may

be designed and synthesized on a linear time scale (one by

one) based on medicinal chemistry experience, which may

lead to improved compounds in some cases, but this is not

a suitable strategy if the objective is to construct a SAR/

QSAR. In such cases, the preferred approach is to design

and select sets of molecules that later can be used to

investigate the biological effects. In SMD, subsets of

molecules are designed based on the principles of design of

experiments (DoEs) [2] where chemical features hypothe-

sized to be important for biological effect are varied in a

systematic way. SMD offers a way to select subsets of

molecules in a sound way from a synthetic- and mathe-

matical point of view, thus aiding chemists to make

‘‘smart’’ subset selections. Selecting compounds based on,

for example, D-optimality [3] or by factorial designs [1, 2],

effectively reduces the physicochemical overlap between

the molecules keeping the number to a minimum. Simul-

taneously, the design makes sure that the subset is repre-

sentative of the full set of conceivable molecules, and that

chemical features (‘‘synthons’’ or ‘‘building blocks’’) return

in several molecules to yield a basis for statistically sup-

ported conclusions regarding biological effect. More spe-

cifically, SMD in SAR analysis makes it possible to

investigate non-additive effects of molecule structural or

physicochemical features. By designing the molecules

through simply combining synthons (building blocks) in a

clever way, it can be ensured that structural fragments

systematically reappear several times in different

combinations among the final molecules. This gives a more

robust basis for identifying combination effects and con-

structing regression models (QSAR). This is achieved

because SMD inherently reduces the co-variation of the

investigated chemical features increasing the possibility to

resolve the impact of each investigated property on the

measured biological effect. If two or more chemical fea-

tures covary, their effects will be confounded and it will be

difficult to distinguish what feature that is responsible for

the effect. For example, if all flexible molecules are lipo-

philic, the effect of these two features will be confounded,

and it will not be possible to resolve whether the biological

effect is dependent mainly on flexibility, lipophilicity, or

both. We recommend careful investigations of the corre-

lation patterns of the descriptor-matrices of a set of mole-

cules (i.e., investigation of the covariance of the X-matrix)

aimed for SAR and QSAR studies. Unfortunately, this is

rarely done today even though it is a simple procedure that

can be performed for any data (i.e., also non-designed

data). Neglecting correlations can result in significant

errors in interpretations and wrongful predictions.

There are a large number of techniques for correlating

chemical and biological data and perhaps the most com-

mon ones are linear methods, such as partial least squares

to latent structures (PLS) regression, non-linear regression

methods such as neural networks, and decision trees such

as random forests [4]. Regardless of method, all models

should be properly evaluated for quality and usefulness [5–

7], by assessing the covariance of the descriptor matrix,

quality of the experimental data, model fit, applicability

domain, prediction capability, and interpretation of the

resulting relationship. The Organization for Economic Co-

operation and Development (OECD) has developed prin-

ciples for the creation and validation of QSAR models [8]

that we encourage modelers to follow. This will allow for

an assessment of the quality of the QSAR models, but,

although important and necessary, this will not show if the

obtained model will add value to the scientific community.

We argue that a minimum requirement for publication of a

QSAR method should be that it surpasses the performance

of simpler methods (reference models, sometimes also

called NULL models). These reference models can include

the linear regression of biological activity using single

physicochemical property of the molecules, such as logP or

molecular weight. The usefulness of a more advanced

QSAR model should be questioned if a reference model

surpasses it in terms of fit and prediction quality.

The compounds designed and synthesized in this study

were evaluated for their inhibition of AChE, which is an

enzyme present in the nervous system. The enzyme is

essential because it hydrolyze the transmitter substance

acetylcholine. The active site consists of the entrance site

(peripheral anionic site, PAS) and the catalytic site (CAS).
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Non-covalent inhibitors of AChE are currently used in

symptomatic treatment of, for example, Alzheimer’s dis-

ease [9]. Covalent inhibitors of AChE, such as phosphorus-

based nerve agents (e.g., Sarin), are potent toxins that

interfere with the cholinergic signaling. Molecules (anti-

dotes) that cleave the bond between the enzyme and the

nerve agent can, assuming favorable circumstances, reac-

tivate enzyme inhibited by a nerve agent. New AChE

inhibitors are of great interest to the medical community

because many of the current treatments with AChE inhib-

itors cause grave side effects [10], and most antidotes

exhibit a limited blood–brain barrier penetration [9],

together with a narrow spectrum in treatment of the

intoxication caused by different nerve agents.

QSAR investigations of AChE inhibitors for medical

applications started to appear in the late 1990s and among

the first was a study by Hansch and co-workers [11] where

QSAR-equations based on compounds such as tacrine,

carbamates and physostigmine analogues were presented.

Since then, many AChE QSAR studies have been pre-

sented including carbamates [12–14], analogues of tacrine

[15–18], physostigmine [19], donepezil [20–24], 2,5-pipe-

razinedione [25], 4-aryl-4-oxo-N-phenyl-2-aminylbutyr-

amide [26], minaprine [27], amaryllidaceae alkaloids [28],

and miscellaneous compounds [29, 30]. All of these QSAR

studies were based on already existing experimental data of

molecules not designed for modeling; SMD was not used

in any of the studies and no assessments of the descriptor

matrices were presented. Most commonly, previous studies

have resulted in 3D-QSARs [13–16, 19, 21, 23, 25–27, 29].

2D-QSARs presented have usually been based on physi-

cochemical descriptors [17, 22, 24, 28, 30] and/or topology

descriptors [18, 20]. The dominating regression method

used in these studies was multiple linear regression (MLR)

or PLS, but the models were not compared to any reference

models and were seldom evaluated with an external test

set.

