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1. INTRODUCTION 

This chapter focuses on algorithmic methods for case detection. 
As we discussed in Chapter 3, the objective of case detection 
is to notice the existence of a single case of a disease. Case 
detection is a core activity of biosurveillance. Detection of an 
outbreak usually depends on detection of individual cases, 
although it is also possible to detect an outbreak from data other 
than case data (e.g., retail sales of thermometers or satellite 
imagery). 

For most of the 20th century, governmental public health 
relied almost exclusively on the astute clinician and the clinical 
laboratory to detect and report cases via the notifiable disease 
system. Algorithms for case detection did not exist, with the 
possible exception of case definitions discussed in Chapter 3, 
which are algorithms in the sense that they are formal specifi- 
cations that a clinician or epidemiologist can follow to classify 
an individual as a suspected or confirmed case. 

Around the beginning of the 21st century, emerging 
diseases and the threat of bioterrorism began to stress the 
capabilities of the notifiable disease system. Health depart- 
ments endeavored to improve it by creating web-based forms 
for disease reporting and electronic laboratory reporting. 
Their goal is to increase completeness of reporting and 
decrease time latencies inherent in paper-based reporting. 

After the anthrax postal attacks of 2001, health departments 
redoubled their efforts to improve disease reporting by increas- 
ing the "astuteness" of clinicians through education and train- 
ing (Gerberding et al., 2002, Hughes and Gerberding, 2002). 
A specialist in infectious diseases had detected and reported 
the first case of inhalational anthrax (Kolata, 2001); thus, 
the conventional wisdom was that the notifiable disease 

system worked. For the foreseeable future, increasing the abil- 
ity of front-line physicians to diagnose rare diseases through 
better training was our best defense against bioterrorism. The 
conventional wisdom was correct insofar as case detection by 
clinicians is important in outbreak detection. However, it was 
overly sanguine about the ability of training to improve the 
existing capability.1 

There is a limit to which additional training can improve 
a clinician's ability to detect and report rare diseases to a biosur- 
veillance organization. Humans are not perfectible in this 
manner, as noted first by Dr. Clem McDonald, who entitled 
his seminal paper on physician performance Protocol-Based 
Computer Reminders, the Quality of  Care and the Non- 
Perfectability of  Man (McDonald, 1976b). 2 

His research, conducted in the early 1970s at the Regenstrief 
Institute in Indiana, demonstrated that even for common con- 
ditions, such as diabetes and hypertension, and for common 
preventive measures, such as immunizations, physicians often 
failed to deliver required services. However, when reminded 
by a computer system that monitored electronic patient data 
about the need to vaccinate a specific patient or order a needed 
test, physicians complied with standards of care at twice the 
rate as when not reminded. When the system stopped remind- 
ing the physicians, however, their compliance rates quickly 
returned to baseline; thus, any "education" or "training" that 
the system provided had no lasting effect on compliance. 

McDonald's research spawned a new line of system-level 
thinking in medicine that continues to this day (Kohn et al., 
2000, Leavitt, 2001, Yasnoff et al., 2004). McDonald concluded 
this influential paper with the observation that, although man 
is not perfectible, systems of care are. 

1 Studies of continued medical education programs also suggest that the yield is low and the cost is high (Haynes et al., 1984, Leist 
and Kristofco, 1990, Williamson et al., 1989, McDonald, 1983). The one study of efficacy of training (of a web-based educational 
program) on physicians' knowledge about diagnosis and management diseases caused by known weaponized biological agent 
showed no retention of information (chung et al., 2004). 

2 We do not know whether the always playful Dr. McDonald and the sophisticated editors of the New England Journal of Medicine 
misspelled the word perfectibility intentionally. Also reinforcing the main conclusion of his research, it took a computer's spell 
checker to bring this error to our attention. 
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2. PERFECTING CASE DETECTION 
The best case detection system imaginable would be one in 
which every individual in a community is examined every 
morning by the best diagnostician in the world. This diagnos- 
tician would have all the time in the world to interview and 
examine each person. Since she would be examining everyone 
every day, she would notice patterns (clusters) of early illness 
in a community. Her awareness of patterns would appropri- 
ately bias her diagnostic thinking (and treatment) of individ- 
ual patients. Physicians are taught (and reminded incessantly) 
"when you hear hoof beats, don't think of zebras." This adage 
is an informal statement that when the evidence available 
about a particular patient supports equally a diagnosis of 
either influenza or SARS (e.g., the patient has constitutional 
symptoms and no history of exposure to SARS), they should 
conclude that the diagnosis of influenza is far more likely than 
SARS. This diagnostician would also never fail to report 
immediately each fever, early syndromic presentation, or 
reportable disease to governmental public health. 

This ideal scenario recognizes the importance of the knowl- 
edge, judgment, and skills that clinicians bring to bear on the 
diagnosis of disease. The importance of expert knowledge 
and judgment underlies the opinion, expressed by experts in 
public health after the anthrax letters in 2001, that there is 
no substitute for an astute clinician. This ideal scenario also 
recognizes that knowledge of the prevalence of disease in a 
population influences the diagnostic work up and management 
of individual patients. 

Of course, such a system is not feasible due to the impossi- 
bility of having every person seen by the same diagnostician 
every day or the alternative of cloning the best diagnostician 
and ensuring that the clones could instantly share information 
about individuals they were seeing. Nevertheless, it represents 
a benchmark against which we can compare other schemes 
that are perhaps superior to current approaches. 

In the next section, we discuss diagnostic expert systems, 
which are computer programs (algorithms) that embody the 
diagnostic knowledge and diagnostic skills of expert clinicians. 
Diagnostic expert systems are far less expensive than clini- 
cians, never tire, and we can clone them at will. They make it 
reasonable to imagine a biosurveillance system in which a 
highly competent diagnostician examines thousands of indi- 
viduals in a community every day with consistent diagnostic 
quality--reporting fevers, syndromes, and reportable diseases 
to a health department without fail and without delay. They 
make it possible to imagine a biosurveillance system in which 
the health department analyzes highly improved case data 
and communicates up-to-the-minute information about pat- 
terns of illness in the community back to the diagnosticians. 

3. DIAGNOSTIC EXPERT SYSTEMS 
Diagnostic expert systems are computer algorithms that auto- 
mate the cognitive process of medical (or veterinary) diagnosis. 

Many readers will be surprised to learn that researchers in the 
fields of artificial intelligence and medical informatics have 
been developing and fielding such systems since the 1960s. The 
first fielded system, developed by Dr. Homer  Warner in Salt 
Lake City, provided diagnostic assistance for children with 
congenital heart disease (Warner et al., 1961, Warner et al., 
1964). Congenital heart diseases are severe birth defects of the 
valves and structure of the heart. In the 1960s, the exact nature 
of heart malformations was very difficult to diagnose without 
invasive and risky angiographic procedures. Dr. E Timothy de 
Dombal developed a similar system for the differential diag- 
nosis of the acute abdomen, another high-stakes diagnostic 
problem. A surgeon must differentiate between conditions 
that require emergency surgery, such as appendicitis, and con- 
ditions, such as pancreatitis, for which surgery is relatively 
contraindicated (de Dombal et al., 1972, de Dombal et al., 
1974, Wilson et al., 1975, de Dombal, 1975, Wilson et al., 1977, 
de Dombal, 1984, Adams et al., 1986, McAdam et al., 1990, de 
Dombal, 1990, de Dombal et al., 1993, American College of 
Emergency Physicians, 1994). 

