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Objective. The children with Henoch-Schönlein purpura (HSP) may suffer from renal insufficiency, which seriously affects the life
and health of the children. This study aims to construct a prediction model of Henoch-Schönlein purpura nephritis (HSPN).
Methods. A total of 240 children with HSP treated in dermatology and pediatrics in our hospital were selected. The general
information, patients’ clinical symptoms, and laboratory examination indicators were collected for feature selection, and the
XGBoost algorithm prediction model was built. Results. According to the input feature indexes, the top ten crucial feature
indicators output by the XGBoost model were urine N-acetyl-β-D-aminoglucosidase, urinary retinol-binding protein, IgA, age,
recurrence of purpura, purpura area, abdominal pain, 24-h urinary protein quantification, percentage of neutrophils, and
serum albumin. The areas under the curves of the training set (0.895, 95% CI: 0.827-0.963) and test set (0.870, 95% CI: 0.799-
0.941) models were similar. Conclusion. The prediction model based on XGBoost is used to predict HSP renal damage based
on clinical data of children, which can reduce the harm caused by invasive examination for patients.

1. Introduction

Henoch-Schönlein purpura (HSP) is one of the most com-
mon systemic vasculitides in childhood, a common vascu-
lar allergic disease. It mainly affects the skin, kidneys,
intestines, joints, and other body parts [1]. In recent years,
the number of children with HSP has increased signifi-
cantly, and some studies show that the annual incidence
of HSP is 160-191 cases per million children [2]. HSP
points to the body receiving the stimulation of all kinds
of sensitizing material, bringing about capillary brittleness
and permeability enhancement inside the body, and caus-
ing inflammation or bleeding in the place such as skin,
joints, and bowel [1, 3]. Clinical features of Henoch-
Schönlein purpura nephritis (HSPN) were the fibrosis in
patients with renal fibrosis [4]. HSPN is the most common
secondary glomerular disease in children [5, 6].

Epidemiology suggests that HSP patients develop HSPN
at a rate as high as 30% to 50% [7]. Although most HSPN
patients have a good prognosis, 1%-3% of the children still
suffer from renal insufficiency to end-stage renal failure,
which seriously affects the life and health of the children
[8]. Therefore, an early and accurate diagnosis of HSPN is
crucial for prognosis and individualized treatment. Kidney
biopsy is the gold standard for the diagnosis of HSPN. Still,
this method is invasive and difficult for parents and children
to accept, leading to some patients with severe kidney dis-
ease at the time of diagnosis [9].

Machine learning can use clinical data to build a predic-
tion model and verify its predictive efficiency [10–12]. In
recent years, the application in the medical field has been
increasing gradually [13–16]. To our knowledge, there are
few studies on machine learning to predict HSPN. There-
fore, this paper mainly constructed a prediction model based
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on machine learning to predict the occurrence of renal dam-
age in HSP through clinical data, providing a new method
for the efficient diagnosis of HSPN in children diagnosed
with HSP for the first time in dermatology.

2. Methods

2.1. General Information. A total of 240 children with HSP
treated in dermatology and pediatrics in our hospital from
October 2019 to December 2021 were selected, of which
153 were complicated with HSPN. According to the Euro-
pean Union Against Rheumatism [17], HSP is diagnosed
as a palpable rash (essential) with at least one of four clinical
symptoms: Abdominal pain, arthritis or arthralgia, renal
involvement, and histopathological findings suggest IgA
deposition. Renal impairment was predominantly clinical:
abnormalities in hematuria, proteinuria, and renal function,
such as increased serum creatinine (SCr) and decreased esti-
mated glomerular filtration rate (eGFR), within 6 months of
the course of HSP. The calculation formula of eGFR is as fol-
lows: ≤16 years old using Schwartz formula [18]; CKD-EPI
formula was used when >16 years old [19]. When the eGFR
<90ml/(min·1.73m2), it is considered as renal insufficiency.

2.2. Predicted Index. The indicators tested in this study
mainly include general information, clinical symptoms,
and laboratory indicators. General information includes
sex, age, and season of onset. Clinical signs and symptoms
include joint swelling, abdominal pain and gastrointestinal
bleeding, purpura of the upper body skin, and recurrence
of purpura. Laboratory indicators include blood routine
tests, urine routine tests, and biochemical tests.

2.3. Machine Learning. The machine learning used in this
study is the integrated machine learning XGBoost algorithm
based on a classification and regression tree [20]. XGBoost
algorithm has high scalability and high computing speed.
Under the same environment and conditions, the XGBoost
algorithm is more than 10 times faster than similar algo-
rithms [21]. The specific detection process is shown in
Figure 1.