In this study, we have performed SMD to design a set of

molecules, included examples of covariance matrix ana-

lysis of training set molecules, and performed test set

evaluations and reference model comparisons to illustrate

the benefits of using these methods in QSAR modeling.

Results and discussion

SMD of AChE inhibitors

The design of molecules investigated in this study started

from compound 1 (Fig. 1), which was discovered in a high

throughput screening (HTS) campaign [31], and have been

investigated previously for inhibition of AChE [32]. A

retrosynthetic analysis of 1 resulted in synthons i, ii and iii

(Fig. 1) suitable to form a SMD based on three sets of

building blocks in positions pI, pII and pIII.

The SMD was performed in two steps. The first step was

a selection of building blocks to include for pI, pII and pIII

(Fig. 2) and they were selected based on a SAR analysis of

substructures present in hits found in the aforementioned

HTS and on commercially available reactants. The aim

with the design was to investigate the inhibition effect

related to the electronic properties (mainly weakly or

strongly electron withdrawing substituents) and bulk of pI,

and the basicity and bulk of pIII, with a conservative

variation of the linker pII. Note that building blocks at

pI were divided into pIa and pIb to increase the physico-

chemically diversity of the designed molecules.

The second step of the SMD was a selection of a subset

of 18 molecules for synthesis (Table 1). From the 144

possible combinations of the structural fragments at posi-

tions pIa, pIb, pII and pIII, the subset was selected to

represent the whole set in a balanced way, i.e., balanced

with respect to repetition and representation of the struc-

tural fragments. This was achieved by applying a D-opti-

mal design [3] on a matrix describing molecules with

simple indicators of absence (0) or presence (1) of struc-

tural fragments (i.e., conditional descriptors) generated for

the 144 molecules (see Online Resource 1 for statistical

details and Online Resource 2 for design matrix). The

D-optimality criterion assured that the selected molecules

reflected the diversity of the 144 candidates. The D-optimal

set had a condition number of 1.84 showing that structural

fragment were varied independent of each other in the

selected set (lower than 3 is preferred [33] ). Importantly,

each structural fragment in Fig. 2 was represented at least

twice in the subset of 18 molecules and was combined in

such way that a subsequent SAR analysis would reveal the

influence of each structural fragment. To elucidate possible

dependencies, a covariance matrix was calculated (Eq. 1,

Fig. 3) on the conditional descriptors. An inspection of the

covariance matrix confirmed that there was no strong co-

variation in the set. A weak correlation was identified

between structural features p-chlorobenzene/trifluoro-

methylbenzene and benzylic carbon, which meant that

molecules with a benzylic group at the same time con-

tained a para-chlorophenyl or trifluoromethyl-phenyl

moiety.

Synthesis of designed compounds

Scheme 1 shows the synthesis of compounds 1–18. Reac-

tion of sulfonyl chlorides 19a–d or acid chlorides 19e–

i with amines 20a–j produced compounds 1–12 and 21–26.

The alkyl halides 21–23 were converted into the

pyridinium salts 13–15 by heating in pyridine, while the

piperazinyl compounds 16–18 were available from
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tert-butyloxycarbonyl (Boc)-protected intermediates 24–26

by protecting group cleavage using 4 M HCl in ethanol. The

complete synthetic procedure is given in Online Resource 1

and compound characterization in Online Resource 3.

AChE inhibition measurements

The training set of 18 compounds was experimentally

evaluated for their ability to inhibit the enzymatic activity

of AChE (Table 1 and Online Resource 1 for experimental

details). The compounds displayed a wide range of activity

spanning between a half-maximum inhibition concentra-

tion (IC50) of 6.6 lM (14) and 4,200 lM (3), with most

compounds inhibiting AChE in the low- to mid-micromo-

lar range. Thus, the measured biological response had a

sufficient activity range for a SAR/QSAR evaluation, well

outside the experimental and acceptable model error.

SAR and QSAR modelling strategies

and considerations

The choice of method to correlate the molecular descriptors

to the biological response fell on PLS [34], which is a

linear regression method that can account for some non-

linearity in the modelling. PLS was selected due to its

simplicity and transparency; it is no ‘‘black box’’ and

allows for interpretation of the relationship between prop-

erties and response. The quality of the resulting PLS

regression models was assessed by Pearson’s correlation

coefficient (here called R2Y) and the root-mean-square

error of estimation (RMSEE, Eq. 3), which tells us how

well our numerical description of the molecules (our

descriptors) could estimate the biological response of the

training set. We analyzed our models for robustness (i.e.,

stability against small changes in the data) using cross

validation. Each molecule was sequentially left out once in

the model building with subsequent prediction of its pIC50

value; the correlation coefficient between the internal

predictions and the experimental values (Q2) of the total

training set was reported (Eq. 2). For a robust model there

should not be large differences (preferable lower that 0.2

[33] ) between R2Y and Q2, although it should be noted

that the Q2 value is highly dependent on the molecules

included in the training set [35, 36] and the number of

excluded molecules in each cross validation round [37].

The PLS regression coefficients were also robustness-tes-

ted by monitoring their variation throughout the cross

validation procedure, which was important since the

regression coefficients were used to established the SAR

and to interpret the QSAR model. We also chose to per-

form a permutation test [38, 39] to make sure that our

model was not a result of chance correlations. In this test,

the order of the response values (pIC50) was scrambled and

new models were created that should perform worse than

the original model (in terms of R2Y and Q2).

The number of PLS-components to use in a model

requires careful considerations. Too many PLS-compo-

nents will lead to over fitting and wrongful conclusions

regarding the models’ predictive capability. As a guideline,

a PLS model including one response variable should not

require more than one PLS-component, provided that the

relationship between the descriptors and response is linear.