3.1. How Diagnostic Expert Systems Work: Data Collection 
We can perhaps best explain how a diagnostic expert system 
works by analogy to the process that a physician uses to diag- 
nose a patient. Like a physician, a diagnostic expert system 
begins by collecting information about the patient's illness-- 
symptoms, observations from physical examination, results 
from laboratory tests, risk factors for disease (e.g., travel to 
a foreign country) and pre-existing medical conditions (e.g., 
diabetes). We refer to this diagnostic information collectively 
as the findings. Of course, the computer usually does not inter- 
view the patient and (at present) never examines the patient. 
Rather, a physician interviews and examines the patient 
after which she or an assistant enters the findings into the 
program (e.g., Warner and Bouhaddou, 1994, London, 1998, 
Buchanan and Shortliffe, 1984, Miller et al., 1986, Shwe et al., 
1991, Heckerman et al., 1992). Increasingly, diagnostic expert 
systems acquire findings automatically from clinical infor- 
mation systems (Aronsky et al., 2001, Burnside et al., 2004, 
McDonald et al., 1991). There are also examples of diagnostic 
expert systems that interview patients directly to obtain 
their medical histories (Pynsent and Fairbank, 1989, Wald 
et al., 1995). 

3.2. How Diagnostic Expert Systems Work: Knowledge 
Representation 
Like the physician, the diagnostic expert system is a store- 
house of medical knowledge. A diagnostic expert system 
stores its medical knowledge in tables of diseases and their 
findings. There are typically a table of prevalences for each 
disease (e.g.,Table 13.1) and tables with every finding of every 
disease that the system knows about (e.g., Table 13.2). The 
latter tables usually represent the strength of association 
between diseases and findings as conditional probabilities. 
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TAB L E 13.1 Prior Probabilities and Prior Odds of FMD and MCD 

Disease P(Disease) Odds(Disease) 
FMD 0.001 0.001001 
MCD 0.001 0.001001 

, , 

Notes: The notation p(FMD) actually is shorthand for a probability of an 
event variable called FMD that can take the values true or false. So, p(FMD) 
actually stands for p(foot and mouth disease is present) or p(foot and 
mouth disease is not present). If we to write Table 13.1 out in its full form, it 
would have four rows corresponding to p(FMD is present) = 0.001, p(FMD is 
absent) = 0.999, p(MCD is present) = 0.001, p(MCD is absent) = 0.999. The laws 
of probability require that the sum of the probabilities for all the event variable 
outcomes will be equal to 1 (e.g., p[FMD is present] + p[FMD is absent] = 1, 
because it is a certainty that something is either present or it is absent), so 
knowledge engineers usually save space by only writing one row per disease. 
FMD, foot and mouth disease; MCD, mad cow disease. 

3.3. How Diagnostic Expert Systems Work: Differential 
Diagnosis 
Like the physician,  the compu te r  p r o g r a m  genera tes  a differ- 
ential  diagnosis for  the sick individual.  A different ial  d iagno-  
sis is a list of diseases that  are mos t  l ikely to account  for  the 
findings in a pat ient .  The diagnost ic  exper t  system typical ly 
creates  its different ial  diagnosis by comput ing  the  pos te r io r  
probabi l i ty  for  every  disease given the  findings. A disease 's  
pos te r ior  p robab i l i ty  is the  chance  tha t  the  pa t ien t  has the  dis- 
ease, given the  findings. 

Diagnost ic  exper t  systems use Bayes  rules to c o m p u t e  the 
differential  diagnosis. The re levance  of Bayes  rules to medica l  
diagnosis was first i n t roduced  theore t ica l ly  by Led l ey  and 
Lus ted  (1959) and  first used in a diagnost ic  exper t  system by 
H o m e r  Warne r  in 1962. Deve lope r s  of diagnost ic  exper t  sys- 
tems cont inue  to use the same me thods  as did H o m e r  Warner ,  
as well as m o r e  complex  Bayes ian  me thods  (but  the  original  
t echn ique  genera l ly  works  well). 

3.4. How Diagnostic Expert Systems Work: Question Generation 
A differential  diagnosis must  be " resolved" ;  tha t  is, the  dis- 
eases in the list must  be ru led  in or  ru led  out. L ike  an exper t  

physician,  the  diagnost ic  exper t  sys tem engages  in a cyclic 
process often referred to as "hypothesize and test" to resolve the 
differential  diagnosis. A diagnostic  exper t  system uses value- 
of - informat ion  calculat ions (Weinstein,  1980) to r e c o m m e n d  
to the physician user addi t ional  findings that  will resolve the 
differential  diagnosis efficiently. Value-of - in format ion  calcula- 
t ions ident i fy  those  findings, which, if k n o w n  to be p resen t  or  
absent ,  op t imal ly  discr iminate  a m o n g  the  diseases in the dif- 
ferent ia l  diagnosis, where  opt imal i ty  takes  into account  not  
only  the  probabi l i ty  of a diagnosis, but  cos t -benef i t  considera-  
tions, such as whe t he r  a diagnosis is t rea table .  

As  new findings b e c o m e  avai lable  (e i ther  as a resul t  of fol- 
lowing r e c o m m e n d a t i o n s  f rom the diagnost ic  exper t  system, 
consultants ,  or  the physician 's  own judgmen t ) ,  the physician 
user  can r e run  the diagnost ic  exper t  sys tem to r e c o m p u t e  the 
different ial  diagnosis. The  mos t  l ikely diagnosis  f rom the first 
run  may  b e c o m e  less or  more  l ikely as the  new in fo rma t ion  
acts to rule in or rule  out  each diagnosis. The  user  can r e run  
the p r o g r a m  w h e n e v e r  new findings abou t  the  individual  
become  avai lable during the  course of the  diagnost ic  work-up.  
The net  result  of this cyclic process is the diagnost ic  cer ta in ty  
abou t  the diagnoses in the differential  increases over  t ime (i.e., 
probabi l i t ies  of  the diagnoses  in the different ial  move  towards  
zero, indicat ing cer ta in ty  that  a disease is no t  present ,  or one, 
indicat ing cer ta in ty  that  a disease is p resen t )  (Figure 13.1). 