XGBoost is an ensemble learning algorithm based on
gradient boosting. Its principle is to achieve an accurate clas-
sification effect through the iterative calculation of a weak
classifier [22]. It is an additive expression consisting of K
base models:

byi = 〠
k

t=1
f t xið Þ, ð1Þ

where f t is k basis models and byi is the predicted value of the
ith sample.

The model’s deviation and variance jointly determine
the model’s prediction accuracy, and the variation of the
model is embodied as the loss function. Therefore, the objec-
tive function is composed of the model’s loss function and
the regular term Ω that inhibits the complexity of the model.
Thus, the objective function can be expressed as

obj = 〠
n

i=1
l yi, byi t
� �

+ 〠
k

t=1
Ω f tð Þ: ð2Þ

According to the calculation method of the Taylor
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Figure 1: Flowchart of XGBoost detection.
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Figure 2: Modeling flowchart of XGBoost algorithm.
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formula, the above objective function can be written as

obj tð Þ = 〠
n

i=1
l yi, byi t
� �

+ 〠
k

t=1
Ω f tð Þ = 〠

n

i=1
l yi, ŷt−1i + f t xið Þ� �

+ 〠
t

i=1
Ω f ið Þ:

ð3Þ

The CRT is defined as f t =wqðxÞ, x is a certain text, q (x)
represents the leaf node where the sample is located, and wq

represents the value of the leaf node w. Therefore, wqðxÞ rep-

resents the value of w of each sample (i.e., the predicted
value). The regular term of the objective function can be
defined as

Ω f tð Þ = λT + 1
2 λ〠

T

j=1
w2

j : ð4Þ

Gradient enhancement generates a series of CRTs in the
training process. The corresponding value of the leaf node of
the CRT is an actual score, and the cumulative score of each
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Figure 3: Comparison of clinical data between the training set and test set. There were no significant differences between training set and
test set in gender (a), painful swelling of joint (b), season of onset (c), abdominal pain (d), purpura of upper body (e), and HSPN (f).
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CRT is the final predicted value. We test the accuracy of the
algorithm using the 5-fold crossover method. The data set
was divided into five parts, 4 of which were taken as the
training set and the other as the test set. The accuracy of
each experiment was obtained, and the average accuracy of
the 5 results was taken as the estimation of the algorithm’s
accuracy. The specific modeling process is shown in
Figure 2.

2.4. Statistical Analysis. Counting data were counted by χ2

test. Measurement data were expressed by mean ± standard
deviation and t test was adopted. P < 0:05 means the differ-
ence is statistically significant.

3. Results

3.1. General Information. Among the 240 children with HSP,
there were 126 males and 114 females. The onset age was 2-
16 years old, with an average age of 9:03 ± 2:68 years old.

Among them, 62 cases (25.8%) occurred in winter, 102 cases
(42.5%) had joint swelling and pain, 128 cases (53.3%) had
abdominal pain and gastrointestinal bleeding, and 38 cases
(15.8%) had upper body skin purpura. There were 153 cases
of HSPN children and 87 cases without renal damage. There
was no significant difference between the training group and
the test group in gender, onset season, joint swelling and
pain, abdominal pain, purpura of the upper body, and HSPN
(Figure 3, P > 0:05).

3.2. Selection of Predictive Features. According to the statisti-
cal analysis results, gender is an insignificant factor in pre-
dicting the occurrence of HSPN in general information.
The indicators of clinical symptoms are all statistically sig-
nificant (P < 0:05) (Table 1).

The correlation of HSPN occurrence was predicted
according to laboratory indexes such as biochemical tests,
among which there was no significant difference in HSPN
in platelet count, C-reactive protein, total cholesterol, IgM,
and D-dimer (P > 0:05) (Table 2). However, the other
indexes including white cell count, percentage of neutro-
phils, percentage of eosinophil, serum albumin, serum creat-
inine, IgG, IgA, IgE, hospitalization time, rinary retinol-
binding protein (RBP), urine N-acetyl-β-D-aminoglucosi-
dase (NAG), and 24-h urinary protein quantification were
significantly correlated with HSPN (P < 0:05).

3.3. Prediction Results of XGBoost Algorithm Model. The
XGBoost model automatically calculates features. According
to the input feature indexes, the top ten important feature
indicators output by the XGBoost model are as follows
(Figure 4): NAG, RBP, IgA, age, recurrence of purpura, pur-
pura area, abdominal pain, 24-h urinary protein quantifica-
tion, percentage of neutrophils, and serum albumin.