In cases with weak non-linearity, PLS will still perform

well but one or maximum two additional PLS-components

may have to be calculated. The evaluation of the predictive

capability of the QSAR model was done by external test

Fig. 1 Retrosynthetic analysis

of 1 resulted in synthons i, ii and

iii

Fig. 2 Chemical structures of

the three sets of building blocks

pI, pII and pIII that were

selected for the (Q)SAR study;

the building blocks correspond

to the synthons in Fig. 1, and

synthon i was further

disconnected to the aromatic

moiety and the sulfonic amide

forming two subsets (pIa and

pIb)
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Table 1 Chemical structures and AChE inhibition of the 18 compounds in the training set evaluated for AChE inhibition

ID Name Structure IC50 (lM) CIa (lM) pIC50

1 AL011 13.0 11.3–15.0 4.89

2 AL013 445 321–616 3.35

3 AL012 [1,000b – 2.00

4 AL007 69.5 54.6–88.5 4.16

5 AL008 101 82.7–123 4.00

6 AL006 12.8 11.0–15.0 4.89

7 AL015 4,250 1,730–10,500 2.37

8 AL016 12.0 10.2–14.0 4.92

9 AL005 67.7 57.4–79.8 4.17

10 AL014 323 207–504 3.49

11 AL009 2,430 1,240–4,790 2.61

12 AL010 78.0 65.3–93.1 4.11

13 AL017 25.0 21.2–29.6 4.60

14 AL021 6.6 5.6–8.0 5.18

15 AL022 22.2 19.7–24.9 4.65

16 AL018 109 87.2–137 3.96

17 AL020 4,204 165–107,000 2.38

18 AL019 136 118–156 3.87

a Confidence interval (95 %). b Uncertainty in IC50 determination due to poor compound solubility
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sets (i.e., never included in the model building procedure)

and by comparisons with reference models, which is the

described in more detail in the following sections.

Structure–activity relationships of AChE inhibitors

In the SAR analysis, the molecules’ inhibition of AChE

expressed as pIC50 (the Y matrix) was modeled as a

function of the conditional descriptors (absence or presence

of structural fragments) used in the SMD (the X matrix, see

Online Resource 2). The PLS described 79 % of the total

variation in Y (R2Y), had an adjusted R2Y of 0.77, and an

internal prediction capacity of 26 % [cross-validated Q2

(cum), Eq. 2]. The use of a highly reduced subset of 18 out

of 144 molecules, with low redundancy in structural fea-

tures, contributed to the relatively low cross validation

value. In other words, predicting the response for a mole-

cule by using the structural information of the other 17

molecules is particularly challenging here since we have

designed the molecules to be as different as possible. In

fact, it can be showed [35] that the value of Q2 as an

estimator of the internal prediction capacity decreases with

the size of the training set and that Q2 is particularly

underestimated when calculated on designed data [36].

Leave-many-out would be the preferred method for deter-

mining Q2 instead of leave-one-out if it is applied to sets of

Scheme 1 General synthetic scheme detailing synthesis of compounds 1–18

Fig. 3 Covariance matrix of

conditional descriptors of the

selected subset of 18 molecules

showing pairwise correlation of

the descriptors ranging from

minimum (0.00) to maximum

(1.00) correlation; descriptor

names are given on the axis and

colors indicate an increasing

covariance dark blue to light

blue, green, orange, red and

black

204 J Comput Aided Mol Des (2015) 29:199–215

123



molecules with higher redundancy. The RMSEE was 0.47,

indicating an internal estimation error of a half log-unit.

The PLS regression coefficients (Fig. 4) were analyzed

to identify how the different structural fragments in the

molecules influenced the pIC50. Most influential were

fragments in pIII binding in the CAS of AChE followed by

PAS-binding fragments in pIa, while the effects of

changing linker length (pII), changing between amide and

sulfonamide in pIb, or adding a benzylic CH2 were non-

significant. From the regression coefficient values, it was

clear that N-dimethyl, N-diethyl or especially pyridinium in

pIII, and a benzothiophene or 4-methyl-2-nitrobenzene in

pIa were advantageous for the potency. A morpholine in

pIII was clearly disadvantageous. The benzothiophene and

methyl-nitrobenzene substructures has been found before

in AChE inhibitors [30], although not combined with the

same moieties presented here, while the isoindolinone-

phenyl moiety as a PAS binder is novel. The well-known

fact that cationic molecules bind to the CAS region of

AChE was corroborated here, since the permanent pyridi-

nium cation was the most potent. Notably, common oxime-

based antidotes for nerve agent intoxication contain a

pyridinium moiety [40], for example pralidoxim and HI-6.

No approved drug molecules for Alzheimer’s disease

treatment, and only one myasthenia gravis drug

(pyridostigmine) targeting AChE contain a pyridinium

[41], possibly because of the poor gut absorption and

blood–brain barrier passage associated with (permanent)

cations. The morpholine as a CAS-binding moiety has been

reported before, and is present in the weak AChE inhibitor

minaprine and analogues [42]. Similar to our finding here,

if compared to other substituents such as piperidinyl and

triethylamin, morpholinyl have been shown to be less

potent [42, 43]. Nevertheless, morpholinyl per se cannot be

considered a poor binder of AChE since it is present in

inhibitors in the nM to lM range [30, 44–46].