4. EXAMPLES OF DIAGNOSTIC EXPERT SYSTEMS: 
BOSSS AND ILIAD 
As indica ted  in the  previous  discussion, researchers  have  
d e v e l o p e d  many  diagnost ic  exper t  systems tha t  vary  in bo th  
the  under ly ing  t echno logy  as well  as the  doma i n  of applica-  
tion. In  this section, we briefly descr ibe two systems tha t  illus- 
t ra te  the  key  character is t ics  of probabi l i s t ic  d iagnost ic  exper t  
systems. These  s y s t e m s m l l i a d  and B O S S S m a r e  diagnost ic  

TAB L E 13.2 Conditional Probabilities for FMD and MCD 

Finding Disease p(FindinglDisease)a 
Drooling of saliva present 
Drooling of saliva present 
Drooling of saliva present 
Drooling of saliva present 
More than one animal affected 
More than one animal affected 
More than one animal affected 
More than one animal affected 

FMD present 0.95 (sensitivity) 
FMD absent 0.05 ( 1 -  specificity) 
MCD present 0.001 (sensitivity) 
MCD absent 0.05 ( 1 -  specificity) 
FMD present 0.95 (sensitivity) 
FMD absent 0.2 ( 1 -  specificity) 
MCD present 0.001 (sensitivity) 
MCD absent 0.2 (1 -specificity) 

aSimilar to the previous table, the knowledge engineers have left out half 
of the combinations because they can be derived from those listed listed 
by subtraction from 1. For example, p(drooling of saliva is not presentlFMD is 
present)= 1 - p(drooling of saliva is presentlFMD is present) = 1 - 0.95 = 0.05. 
FMD, foot and mouth disease; MCD, mad cow disease. 
Probabilities from BOVID, a cattle diagnostic program. Courtesy of 
Animal Information Management Pty. Ltd, Victoria, Australia, BOVID, 
a cattle diagnostic program. 

FIG U R E 13.1 The process of diagnosis. Like a physician, a diagnostic 
expert system analyzes patient data to generate a differential diagnosis. 
Based on the differential diagnosis and value of information calculations, 
the diagnostic expert system can suggest additional questions to ask the 
patient, additional physical observations to make about the patient, or 
additional tests to consider. A physician may accept the recommendations 
or not. As additional information about the patient's illness arrives over 
time (either as a result of tests or questions suggested by the computer; or 
by the physician; or simply the passage of time, this user can enter this new 
information and rerun the computer program to generate an updated dif- 
ferential diagnosis). This process of data collection and analysis can be 
repeated frequently until the diagnosis for a patient is established with suf- 
ficient certainty and diagnostic precision that further diagnostic evaluation 
is not necessary. 
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expert systems in the domains of diseases of humans and 
cattle, respectively. 

4.1. Iliad 

Iliad was developed by Homer R. Warner, Jr. and colleagues at 
the University of Utah in the 1980s (Warner, 1989, Sorenson 
et al., 1988, Cundick et al., 1989, Warner and Bouhaddou, 1994, 
Warner, 1990). Iliad is a stand-alone diagnostic expert system; 
that is, it requires a user (physician) to enter findings into the 
program. Iliad uses Bayes rules to compute a differential diag- 
nosis for the patient's illness. It uses value-of-information cal- 
culations to recommend additional tests and observations. 

Iliad performs differential diagnosis of human diseases in a 
variety of fields: internal medicine, sports medicine, pediatrics, 
dermatology, psychiatry, obstetrics/gynecology, urology, 
peripheral vascular diseases, and sleep disorders. Iliad covers 
more than 900 diseases and 1500 syndromes (which means 
that there are tables of information about diseases and findings 
for approximately 2400 diseases similar to those shown in 
Figures 13.1 and 13.2). Iliad computes a differential diagnosis for 
a patient and then displays the diseases and syndromes to the 
user in order of posterior probability as shown in Figure 13.2. 
If the user asks Iliad to suggest additional tests or questions to 
ask the patient, the program performs value-of-information 
calculations to suggest findings that would discriminate 
among the diseases in the differential diagnosis (Figure 13.3). 

Researchers have compared Iliad's diagnostic performance 
on real cases with that of expert physicians and found equiva- 
lent performance (Graber and VanScoy, 2003, Friedman et al., 

FIG U R E 1 3 , 3  Iliad screen requesting additional patient information. 
(From Warner, H. R., Jr. (1989). Iliad: moving medical decision-making 
into new frontiers. Methods Inform Med 28:370-2, with permission.) 

1999, Elstein et al., 1996, Murphy et al., 1996). Interestingly, 
Iliad did not achieve widespread acceptance in clinical practice 
because the entering of patient data was too time-consuming 
for busy clinicians and the program is no longer in use. 

4.2. BOSSS 

The Bovine Syndromic Surveillance System (BOSSS) is a web- 
based disease-reporting tool that incorporates a diagnostic 
expert system for diagnosis of diseases of cattle (Figure 13.4) 
(Shephard et al., 2005). BOSSS requires a user (veterinarian 
or cattle herd worker) to enter findings into the program 
(Figure 13.5). BOSSS uses Bayes rules to compute a 

Fill U R E 13.2 Consultation mode of Iliad showing the patient findings that the physician entered (lower right panel), and the differential diagnosis 
(panel on left) that Iliad generated from those findings. (Courtesy of LE Widman, http://www.informaticamedica.org.br/informaticamedica/nOlO5/widman.htm.) 
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F I G U R E 13.4 Log-in page of the web-based bovine syndromic surveillance system. 

differential diagnosis for the patient's illness. It also uses 
value-of-information calculations to recommend additional 
tests and observations. 

Shephard and colleagues developed BOSSS to meet a need 
to capture disease and syndrome observation data from field 
observations made by veterinarians, producers, and lay 
observers. These observations are important to population- 
based surveillance of cattle herds and to the business of cattle 
production,  but are largely unrecorded  and, therefore,  

unavailable for biosurveillance purposes. BOSSS encourages 
use by rewarding a user with diagnostic support in his efforts 
to determine the cause of illness or death in cattle. 

Like Iliad, BOSSS contains information on the prevalence 
of diseases (for approximately 1000 diseases of cattle). It also 
contains the sensitivity and specificity of each finding for each 
disease. (We discuss sensitivity and specificity in Sect. 5.1.) The 
development team compiled this information from veterinary 
literature and the opinions of veterinary experts. Like Iliad, it 

F I G U R E 13.5 A graphic user interface for entering findings of a sick animal. 
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FIG U R E 13.6 Differential diagnosis results ranked by posterior probabilities. 

uses Bayes rules to determine the posterior probability of 
each disease given the findings (Figure 13.6).The program pro- 
motes the capture of extra information on each case through 
the use of an interrogation module that presents questions to 
the user (Figure 13.7). These questions are key differentiating 
signs for the most likely diseases identified by the system that 
have not already been recorded by the user. Unlike Iliad, 
BOSSS has an explicit biosurveillance mission. The "syn- 
dromic-surveillance" component of BOSSS is illustrated by 
the mapping of cases shown in Figure 13.8. 

The developers of BOSSS, learning lessons from Iliad and 
other diagnostic expert systems about the importance of fitting 

F I G U R E 13.7 A graphic user interface for guided examination. 

into the workflow of busy clinicians, are developing a palm- 
computer version of BOSSS. This portable version will fit into 
the practice patterns of cattle veterinarians, who spend their 
days at different locations and most definitely do not work in 
an office setting. A training manual is available for download at 
http://www.ausvet, com.au/bosss/resources/B OSSS_ManuaLpdf 

5. KNOWLEDGE REPRESENTATION AND INFERENCE 
IN DIAGNOSTIC EXPERT SYSTEMS 

As previously discussed, a diagnostic expert system contains an 
internal store of facts about diseases, including (1) the preva- 
lence of each disease, (2) their findings, and (3) the statistical 
relationships between the findings and the diseases. We call 
this collection the knowledge base. In addition to the knowledge 
base, a diagnostic expert system contains an inference engine, 
which performs diagnostic reasoning (Figure 13.9). 

To demonstrate how a diagnostic expert system uses Bayes 
rules to compute a differential diagnosis, we created mini- 
BOSSS, a tiny version of BOSSS. In particular, mini-BOSSS 
has a knowledge base with only two diseases and two findings. 
The diseases are foot and mouth disease (FMD) and mad cow 
disease (MCD). The findings are drooling saliva and whether 
there is more than one cow in the herd with this symptom. 

5.1. Probabilistic Knowledge Bases 

We note that there are several kinds of expert systems, includ- 
ing the probabilistic diagnostic expert systems that we have 
been discussing, and rule-based expert systems. We discuss 
rule-based expert systems later in this chapter. 

A probabilistic knowledge base uses probabilities to repre- 
sent the prevalence of disease and the relationships between 
findings and diseases. A development team creates a knowledge 
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F I G U R E 13.8 A mapping tool that displays geographic locations of reported cases. 

base by a labor-intensive l i terature review supp lemented  by 
interviews with experts. Increasingly, developers  use large 
data sets collected by hospital information systems (especially 
for disease prevalence) to develop knowledge bases. The process 
that  developers  use to elicit knowledge  from experts and to 

F I G U R E 13.9 Components and process flow in an expert system. The 
inference engine uses both patient data and medical knowledge to com- 
pute a differential diagnosis and to generate suggestions for additional 
collection of data. The inference engine obtains data from an inbound 
data-acquisition interface and it outputs the differential diagnosis and 
suggestions for additional data through an outbound results interface. 
In a freestanding diagnostic expert system such as Iliad or BOSSS, both 
the data-acquisition and results interfaces are screens that a physician 
interacts with. In an embedded system like Antibiotic Assistant, the data- 
acquisition interface is with hospital information systems (and to some 
extent with the user, but only for selected items of information that the 
user wishes to provide). The results interface could also be with another 
computer system such as a point-of-care system, which would present the 
differential diagnosis and suggestions through its own screens. 

convert  information in the l i terature into a knowledge  base is 
referred to as knowledge  acquisition or knowledge  engineer-  
ing (Feigenbaum, 1977). 

5.1.1. Prior Probabilities (Disease Prevalence) 
The prior probabil i ty is the prevalence  of disease in the popu-  
lation. We represent  prior probabil i t ies using the nota t ion  
P(Disease) .  For example,  P ( F M D )  represents  the prior prob- 
ability of foot and mouth  disease. Table 13.1 shows the prior  
probabil i t ies of F M D  and M C D  that  we use in our example.  
Table 13.1 also shows the prior  odds of the diseases in mini- 
BOSSS. Odds  are a simple mathemat ica l  t ransform of proba-  
bilities, which are essentially equal  to probabili t ies when 
probabilities are less than 0.1. The reason that we show odds in 
Table 13.1 is that we use the odds-likelihood form of Bayes rules 
in our example.  We will define odds and the odds-l ikel ihood 
form of Bayes shortly. 

5.1.2. Conditional Probabilities 
A condit ional  probabil i ty is the chance of one event  occurring 
given the occurrence of ano ther  event.  In diagnostic exper t  
systems, we use condit ional probabili t ies to describe the prob- 
ability of seeing a certain finding (one event)  when a disease is 
present  (another  event).  If the condit ional probabili ty is high, 
it means  that  the particular finding is often associated with 
the disease. The mathemat ica l  nota t ion for the condit ional  
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probability of a finding, given a disease, is P(FindinglDisease). 
For example, P(drooling of saliva is presentIFMD is present) 
is the probability of observing drooling of saliva in a cow with 
foot and mouth disease. Table 13.2 lists the conditional proba- 
bilities for the findings and diseases in mini-BOSSS. 

If you are familiar with the concepts of sensitivity and speci- 
ficity (discussed in detail in Chapter 20), you may recognize 
that the conditional probability p(drooling of saliva is pres- 
entlFMD is present) is the sensitivity of the symptom drooling 
of saliva for the disease FMD. Similarly, p(drooling of saliva is 
absentIFMD is absent) is the specificity of drooling of saliva 
for FMD. Many readers will be quite familiar and comfortable 
with the concept of sensitivity and specificity of laboratory 
tests, but perhaps not with the idea of sensitivity and speci- 
ficity of other findings. In fact, symptoms, travel history, results 
of physical examination, and results of laboratory tests are all 
nothing more than observations that we make about an indi- 
vidual that may help us discriminate between individuals with 
disease and those without disease. It is possible to measure a 
sensitivity, specificity (or, alternatively, likelihood ratios) for 
any of these diagnostic observations. Consider the diseases 
presented in mini-BOSSS. Cattle affected with FMD develop 
very severe mouth vesicles and ulcers. This mouth pain results 
in excessive salivation; therefore, it causes drooling of saliva. 
Cattle affected with MCD do not develop mouth wounds; 
therefore, they are not likely to be observed drooling saliva. 
The conditional probabilities in Table 13.2 reflect the observa- 
tions above; P(drooling of salivalFMD) is equal to 0.95 and 
p(drooling of salivalMCD) is equal to 0.001. 

If our knowledge base included laboratory tests for FMD 
and MCD, these conditional probabilities would be the sen- 
sitivities and specificities of the laboratory tests for FMD 
and MCD. 

Researchers working in the field of diagnostic expert sys- 
tems sometimes refer to conditional probabilities of findings 
for given diseases as textbook knowledge because these prob- 
abilities are often available in textbooks of medicine (human 
or veterinary). For example, a chapter in a textbook of veteri- 
nary medicine on FMD will contain many statements about 
the frequency with which different findings occur in animals 
with FMD. These frequencies are basic facts, highly relevant to 
diagnosis. 

5.2. Probabilistic Inference Engines 

A probabilistic inference engine is an algorithm that com- 
putes a differential diagnosis for a sick individual. In particu- 
lar, it computes the posterior probability of each disease in its 
knowledge base, given the findings for a sick individual. In our 
example, the algorithm will compute the posterior probability 
p(FMD is presentldrooling of saliva is present, more than one 
animal is affected) and the posterior probability p(MCD is 
presentldrooling of saliva is present, more than one animal is 
affected). 

A probabilistic inference engine uses Bayes rules to compute 
the posterior probability from the prior probability (or prior 
odds) and the sensitivities and specificities of the observed find- 
ings. Once it has computed the posterior probability of every 
disease in its knowledge base, the inference engine outputs a 
differential diagnosis, that is, a list of all diseases in the knowl- 
edge base sorted from most probable to least probable. 