Descriptor covariance and QSAR analysis

The SAR analysis was extended by calculating quantitative

molecular physicochemical descriptors aiming for QSAR

modeling of the AChE inhibition expressed as pIC50 for the

training set molecules. The training set consisted of 24

molecules, which included the original 18 molecules but

with both cationic and neutral protonation states for mol-

ecules with morpholine or piperazine moieties. Descriptors

were calculated for the whole molecules (global descrip-

tors) as well as for sub-structures of the molecules corre-

sponding to the PAS- and CAS-binding moieties, giving

325 descriptors (Fig. 5, and Online Resource 2). It is

important to stress that, even though the SMD resulted in a

set of molecules with systematically and independently

varied structural fragments, the molecule selection was not

performed in physicochemical descriptor space. Therefore,

it was of particular importance to perform a careful ana-

lysis of the physicochemical descriptor matrix to detect

dependencies before further modeling (Fig. 5). Accord-

ingly, the covariance matrix of all 325 descriptors of the 24

molecules was calculated to identify descriptor correlations

(Eq. 1, and see Online Resource 2). Two descriptors could

correlate for three reasons. (1) The descriptors described

the same molecular property (e.g., molecular weight and

the number of heavy atoms both describe size). (2) The two

descriptors correlated just by chance. The risk of chance

correlation increase with number of pairwise comparisons,

e.g., the risk of chance correlations at a 0.05 significance

level is 1–0.95K for K comparisons. (3) The two descriptors

correlated due to co-variation of two chemical features

within the molecules in the set (e.g., the benzylic fragment

and para-substituted aromatic fragments in this set). All of

this will influence the QSAR modeling in terms of model

quality, including interpretation and prediction capacity.

The analysis of the covariance matrix revealed that the

main part of the descriptors were related to the size and

flexibility of the molecules; 35 % (40 out of 113) of the

global descriptors had a correlation coefficient larger

than 0.7 compared to the surface area or number of rotat-

able bonds. It was clear that the descriptors describing

Fig. 4 The PLS regression coefficient values showing the influence

of the different structural fragments on the inhibition of AChE;

aromatic PAS-binding fragments in pI are shown in black, linker

fragments (in both pI and pII) in dark grey, and basic CAS-binding

fragment in pIII in light grey, and confidence intervals (90 %) were

calculated using jack-knifing [47] on models generated in the cross-

validation procedure
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electronic properties and (partial) charge distributions,

which are of particular interest here, were less redundant

than for example size and lipophilicity. In cases where

descriptors such as indices and binned descriptors corre-

lated with more interpretable physicochemical descriptors,

the latter were selected. We performed a careful selection

(Fig. 5) of a subset of 14 descriptors (Table 2) out of the

325 to be used in the QSAR modeling aiming to keep the

descriptor redundancy low and avoiding chance correla-

tions. Regarding correlations due to co-variation of

chemical features within the molecule set, it is important to

include such descriptors in order to keep track of the

confounding pattern later on in the modeling. We made the

selection to included descriptors with (1) low internal co-

variation as determined from the covariance matrix of all

325 descriptors, and (2) a rational relevance for the

molecular interaction between the inhibitors and AChE

based on previous published results. We emphasize that no

account was taken of the correlation of descriptors to the

inhibition of AChE in the selection procedure; the selection

was solely focused on the X-matrix.

The covariance matrix of the 14 descriptors used for

modeling (Fig. 6) showed, as expected due to the SMD, no

correlations between the CAS and PAS descriptors.

However, within the subset of CAS descriptors it is clear

that the selected structural fragments (building blocks)

resulted in a strong correlation (0.94) between highest

occupied molecular orbital (HOMO) and lowest unoccu-

pied molecular orbital (LUMO), indicators of polarizabil-

ity, making it impossible to resolve these effects. It can also

be seen that it is the structural fragments in CAS that

dictate the lipophilicity of the molecules (i.e., correlation

between CAS_Q_VSA_FPPOS and logP of 0.76) and the

PAS structural fragments that is responsible for the varia-

tions in shape between the molecules (i.e., correlation

between PAS_npr1 and rgyr of 0.78).

The QSAR model contained two PLS-components

described 79 % of the total variation in Y (R2Y(cum)), an

adjusted R2Y(cum) of 0.77, and an internal prediction

capacity of 60 % [Q2(cum), Eq. 2]. The pIC50 values

estimated by the model versus the measured values show a

linear relationship (Fig. 7a) with a RMSEE of 0.46. A

permutation test indicated that the model was not the result

of chance correlations between X and Y (see Online

Resource 1).

The regression coefficient plot (Fig. 7b) of the first PLS-

component (72 % of the variation) revealed that the

strongest inhibitors in the set generally had a higher logP

Fig. 5 QSAR model building approach where descriptors first were filtered (descriptor selection) based on the covariance matrix and knowledge

of important molecular physicochemical properties for AChE inhibition followed by PLS regression to yield the QSAR-model

Table 2 Descriptor name [48] and explanation for descriptors included in the QSAR model

Global CAS PAS

b_1rotR Fraction of rotatable single bonds VSA_FPNEG Fractional negative polar

vdW surface area

VSA_FPPOS Fractional positive polar

vdWs surface area

logP(o/

w)