Bayes rules are sometimes referred to as Bayesian inver- 
sion because it inverts the conditional probability that a given 
finding will be observed in an individual with disease (text- 
book knowledge) into the probability that an individual has 
the disease, given that we observe a finding in that individual 
(diagnostic knowledge). That is, it inverts p(drooling of saliva 
is presentlFMD is present) to p(FMD is presentldrooling of 
saliva is present), which is exactly what a veterinarian needs to 
know. A veterinarian needs to know the likelihood that the 
cow has FMD or MCD, given the findings. 

A complete discussion of the various algorithms that a 
probabilistic inference engine can use to compute posterior 
probabilities using Bayes rules would fill a book, such as the 
excellent textbook by Richard Neapolitan (2003). For teach- 
ing purposes, we will use a simple form of Bayes rules called 
the odds-likelihood form of Bayes rules. This simplified form 
rests on an assumption that findings are independent, given 
the disease, which is why researchers called this formulation 
(and similar formulations) naive Bayes. This simple form of 
Bayes rules works surprisingly well in many diagnostic expert 
systems, including the systems developed by Homer Warner 
(congenital heart advisor) and Homer Warner Jr. (Iliad), as 
well as the BOSSS. We will use the odds-likelihood version of 
Bayes rules to illustrate how BOSSS computes a differential 
diagnosis for two diseases, given two findings about a sick cow. 

5.2.1. Definition of Odds 

For clarity and convenient reference, we here provide the 
definition of odds: 

odds= p ~_p (1) 

Odds are simply a rescaling of probability from a range 
of 0 to 1 to a range of 0 to infinity (which you can prove to 
yourself by substituting probabilities of zero and one into 
Eq. 1). For probabilities less than 0.1, probabilities and odds 
are roughly equal. A probability of 0.1, for example, equals 

an odds of 0.1 = 0.11. You can safely think "probability" 
1-0.1 

whenever we use the term "odds" and vice versa, as we will be 
dealing with small probabilities. Upon reading Appendix D, 
which contains the simplest probabilistic formulation of Bayes 
rules, you will see why we use the odds-likelihood form in this 
chapter--it  is simpler to learn Bayes rules using this form, and 
more illuminating. 
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5.2.2. Odds-Likelihood Form of Bayes Rule 
Equation 2 is the odds-likelihood form of Bayes rules when 
we have only one finding. 

Odds(DI f )  = LRf, o x Odds(D) (2) 

This equation says that if we know the prior odds Odds(D) 
(read prevalence) of a disease D and we observe one finding 
f of that disease in an individual, we can compute the poste- 
rior odds (read probability) by multiplying the prior odds 
times the likelihood ratio of that finding for that disease. 

Likelihood ratios are nothing more than an alternative way 
of expressing the sensitivity and specificity of a test or obser- 
vation for a disease. In fact, the likelihood ratio is defined in 
terms of sensitivities and specificities. The likelihood ratio 
positive (positive means that the finding drooling saliva is 
known to be present) of drooling saliva for the disease FMD 
follows: 

p(drooling saliva presentlFMD present) 
LRdrooling s a l i v a l F M D  = p(drooling saliva presentlFMD absent) (3) 

In Equation 3, the numerator  is sensitivity, and the denomina- 
tor is the false positive rate (equal to 1 m specificity). 

Note that the beauty of the likelihood ratio LR+drooling salivalFMD 
is that it is a very direct measure of how well drooling saliva 
discriminates between animals with FMD and animals without 
FMD. If drooling of saliva occurs much more frequently in ani- 
mals with FMD than animals without FMD, LR+drooling salivalFMD 
will be a large number. For a finding that is pathognomic 
(meaning that the finding in itself is sufficient to diagnose a 
disease), the denominator  will be zero and the LR + will be 
infinity, meaning that no matter how small the prior odds are, 
the posterior odds will be infinity (which converts to a proba- 
bility of 1.0, and means that the individual has the disease with 
certainty). If, on the other hand, drooling of saliva occurs with 
equal frequency in animals with FMD and animals without 
FMD, the numerator and the denominator will be equal and the 
LR+drooling salivalFMD will be equal to one, which when multiplied 
times the prior odds of FMD will result in a posterior odds 
that is equal to the prior odds. This result makes sense. If a 
finding cannot discriminate between animals with FMD and 
without FMD, it contains no diagnostic information for the 
disease FMD, and should not increase or decrease our belief 
that the animal has FMD. 

The likelihood ratio negative (negative means that the find- 
ing drooling saliva is known to be absent) follows: 

- p(drooling saliva absentlFMD present) 
LRdr~176 salivalFMD = p(drooling saliva absentlFMD absent) (4) 

In Eq. 4, the numerator  is the false negative rate (equal to 
1 - sensitivity), and the denominator is specificity. In medicine, 

the absence of a finding that we expect to see if the patient 
actually has the disease in question is useful information. 
There is even a term for itmsignificant negative finding. A 
significant negative finding, such as a negative laboratory 
test, helps to rule out a diagnosis. A likelihood ratio negative 
is always a number that is less than one (but greater or equal 
to zero) for findings that we expect to see more often in 
individuals with the disease than in individuals without the 
disease. 

Equa t ion  2 expresses the essence of Bayes rules. 
Diagnosticians use Bayes rules to update their prior belief 
in a diagnosis in light of new information. When a diagnosti- 
cian has no information whatsoever about an individual, her 
belief that the individual has a disease should be the preva- 
lence of the disease. If she makes an observation (whether 
positive or negative), she should update her belief in the diag- 
nosis by multiplying the likelihood ratio for the test or obser- 
vation for that disease times the prior odds of the disease 
(think "prevalence"). 

If we know nothing about a cow whatsoever, then our belief 
that the cow has FMD is simply the prevalence of FMD. If we 
subsequently observe that the cow is drooling saliva, Bayes 
rules instructs us to update our belief that the cow has FMD 
using the information in Table 13.1 and 13.2 using the follow- 
ing calculation: 

Odds(FMD I drooling saliva) 

= LRSrooling salivalFMD X Odds(FMD) 

_ p(drooling salivaIFMD present) 
m X ~  

p(drooling saliva lFMD absent) 
0.95 0.001 
0.05 0.999 

= 19 x 0.001 
=0.019 

0.001 
1-0.001 (5) 

(If we observe that the cow is not drooling saliva, we would 
use the likelihood ratio negative in Bayes rules.) 

If we subsequently observe that a second cow is sick, we 
can apply Bayes rules a second time. In effect, we are treat- 
ing the posterior odds from the prior calculation as the new 
prior odds: 

Odds(FMD I drooling saliva, more than one animal affected) 

= LR+more t h a n  o n e  a n i m a l  a f f e c t e d l F M D  )< Odds(FMDI drooling saliva) 
p(more than one animal affected l FMD present) 

= x 0.0019 
p(more than one animal affected l FMD absent) 
0.95 = ~ •  
0.20 

(6) 

= 4.75 x 0.019 
= 0.09 



208 HANDBOOK OF BIOSURVEILLANCE 

In general, if we have N diagnostic facts about a cow (or 
person), the odds-likelihood form of Bayes rules has the 
following form: 

Odds(Dlfl,f 2 .... ,fn)= LRflID xLRf21D x. . .xLRql D xOdds(D) (7) 

The result of Eq. 6, Odds(FMDldrool ing saliva, more than 
one animal affected) + 0.09, is the odds (think probability) 
that the cow has FMD given that we have observed drooling 
of saliva in this cow and at least one other cow. The probabilis- 
tic inference engine would repeat  the same calculation for the 
disease MCD, using the prior odds of MCD and the likelihood 
ratios for the two findings for MCD. The result of this calcula- 
tion (not shown) is 9.8 x 10 -8 . Cows with MCD stagger, but 
rarely drool saliva. 