Log of the octanol/water partition

coefficient calculated from a linear

atom type model

VSA_FPOS Fractional positive vdW

area

AM1_LUMO Energy (eV) of the lowest

unoccupied molecular

orbital

TPSA Polar surface area (Å2) VSA_FPPOS Fractional positive polar

vdW surface area

npr1 Normalized principal

moment of inertia

vdw_area Area of vdW surface (Å2) AM1_HOMO Energy (eV) of the highest

occupied molecular

orbital

rgyr Radius of gyration AM1_LUMO Energy (eV) of the lowest

unoccupied molecular

orbital

dipole Dipole moment
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(logP(o/w)), relatively more rotational bonds (b_1rotR),

and a smaller radius of gyration (rgyr) and were thus more

globular. The CAS-binding moiety of the better inhibitors

generally had smaller and more polar van der Waals (vdW)

areas (CAS_Q_VSA_FPNEG/CAS_Q_VSA_FPPOS), lower

dipole moments (CAS_dipole), and lower energy of the

HOMO and/or LUMO (cannot be resolved due to con-

founding). Furthermore, the stronger inhibitors had an

asymmetric PAS moiety in terms of principal moment of

inertia (PAS_npr1) and lower LUMO energy of the PAS-

binding moiety. The importance of a low LUMO energy of

the PAS binding moiety corroborates previous findings [30,

45] indicating that an aromatic systems with a high

reduction potential may be preferential in PAS. It is a

known fact that a positive charge—manifested here in a

small and more polar vdW area of the CAS-binding moi-

ety—is important for AChE interactions. Cations have

been shown to interact with aromatic side chains in the

CAS region in numerous crystal structures, e.g., PDB code

1ACJ [49]. We included both protonation states of mole-

cules containing piperazinyl and morpholinyl moieties with

the argument that they possibly could be neutral upon

binding, which could influence their inhibition of AChE

(AChE preferably bind cationic ligands). Notably, these

molecules were moderate inhibitors at best and little dif-

ference were seen between charged and neutral states in the

model (Fig. 7a), indicating that their poor inhibitions of

AChE were not related to their protonation states. The

rigorous molecular design and evaluation thereof guaran-

tees that the conclusions drawn here regarding the molec-

ular properties’ influence on compound inhibition of

AChE, are indeed certain, within the applicability domain

of these molecules.

Predictive capability of the QSAR model

Three external test sets (never included in the QSAR model

development) were used to evaluate the QSAR model, and

examples of these molecules are shown in Fig. 8 (see

Online resource 1 for a complete list). Set1 included

molecules 27–31 (5 compounds) that were synthesized as a

prediction set for the original design. 27–29 contained new

combinations of structural feature that were found to be

beneficial in the SAR, e.g., 27 with 4-methyl-2-nitroben-

zene in pI and pyridinium in pIII. 30 and 31 contained ‘‘the

medicinal chemists’ choice’’ of structural features, e.g.,

nitrobenzene in pIa and a thiazole in pIII. Set2 included

molecules 36–42 (7 compounds) that consisted of structural

Fig. 6 The covariance matrix

of descriptors included in the

QSAR model and descriptor

names are given on the axis and

colors indicate an increasing

covariance from dark blue to

light blue, green, orange, red

and black
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fragments not included in the original design, i.e., the same

fragmentation scheme does not apply, leading to more

challenging predictions. Set3 consisted of 43–62 (20

compounds) [32], where only pIa was structurally varied;

pIb, pII and pIII consisted of a 1-(diethylamino)-2-(sulfo-

nylamino)ethane moiety. Hence, only the PAS binding part

has been considered in the predictions for Set3.

The three test sets differed in activity ranges where IC50

was in Set1 between 2.6 and 19 lM, in Set2 between 0.3

and 1.3 lM, and in Set3 between 6.8 and 162 lM with one

uniquely active compound (62) at 0.7 lM. Prediction Set4

combined all compounds from the first three prediction sets

giving 32 compounds and an overall activity range between

0.3 and 162 lM (pIC50 3.79–6.59).

The predicted inhibition capacity of the test set versus

the experimental measurements is presented in Fig. 7c. The

overall root-mean-square error of the predictions [RMSEP,

Eq. 5] for the test sets was 0.57 (Table 3), which is in the

same magnitude as the training set RMSEE of 0.46. The

test sets were different in terms of prediction errors and

distributions of the predicted values (Fig. 7c; Table 3).

Molecules in Set1 that contained new combinations of

Fig. 7 QSAR model based on PLS with a measured versus estimated

values of pIC50 for molecules included in the model, where c and n

indicates cationic and neutral molecules, respectively, b regression

coefficients of descriptors where prefixes CAS and PAS indicates

descriptors calculated for sub-structures binding in the CAS and PAS

of AChE, respectively, and confidence intervals (90 %) were

calculated using jack-knifing [47] on models generated in the cross-

validation procedure, c measured versus predicted pIC50 values,

including the prediction sets Set1 (black squares), Set2 (gray

squares) and Set3 (gray dots) and the training set (black unfilled

circles) for comparison, where c and n indicates a cationic and neutral

molecule, respectively, d applicability domain assessment using the

distance to model in X (DModX, Eq. 4) of the prediction set and

training set molecules, where DCrit 0.05 represents the 95 %

confidence limit of the training set molecules
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structural fragments from the training set were indeed

among the most active molecules in that class. Predictions

to distinguish the activity within the set were, however, not

successful (reflected in the RMSEP value of 0.68) due to

the low resolution of the model, and the low activity span

of one pIC50 unit of Set1. Similar trends could also be seen

for Set2 and Set3. Molecules of Set2 were different in

terms of physicochemical properties (DModX, Fig. 7d) and

were predicted to be substantially stronger inhibitors than

those included in the training set, which was also the case

when testing them experimentally. It was not possible to

rank Set2 molecules within the class (pIC50 between 5.88

and 6.59). The structural changes of the aromatic moiety

binding to PAS in Set3 were predicted to have a moderate

effect on the inhibition capacity and it was not possible to

predict which structural changes that were more or less

beneficial. The exception was 62 that was predicted to be a

substantially better binder that the rest of Set3, and indeed

it was. We concluded that the individual test sets were not

appropriate as test sets due to the small activity span and/or

low chemical diversity, rather, all three were needed to

validate the model. Together the three sets possessed an

activity span of two pIC50 units, which is similar to the

training set, but with a (desired) shift in activity from pIC50

of 2.37–5.18 (the training set) to pIC50 of 3.79–6.58 for the

test set.