5.2.3. Differential Diagnosis 
Table 13.3 shows the differential diagnosis that our extremely 
simple diagnostic expert  system would show to a user. The two 
diseases are sorted in order of posterior odds. Note that we 
converted the posterior odds back to posterior probabilities 

odds 
using the formula P = 1 + odds '  which we obtained by solving 

Eq. 2 forp .  
Note that the posterior odds (and probabilities) in this 

example are very low. The low posterior odds are also partly due 
to the low prior prevalence of FMD and MCD that we arbi- 
trarily assign (note that zero prior probability is not accept- 
able for the likelihood ratio computation).  Countries that are 
currently free from these diseases or within the final stage of 
a disease eradication program for the diseases use low prior 
prevalence for exotic diseases (e.g., FMD and MCD). The 
LR+s for these findings for the disease FMD are only 19 and 
4.75, respectively. If we had a third finding, such as blisters on 
feet, the LR + for this finding would be a third multiplier in the 
equation, possibly increasing the posterior odds for one or 
both diagnoses. If we had a positive result from a highly sensi- 
tive and specific test for FMD (very high LR+), the posterior 
odds for FMD might be quite high. The key question for bio- 
surveillance systems is at what level of certainty of a diagnosis 
in a single individual or a set of individuals different response 
actions are warranted. The answer to this question depends 
on treatability and other  cost-benefit considerations that we 
discuss in Part V of this book. 

5.3. Computing Posterior Probabilities Using 
Bayesian Networks 
Readers should be aware that there are other forms of Bayes 
rules that do not rest on an assumption of conditional inde- 
pendence, given a diagnosis. A developer of a probabilistic 
expert system may choose to use these alternative forms 
to improve the diagnostic accuracy of a system. Although 
mathematically too complex to cover in a brief introductory 
tutorial to Bayesian inference, the differences among these 
more complex forms of Bayes rules are simple to explain 
using a graphical representat ion called a Bayesian network 
(Figure 13.10). A Bayesian network comprises a set of nodes 
and arcs where each node represents a conditional probability 
distribution for the variable that the node represents, condi- 
tioned on its parents (the nodes from which directed arcs con- 
nect to the node). For the benefit of statisticians, a Bayesian 
network is a (compact) factorization of the complete joint 
probability distribution over all variables represented by the 
nodes (Neapolitan, 2003). The arcs in a Bayesian network rep- 
resent the statistical dependence and independence relation- 
ships among the variables in the model. Figure 13.10 is a 
Bayesian network diagram for our mini-BOSSS diagnostic 
expert system. 

The fact that there is no arc between drooling saliva and 
more than one animal affected indicates that the probability of 
observing drooling of saliva in a cow, once we know whether 
the cow has FMD or MCD, is not affected by knowing that 
other animals have these symptoms and vice versa (knowing 
that other animals have drooling once we know that this cow 
has FMD does not change the probability that this animal is 
drooling). If drooling saliva and more than one animal affected 
were not independent,  given that we know that the cow has 
FMD, then we could add an arc between them. 

Figure 13.11 shows a portion of the Bayesian network that 
underlies the Pathfinder system, which is a diagnostic expert 
system for pathologists who are interpreting biopsies of lymph 

TAB t E 13.3 Differential Diagnosis for Cow Drooling Saliva in a Herd 
with At Least One Other Cow Drooling Saliva 

Posterior Odds Posterior Probability 
FMD 0.09 0.083 
MCD 9.8 x 10 -8 -9.8 x 10 -8 

FMD, foot and mouth disease; MCD, mad cow disease. F I G U R E 13.10 A Bayesian network of mini-BOSSS. 
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F I G U R E 13.11 A portion of the Bayesian network in the Pathfinder expert system for pathology. (From Stuart Turner, lecture notes, 2001, with 
permission.) 

nodes (Heckerman et al., 1992). The arcs between findings 
indicate that they are not independent, given diagnoses. Note 
that the Pathfinder network is a more realistic illustration of 
the size and complexity of the models used in diagnostic 
expert systems. In chapter 18, we discuss Bayesian networks 
in the context of Bayesian biosurveillance. That chapter 
discusses a really big model. 

6. RULE-BASED EXPERT SYSTEMS 

Rule-based expert systems may also find application in bio- 
surveillance. A rule-based expert system (also known as a 
deterministic expert system) encodes medical knowledge in 
a set of if-then rules. Rule-based expert systems are simpler, 
conceptually, than probabilistic systems, b u t  they are only 
appropriate for problems that do not involve reasoning under 
uncertainty. A rule-based formalism is appropriate when diag- 
nostic or other knowledge can be represented as Boolean 
statements (e.g.,if A and B then C).A hospital or biosurveillance 
organization can use a rule-based expert system to automate 
case detection when the findings are diagnostically precise (e.g., 
when case-detection is based on diagnostically precise data 
such as a positive tuberculosis culture [Miller et al., 1997]). 

Figure 13.12 is an anthrax case detection rule from the 
Clinical Event Monitor, an embedded rule-based expert system 
developed by several of the authors (Wagner et al., 1997). 

This rule is in a format that can be interpreted by a rule-based 
inference engine called CLIPS (National Aeronautics and 
Space Administration). The rule contains variables that repre- 
sent findings of the disease anthrax. The part of the rule 
before the _> symbol is the IF part and the part after the 
symbol is the THEN part. If all the conditions defined in the 
IF segment are true--wide mediastinum is found in a chest 
radiograph report and gram positive rods are reported in lab- 
oratory results within 10 days of each othermthen the rule 
will conclude that there is a possible anthrax case. A typical 
rule-based expert system contains hundreds of such rules. 

7. EMBEDDED EXPERT SYSTEMS 

In medical applications, the requirement for manual input of 
data by busy clinicians is a significant barrier to the use of diag- 
nostic expert systems (Graber and VanScoy, 2003). In the 1970s, 
several research groups took this barrier seriously. They began 
to explore methods to embed diagnostic expert systemsm 
providing diagnostic support and, more generally, decision 
support--to clinicians without asking them to enter patient 
findings. Their research demonstrated that it is possible to 
obtain needed findings directly from existing clinical informa- 
tion systems (Evans, 1991, Gardner et al., 1999, Rind et al., 1993, 
Rind et al., 1995, McDonald, 1976c, McDonald et al., 1992a, 
McDonald, 1976b, McDonald et al., 1992b, Overhage et al., 1996, 
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(defrule detect anthrax 
(event Radiologyrepoa) 
(report (patient, id ?patient, id)) 
(freete~ ?freetext) 
(test (str-index "wide mediasfinum" (lowcase ?freetex~))) 

=3> 
(if(> (cCheckC~ams ?patientid "GPR" I 0) - 1) then 

(event ANTHRAX) 
(printout t "Found gram positive rods and widened mediastinum in chest x-ray" 

crlf) 
(printout t . . . . . . . .  Detected a possible ANTHRAX case . . . . .  " crlf) 

) 

F ! G U R E 1 3 . 1 2  An anthrax-case detection rule in the Clinical Event Monitor, a rule-based expert system. The rule is written in CLIPS, a language and 
expert system shell developed by the National Aeronautics and Space Administration. 