QSAR model predictions in comparison to simple

reference models

To evaluate the quality and usefulness of the QSAR model

further, it was compared to seven simple reference models

also based on the training set molecules. Three non-

regression based methods were used to predict the response

values of the molecules in the test set, the average and

median of the experimental pIC50 values of the training set,

and a nearest neighbor estimation, based on the assumption

that similar molecules have similar biological activity. For

each molecule in the test set, we let experienced synthetic-

and medicinal chemists at the department, not previously

involved in the project, perform unprejudiced selection of

the most similar molecule in the training set (without

knowing any response values). In addition, we calculated

four linear regressions using each of the descriptors logP,

TPSA, and vdW area, and a PLS model based on the three

descriptors (Table 3). For the regression-based reference

model predictions, the training set pIC50-values showed a

weak correlation with logP (R2 of 0.38) but no correlation

with TSPA, or vdW area (see Online Resource 1). The

reference model ‘‘PLS’’ based on the descriptors logP,

TPSA and vdW area as X and the pIC50 as Y, gave a two-

component PLS model with R2Y(cum) of 0.46 (adjusted

R2Y(cum) of 0.41) and a cross-validated Q2 of 0.32 (cf. the

QSAR model statistics of 0.79, 0.77, and 0.60,

respectively).

The pIC50-values of molecules in the external test sets

Set1–4 were predicted using the seven reference-models

and the prediction errors from all models are presented in

Table 3. The reference models’ prediction accuracy was

inferior compared to the QSAR model. Generally, median,

average, logP, TPSA and vdW area were poor predictors of

pIC50, while the PLS and nearest neighbor reference model

performed slightly better.

Analyzing individual reference-model prediction errors

for each of the different test sets revealed that the nearest

neighbor predictions performed well for Set1. This was not

surprising, since Set1 was selected to extract the best

compound features out of the training set, a selection

performed by chemists (although not the same chemists

that created the reference model). Median and nearest

neighbor values seem to be a reasonable pIC50 predictor for

Set3; the linear regression based on logP gave reasonable

predictions for Set2, while the PLS model performed

Fig. 8 Representative

molecules of prediction sets

Set1 (27), Set2 (36), and Set3
(60)

Table 3 QSAR- and reference model statistics including goodness-

of-fit and RMSEP (Eq. 5)

Model R2 RMSEP

Set1 Set2 Set3 Set4

QSAR 0.77a 0.68 0.67 0.50 0.57

Average –b 1.52 2.44 0.95 1.49

Median –b 1.23 2.14 0.70 1.25

Nearest neighbor –c 0.44 2.10 0.69 1.13

logP 0.38 1.32 0.88 1.03 1.05

TPSA 0.01 1.63 2.35 0.95 1.48

vdW area 0.03 1.33 2.60 0.93 1.51

PLS 0.41a 0.93 0.73 1.14 1.03

a R2Y adjusted. b Not relevant since the variance of the average and

median y is zero. c Not relevant because this reference model only

concerns the test sets
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relatively well for Set1 and Set2. None of the reference

models was comparable to the QSAR model in prediction

capacity of the total set of all test set molecules (Set4).

So far, we have investigated and compared the predic-

tion error of the QSAR and reference models, now we

analyze if the predicted pIC50 values resulting from the

models were significantly different from the measured

pIC50-values. We assume that the predicted and measured

values are equal (the null hypothesis) and tested whether

this holds (with a 95 % confidence limit) or should be

overruled by the alternative hypothesis (that they differ).

This was tested using a parametric F test for equal variance

and a paired student t test for equal mean (in case of nor-

mally distributed data (according to Anderson–Darling

(AD) test, [50]) and non-parametric tests (Kolmogorov–

Smirnov (KS) [51, 52] and Mann–Whitney (MW) U test

[53, 54] ), which are less sensitive to non-normal distri-

butions within samples. The tests showed satisfactory

results; the QSAR models’ predictions are equal to the

measured (they are drawn from the same distribution with a

probability p [ 0.05), that is, the prediction values of the

inhibition capacity of molecules in the different test sets

were not different from the experimental values (Table 4).

The test results of the reference models further strengthen

the usefulness of the QSAR model; the predictions of the

test sets by the reference models gave values that are not

significantly equal (p \ 0.05) to the experimental data as

the null hypothesis was rejected for most reference models

(except for the nearest neighbor predictions of Set3;

Table 4). Not all models and prediction sets could be tested

by all statistical tests, since there are different criteria that

need to be fulfilled (see the Experimental Section and

Online Resource 1).

For the individual test sets, one or more reference

models were significantly different from the measured

pIC50-values. Importantly, the evaluation was dependent

on the size and the composition of the prediction sets, the

smaller they were the greater the uncertainty, represented

with a higher F- or t critical value. Set1 included molecules

structurally similar to the training set molecules but the

prediction errors were as high for this set as for the more

dissimilar Set2, which may be somewhat surprising. Nev-

ertheless, the statistics showed that the predictions for Set2

was more uncertain, illustrated by higher F- and t-values

compared to Set1. The nearest neighbor models predictions

of Set3 pIC50 was statistically equal to the measured

although this model was not successful in predicting all test

set molecules (Set4). The statistical tests in Table 4 and the

Table 4 Statistics test presenting p values including, t test, Kolmogorov–Smirnov and Mann–Whitney, comparing the predicted pIC50 values

from the QSAR or reference models to the measured pIC50 values

Test/Model Set1 Set2 Set3 Set4

t testa t testa t testa KSd t testa KSd MWe

QSAR 0.163 0.073 –b 0.275 –c 0.518 0.330

Nearest neighbor –c –c –c 0.275 –c 0.007 0.013

LogP 0.000 0.005 0.000 0.000 –c 0.000 0.000

vdw –b –b –c 0.000 –c 0.000 0.000

TPSA –c –c –c 0.000 –c 0.000 0.000

PLS 0.003 0.030 –c 0.000 –c 0.000 0.000

a Paired (two-tailed) students t test where p \ 0.05 rejects null. b Did not pass the one-tailed F test where calc. [crit. rejects null. c Non-

normally distributed data was not used in F/t tests. d Kolmogorov–Smirnov test where p \ 0.05 rejects null. e Mann–Whitney test where

p \ 0.05 rejects null

Table 5 The molecular struc-

tures for which descriptors were

calculated

pIa ? pIb (PAS) pIII (CAS)
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prediction errors in Table 3 confirmed that predictions by

the investigated reference models were significantly less

successful than the QSAR model (see Online Resource 1

for F and t test details).

Conclusions

A strategy for the design and assessments of sets of mol-

ecules and evaluation of SAR and QSAR models has been

presented that showed the benefits of thinking ahead and

using SMD and co-variation analysis when planning a

SAR/QSAR investigation. A set of inhibitors of the

enzyme AChE was designed using SMD that yielded

molecules with diverse structures but with repeating

structural fragments. This is very important in order to

avoid confounding in the measured effects, which would

lead to wrongful conclusions in subsequent SAR and

QSAR modeling. Co-variation patterns were analyzed

through covariance matrices simply calculated from a

conditional descriptors matrix. The designed compounds

were shown to inhibit AChE and had a reliable potency

spanning from molar to micromolar, with the majority of

compounds having an IC50 in the low micro-molar range.

A PLS-model based on conditional descriptors resulted

in a clear and transparent SAR analysis, which could reveal

molecule sub-structures that were advantageous for the

AChE inhibition. The permanent cation pyridinium, and a

benzothiophenyl or 4-methyl-2-nitrophenyl was most

advantageous in CAS and PAS, respectively, and a mor-

pholinyl in CAS was detrimental to binding. A QSAR

model was calculated based on physicochemical descrip-

tors carefully selected to include molecular properties

known to be important in inhibitor-AChE binding and to

avoid descriptor correlations. The model showed good

statistics in terms of model fit, cross-validation and no

chance correlations. The QSAR model was used to satis-

factory predict the pIC50 of molecules in three prediction

sets. Combinations of the most advantageous sub-struc-

tures identified in the SAR-model, i.e., 4-methyl-2-nitro-

phenyl and pyridinium, gave a molecule with higher pIC50

than any in the training set. The importance of the test set

was highlighted by using sets with different activity spans.

A set of simple albeit relevant models, reference models,

were calculated and these models were proved statistically

to be inferior to the QSAR model in terms of training- and

test set pIC50 predictions.

Much effort has been made to encourage the SAR and

QSAR community to adopt some simple benchmarks to

improve the quality of models. We believe that the strategy

presented here of compound design and evaluation, serves

to illustrate the value of SMD, covariance analysis and

statistical tests in molecular design and QSAR modeling,

and hope that this will inspire to improve QSAR modelling.

Experimental section

Statistical molecular design and covariance matrices

D-optimality and covariance matrices based on conditional

descriptors from the SMD were calculated from a binary

matrix where molecules were described by the presence (1)

or absence (0) of a certain structural feature (see Online

Resource 2 for matrix). All combinations of the molecular

fragments in Fig. 2 resulted in a set of 144 possible mole-

cules, i.e., all possible combinations of all fragments in their

respective position pIa, pIb, pII and pIII. A subset was

selected out of the 144 using D-optimal design [3]. In

D-optimal design, selections are made from X (here, the total

set of 144 possible molecules with their conditional

descriptors) so that the determinant of the matrix Xsel’Xsel is

maximized (Xsel is the selected set with their conditional

descriptors). By maximizing the determinant of the selec-

tions, it is assured that the diversity in the designed set is

reflecting the diversity of the total set. The selected D-opti-

mal set was evaluated by condition number values of Xsel to

investigate whether the structural features were varied

independent of each other (where a completely orthogonal

design have a value of 1). All descriptors were centered and

scaled to unit variance prior to D-optimality calculations and

covariance matrix calculation in Matlab [55].

Molecular descriptor calculation

The molecules’ structures were curated in terms of tauto-

meric forms and protonation states (MarwinView pka cal-

culations) [56] in assay conditions pH 8 (Table 5). Note

that the some amines in pIII may be neutral or cationic and

both forms were included for ambiguous molecules com-

prising morpholine (3, 7, and 11) and piperazine (16, 17,

and 18) The calculations showed that morpholinyl and

piperazinyl would be 40 and 2.5 % neutral, respectively, at

pH 8. 3D-conformations of the molecules were generated

by OMEGA [57, 58] with the MMFF94 s force field [59].

The values for OMEGA parameters rms and ewindow was

set to 0.5 and 40, respectively, and all generated confor-

mations were collected. ROCS [60, 61] was thereafter used

to overlay the conformations against an X-ray crystal

structure of 36 (AL137) in complex with AChE [31] since

the ligands are assumed to bind in an outstretched con-

formation. The conformation with the highest Tanimoto-

Combo score value was selected and used in calculations of

2D and i3D descriptors in MOE [48]. Descriptors were
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calculated for the entire molecule (global) as well as the

CAS and PAS binding part, pIa ? pIb and pIII, respec-

tively (Table 5).