Wagner et al., 1997) and from alterations in work flow, such as 
replacing unstructured paper records with computer-generated 
encounter forms (from which findings can be optically scanned 
or manually extracted) (McDonald, 1976a, McDonald et al., 
1992a, McDonald, 1976b, McDonald et al., 1992b). The 
research also demonstrated how diagnostic expert systems 
can be embedded in clinical information systems, such as 
physician order entry systems (Tierney et al., 1993, Dexter 
et al., 2001) and electronic medical records (Gardner et al., 1999, 
Warner et al., 1997). Several of these systems functioned in the 
domain of hospital infection control (Hripcsak et al., 1997, 
Hripcsak et al., 1999, Kahn et al., 1996a, Kahn et al., 1996b, 
Kahn et al., 1993). 

The secret to successful deployment of a diagnostic or other 
expert system in medicine is designing a system in which the 
benefits to clinicians (from decision support and increases in 
efficiency) outweigh any additional effort required by clini- 
cians to enter data by a considerable margin. 

8. DIAGNOSTIC EXPERT SYSTEMS FOR BIOSURVEILLANCE 

In addition to the diagnostic expert systems for hospital infec- 
tion control just outlined, there are two other projects devel- 
oping systems in the domain of biosurveillance. Shannon and 
colleagues at the Children's Hospital in Boston are developing 
a web-based diagnostic expert system to assist emergency room 
clinicians with diagnosis of approximately 20 diseases caused 
by biological agents known to have been weaponized or that 
are otherwise of concern as potential bioterrorist threats. The 
system has developed and evaluated on-line educational mod- 
ules about the biological agents (Chung et al., 2004), and is 
intended to support the reporting of cases to local, state, and 
federal agencies (Shannon et al., 2002). Similar to stand-alone 

expert systems, the web-based tool requires clinicians to man- 
ually enter patient information. 

The National Library of Medicine has developed a system 
called WISER (Wireless Information System for Emergency 
Responders) to assist first responders when they arrive at a 
hazardous material (Hazmat) incident, such as a chemical spill 
(http://wiser.nlm.nih.gov/). WISER operates on a personal 
digital assistant (PDA) and can send and receive data with a 
central location and other PDAs running the WISER program 
through a wireless network. WISER contains a diagnostic 
expert system that provides assistance in identification of 
an unknown substance and, once the substance is identified, 
provides guidance on actions to save lives and protect the 
environment. The WISER framework could be expanded to 
include a diagnostic expert system for the analysis of patient 
or animal findings. 

9. PERFECTING CASE AND OUTBREAK DETECTION 

Recall that the best case detection system imaginable would 
be one in which every individual in a community is examined 
every morning by the best diagnostician in the world. Since 
she would be examining everyone every day, she would be 
aware of patterns of illness in a community and this awareness 
would appropriately influence her diagnostic thinking (and 
treatment) of individual patients. 3 This diagnostician would 
also never fail to report immediately each fever, early syn- 
dromic presentation, or reportable disease to governmental 
public health. 

Diagnostic expert systems are the key to building such a 
system. The research we reviewed in this chapter has already 
solved most, if not all, of the technical problems. What is 
needed is the will to create such a system. 

3 Physicians are taught (and reminded incessantly) "when you hear hoof beats, don't think of zebras". This adage is an informal 
statement that when the evidence available about a particular patient supports equally a diagnosis of either influenza or SARS 
(e.g., the patient has constitutional symptoms and no history of exposure to SARS), they should conclude that the diagnosis of 
influenza is far more likely than SARS. 
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If and when diagnostic expert systems are embedded in the 
clinical information systems of every hospital (animal and 
human), long-term care facility, clinic, and laboratory in 
a region, they will be able to notify a health department  or 
other biosurveillance organization of every fever, syndromic 
presentation, and reportable disease in individuals receiving 
medical or veterinary care. If diagnostic expert systems are 
made available to the public or to selected high-risk popula- 
tions (e.g., postal employees or patients with preexisting con- 
ditions such as asthma or diabetes), case finding would be 
extended to an even larger fraction of the population, approx- 
imating the "every-patient-every-day" capabilities of an ideal 
case detection system. 

If a biosurveillance system located in a region's health 
department were to receive the differential diagnosis for each 
individual in the region in real time (anonymously, of course, 
and perhaps selectively based on diseases and probability 
thresholds), it could compute the current incidences of 

these conditions. It could monitor the region for increases in 
incidence of findings, syndromes, and diseases of concern. 

Note that the outputs of a probabilistic diagnostic expert 
system are posterior probabilities of diseases for one patient, 
so the central monitoring would be monitoring of the sums of 
the probabilities for all reported patients. Figure 13.13 illus- 
trates this summation. It plots the daily sums of the posterior 
probabilities of "flu-like" illness of all patients seen in emer- 
gency departments on each day. If the diagnostic expert systems 
are well calibrated, the sums of the posterior probabilities 
should equal the actual number  of patients with the disease in 
the population being evaluated by the system. 

Finally, if the biosurveillance system would then communi- 
cate the current fever, syndrome, and disease incidences back 
to the diagnostic expert systems being used by clinicians and 
citizens, we would realize the "diagnosticians-are-aware-of- 
patterns-of-illness-in-the-community" capability of an ideal 
case detection system. 

F I 6 O R E 13.13 Daily sum of syndrome probabilities produced by SyCO 2. SyCO 2 computes the posterior probability that a patient has a flu-like illness 
from his chief complaint. (From Espino, J., Dara, J., Dowling J, et al. (2005). SyCo2: A Bayesian Machine Learning Method for Extracting Symptoms from 
Chief Complaints And Combining Them Using Probabilistic Case Definitions. Pittsburgh, PA: Center for Biomedical Informatics, University of Pittsburgh, 
with permission.) An outbreak-detection system would sum the posterior probabilities of flu-like illness from all patients seen in 24-hour periods to form 
a time series of expected daily counts of patients with respiratory illness. Readers familiar with Bayesian statistics will recognize this sum as the expecta- 
tion for the number of individuals with a given diagnosis. 
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This ideal approach underlies the Bayesian approach 
to outbreak detection described in Chapter  18 Bayesian 
Methods for Diagnosing Outbreaks. PANDA (Population-wide 
ANomaly Detection and Assessment)rathe research system 
described in that chapter--actually merges many individual 
diagnostic Bayesian networks into a very large network that 
also includes a subnetwork that draws inferences about the 
presence or absence of an outbreak. PANDA is pursuing this 
idea on a citywide scale. Conceptually, a PANDA network com- 
prises millions of person-specific diagnostic Bayesian networks, 
each of whose probabilities of disease (e.g., anthrax) are being 
influenced by population-level observations (e.g., aggregate 
sales of over-the-counter medications) and population-level 
inferences (e.g., the likelihood that other individuals who may 
have inhalational anthrax are present in a population). PANDA 
also includes a prior probability distribution over outbreak dis- 
eases (e.g, the prior probability of inhalational anthrax, based 
on the national terror alert level). By integrating person-spe- 
cific diagnostic submodels into a population-wide super model, 
approaches like PANDA are able to make inferences about the 
probability of a disease outbreak in the population as a whole, 
as well as the probability of disease in individual people (or 
subgroups of people) within the population. 