Covariance matrix calculations

Covariance matrices on descriptors (centered and scaled to

unit variance) was constructed by the calculation of cor-

relation coefficients (q) between pairwise descriptors

according to

q ¼
XN

i¼1

xi;1xi;2

N
ð1Þ

where x1 and x2 are values for descriptors 1 and 2 for

molecule i, and N is the number of molecules. Correlation

coefficients are reported as absolute values and calculations

were done in Matlab [55]. The matrices including condi-

tional- and quantitative descriptors are presented in Online

Resource 2.

Partial least-squares regression

PLS regression [34, 62] was used to correlate the training

set descriptor data matrix X to the inhibition of AChE

(matrix Y) using the SIMCA software [63]. The inhibition

was expressed as the pIC50, which is the -log of IC50 in

molar (M) concentration. All descriptors and the response

were centered and scaled to unit variance before model

building. The quality of the PLS models were determined

from the Pearson’s correlation coefficient R2Y (derived

from the regression between X and Y, not to be confused

with R2X which describes the variation in X used in the

regression), the adjusted R2Y (sum-of-squares adjusted for

the number of degrees of freedom), and the Q2 (derived

from cross-validation) according to

Q2 ¼ 1:0� PRESS=SS ð2Þ

where PRESS is the prediction error sum of squares, SS is

the sum of squares. Cross validation was performed by the

leave-one-out method. The internal prediction error, i.e.,

measured y versus the fitted y or the root-mean-square error

of estimation (RMSEE) for the training set, was calculated

according to

RMSEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yi;measured � yi;estimated

� �2

N � 1� A

s

ð3Þ

where N is the number of molecules (i) and A is the number

of PLS-components. The descriptors of the test set mole-

cules were compared to training sets’ to assess the appli-

cability domain by using the normalized distance to model

in X (DModX) according to

DModX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
e2

ik

ðK�AÞ � v

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

PK

k¼1
e2

ik

N�1�Að Þ� K�Að Þ

r ð4Þ

where N is the number of molecules (i), K is the number of

descriptors, eik are the X-residuals of molecule i for

descriptor k, A is the number of PLS-components, and v is a

correction factor with a value slightly higher than 1 com-

pensating for the fact that DModX would be slightly

smaller for an observation that is part of the model. Pre-

dicted molecules significantly dissimilar from the model

molecules were identified using normalized DModXPS,

which is the same as DModX but without the correction

factor v. The prediction error of external test molecules i.e.,

measured y versus the predicted y, or the root-mean error of

prediction (RMSEP) was calculated according to

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yi;measured � yi;predicted

� �2

N

s

ð5Þ

where N is the number of molecules (i). Model validity and

chance-correlations between X and Y were quantified with

permutation experiments in SIMCA [63] where the order of

pIC50-values in Y was scrambled 200 times and new PLS-

models were created and compared to the original model

[38, 39]. Two kinds of regression models were derived by

PLS calculations between the pIC50 and (1) the conditional

descriptor set and (2) the quantitative descriptors describ-

ing the 24 molecules, in the training set. Confidence

intervals (90 % confidence limit) for regression coefficients

were calculated using jack-knifing [47] on the multiple set

of models resulting from the cross validation procedure.

The coefficients (centered and scaled to unite variance)

were used to interpret the relative importance of the

descriptors and the underlying chemical property. A large

positive coefficient for a structural feature or descriptor

indicated that that feature/descriptor was positively corre-

lated with the pIC50. Conversely, a negative coefficient

indicated that a feature/descriptor was negatively corre-

lated to pIC50.

Compound sets for pIC50 predictions

Three test sets of molecules were used for pIC50 predic-

tions in the QSAR model. Note that none of these mole-

cules had been part of the QSAR model building. Set1

included five molecules 27–31. Set2 included seven ana-

logues 36–42 to the molecule C7653, another hit from the

HTS [31], and these compounds were synthesized and

biologically evaluated here. Set3 included 20 molecules

43–62 that were close analogous to molecule 1 discovered

in a HTS [31] and these molecules are reported to be AChE
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inhibitors [32]. Set4 included all molecules from Set1–3.

Prediction set molecule structures, synthesis-, and biolog-

ical data are presented in Online Resource 1.

Reference model building

Seven simple reference models were calculated for the

evaluation and comparison to the prediction power of the

QSAR model. Two of the reference models were based on

the average or the median of the pIC50 values for the mole-

cules in the training set. These averages and medians were

assumed predicted values of pIC50 for all 24 molecules, and

were compared to the measured pIC50 in RMSEP calcula-

tions according to Eq. (5). Three reference models were

linear regressions based on one descriptor—logP, TPSA, or

vdW area—and the pIC50 values. Predicted pIC50 values

from the regression were calculated from the straight-line

equations for each individual regression model (see Online

Resource 1 for plots and equations), and the RMSEP value

from Eq. (5). A PLS-regression model was calculated con-

taining three descriptors logP, TPSA and vdW area and the

predicted pIC50 values from this model were compared to the

measured according to Eq. (5). Finally, we let six experi-

enced synthetic/medicinal chemists note for each molecule

in the test sets which molecule in the training set they found it

most similar to (see Online Resource 1). By consensus, each

molecule in the test set was predicted to have the activity of

the most similar molecule in the test set. These predictions

were called the ‘‘nearest neighbor’’ model.

Statistical tests of predicted pIC50 values

QSAR model and reference models predicted pIC50 for test

Sets 1–4 were tested for the probability that they were

drawn from a normal distribution using the AD test [50], at

a confidence limit of 95 % (p = 0.05), implemented in

Excel [64, 65]. Alternatives to F and t test when facing

non-normal data are non-parametric tests such as the KS

[51, 52] and MW U test [53, 54] when the aim is to

compare the sample distributions of two sets of data. The

number of data points in each set needed to exceed ten and

seven in KS and MW, respectively. More details are given

in Online Resource 1.
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