10. COMPUTER-INTERPRETABLE CASE DEFINITIONS 

An ideal case detection system would also support case finding 
during outbreak investigations. Case definitions (described in 
Chapter 3) are the basis for case-control studies and investi- 
gations of emerging diseases. A computer-interpretable case def- 
inition is a prerequisite for providing computer-support to case 

finding during investigations. As discussed in Chapter 3, case def- 
initions are Boolean (logical) statement of findings (Figure 13.14). 

Case definitions, as currently written, are not well suited for 
automation. The authors of the SARS case definition intended 
it for use by physicians and epidemiologists, not computers. 
The clause "findings of lower respiratory illness (e.g., cough, 
shortness of breath, difficulty breathing)" does not enumerate 
all findings of lower respiratory illness. A computer requires 
a complete enumerat ion of all findings that it should count as 
evidence of lower respiratory illness (e.g., cough, shortness of 
breath, difficulty breathing, wheezing, cyanosis, tachypnea, 
dullness to percussion, fremitus, whispered pectoriloquy, rales, 
and rhonchi). The findings would also have to be described 
more precisely. For example, a physician or an epidemiologist 
would not count chronic cough or cough associated with 
asthma as a finding of lower respiratory illness when applying 
this case definition, but a computer  would (unless told other- 
wise). Note that it is difficult, if not impossible, to enumerate 
all of the possible exceptions to the counting of a finding 
as evidence of a disease. This difficulty is the reason that 
diagnostic expert systems in medicine are probabilistic. They 
quantify the number  of exceptions to a categorical statement 
about the relationship between findings and disease using 
probabilities. For example, 70% of patients with cough have 
an acute lower respiratory illness, but 30% (the exceptions) have 
some other cause. This observation suggests that computer- 
interpretable case definitions will employ Bayesian networks, 
as illustrated by Figure 13.15. 

For readers interested in the topic of knowledge represen- 
tations for computer-interpretable case definitions, there is 

Case definition for confirmed case of SARS-CoV disease: (early OR mild-to- 
moderate OR severe illness) AND laboratory confirmation 

Definitions of Terms used in Case Definition: 

Early illness: two or more of the following findings: fever (might be subjective), 
chills, rigors, myalgia, headache, diarrhea, sore throat, rhinorrhea. 

Mild-to-moderate respiratory illness: Temperature of>100.4~ F (>38 ~ C) AND one 
or more findings of lower respiratoIT illness (e.g., cough, shortness of breath, 
difficulty breathing) 

Severe illness* 

Laboratory confirmation: serum antibody to SARS-CoV by a test validated by CDC 
(e.g., enzyme immunoassay [EIA]), OR isolation in cell culture of SARS-CoV from a 
clinical specimen, OR S ARS-CoV RNA by a reverse-transcripti~176 chain 
reaction (RT-PCR) test validated by CDC and with subsequent confirmation in a 
reference laboratory (e.g., CDC). 

FIGU RE 13.14 Excerpt from the CDC case definition for confirmed SARS-CoV disease (http://www.cdc.gov/ncidod/sars/guidance/b/appl.htm). Only 
the definitions relevant for classifying a patient as a probable case of SARS CoV are shown. (We omitted the definition of severe respiratory illness 
for clarity. The illness clause in the case definition for confirmed case of SARS-CoV disease is a disjunction, and all patients that satisfy the definitional 
criteria for severe disease also satisfy the criteria for mild to moderate respiratory illness. 
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F I G U R E 13.15 A Bayesian network "case definition" for anthrax. The 
network computes the posterior probability for a patient addmitted to the 
emergency department. Cxr order, electronic record of an order for a chest 
radiograph; wide med, chest radiograph finding of wide mediastinum; 
Gpr, gram-positive rods in blood or cerebrospinal fluid (CSF) smear; 
micro order, order for a blood or CSF culture. (From Espino J., Tsui, E-C. 
(2000). A Bayesian network for detecting inhalational anthrax outbreaks. 
Pittsburgh, PA: Center for Biomedical Informatics, University of 
Pittsburgh, with permission.) 

literature from research on computer-interpretable patient 
care guidelines that is relevant to this topic (Shiffman et al., 
2004, Tu and Musen, 2001, Peleg et al., 2003, Boxwala et al., 
2004, Wang et al., 2003, Seyfang et al., 2002, Fox et al., 1997, 
Terenziani et al., 2003, de Clercq et al., 2004, Johnson et al., 
2001, Ciccarese et al., 2004, Parker et al., 2004). 

11. SUMMARY 
Despite the unfamiliarity of most readers with diagnostic 
expert systems, we chose to begin our discussion of algorithms 
for biosurveillance with this topic because case detection pro- 
vides the case data needed for outbreak detection. Outbreak 
detection cannot function without case detection (unless the 
surveillance data are aggregated data, such as daily sales of 
over-the-counter thermometers).  

Diagnostic expert systems have the potential to improve 
the quality and completeness of the case data available to ana- 
lytic methods designed to detect and characterize outbreaks, 
which we discuss in the following chapters. They can profoundly 
improve the reporting of syndromes. Improvements in case 
detection will translate directly into improvements in the ear- 
liness of outbreak detection and characterization. 

McDonald did not conclude in his seminal paper that the 
solution to the non-perfectibility of man was to admit only 
women to medical schools. Rather, he stated, "Thus, I con- 
clude that though the individual physician is not perfectible, 
the system of care is, and that the computer will play a major 
part in the perfection of future care systems." His poin tmthat  
technology can be used to create a system (involving both 

humans and computers) that can then be perfected--also 
seems to apply to biosurveillance systems. 

12. ADDITIONAL RESOURCES 

12.1. Expert Systems in Plant Pathology 
For readers who are interested in diagnostic expert systems 
for diagnosing plant diseases, Travis and Latin (1991) briefly 
reviewed several diagnostic expert systems in plant pathology, 
including PLANT/ed,  Apple Pest and Disease Diagnosis, 
CALEX/Peaches, Muskmelon disorder management  system, 
and Penn State Apple Orchard Consultant, in "Development,  
Implementation, and Adoption of Expert  Systems in Plant 
Pathology." 
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