3.4. Performance Evaluation of Model Prediction. In the
training set, the area under the curve of the XGBoost model
was 0.895 (95% CI: 0.827-0.963). In the test set, the area
under the curve of the model was 0.870 (95% CI: 0.799-
0.941). The XGBoost prediction model has good sensitivity
and specificity. The receiver operation characteristic curves
of XGBoost algorithm model is shown in Figure 5.

4. Discussion

HSP is a kind of systemic vasculitis, which mainly involves
the skin, joints, gastrointestinal tract, capillaries, and small
blood vessels of the kidney, accompanied by significant
deposition of IgA [23]. Clinically, it is more common in chil-
dren. It has been reported that more than 90% of HSPN
occurs in children and adolescents, accounting for the first
place in children with secondary nephropathy. Kidney
biopsy is invasive and difficult for parents and children to
accept [9]. Therefore, we predicted the incidence of HSPN
from clinical data, clinical symptoms, and laboratory test
indicators based on the XGBoost prediction model.

The XGBoost model can automatically obtain the
importance score of each attribute, thus effectively filtering
features. Our study screened children for general informa-
tion, clinical symptoms, and laboratory test indicators. The

Table 1: Test results of general information and clinical symptom
indexes.

Indexes χ2 P

General information

Gender 0.038 0.758

Age 385.874 <0.001
Season of onset 8.983 0.009

Clinical symptom

Abdominal pain 4.213 0.023

Painful swelling of joint 7.896 0.014

Purpura area 238.705 <0.001
Recurrence of purpura 7.942 0.012

Table 2: Test results of biochemical laboratory indexes.

Indexes t P

White cell count -4.763 0.019

Percentage of neutrophils 1.684 0.041

Percentage of eosinophil 3.980 0.027

Platelet count -1.415 0.185

C-reactive protein 0.970 0.384

Serum albumin -4.542 0.021

Serum creatinine -3.425 0.032

Total cholesterol -0.468 0.571

D-dimer -1.538 0.214

IgG -3.978 0.030

IgA -2.342 0.034

IgM 0.795 0.436

IgE 3.012 0.028

Hospitalization time 2.031 0.037

Urinary retinol-binding protein -5.784 0.014

Urine N-acetyl-β-D-aminoglucosidase 3.869 0.028

24 h urinary protein quantification 4.825 0.024
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top 3 indicators based on the XGBoost model are NAG,
RBP, and IGA. Our results are consistent with Karadag
et al. [24], who believe that vascular endothelial injury was
an essential link in the pathogenesis of HSP. The possible
reasons are as follows: (1) The permeability of the tube wall
increased due to allergic reaction, and extravasation
increased the concentration and slowed the blood flow. In
a high viscosity state, immune complexes were more likely
to deposit, further damaging the vascular endothelium and
increasing the chances of platelet counting adhesion and
self-aggregation. (2) Inflammatory reaction damages vascu-
lar endothelium. The damaged vascular endothelium
enhances the coagulation promoting effect, stimulates the
release of platelet count activating factor, and further pro-
motes the activation and adhesion of platelet count.

Serum IgA is the main component of the body’s mucosal
defense system. It is widely distributed in milk, saliva, and
mucosal secretions of the gastrointestinal tract, respiratory
tract, and urogenital tract. Therefore, it plays a vital role in
the first line of defense against infection, especially in the
respiratory tract and intestinal tract. This is also an essential
indicator in the prediction model of this paper. NAG is a
lysosomal enzyme that occurs in the urinary system and is
usually found in very low levels of urine. When the tubular
cells are damaged, many NAG is released from the tubular
epithelial cells into the urine, where NAG levels are elevated.
RBP is the third important feature in the prediction model in
our study. Liu et al. believed that the RBP has an important
predictive value for delayed renal involvement in children
with HSP [25].
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Figure 5: The receiver operation characteristic curves of XGBoost algorithm model. (a) Training set. (b) Test set.
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In this study, the prediction model constructed based on
the XGBoost algorithm can effectively reduce the overfitting
problem and automatically specify the default branch direc-
tion for missing values, thus improving the algorithm’s effi-
ciency [26, 27]. Therefore, this provides more possibilities
for the extensive application of the model. In addition, the
areas under the curves of the training set (0.895, 95% CI:
0.827-0.963) and test set (0.870, 95% CI: 0.799-0.941)
models are similar and have good sensitivity and specificity.
Thus, the prediction model based on XGBoost can provide a
new method for diagnosing HSPN in children diagnosed
with HSP for the first time in dermatology.

There are several limitations to our study. It was a single-
center retrospective study with a small sample size and no
external validation. Secondly, due to the limitation of data
sources, although this study included many predictive vari-
ables for screening, it was still not comprehensive. There
may be potential predictive variables that were not included.
In addition, this will further limit the advantage of the
XGBoost algorithm. The next study will increase the sample
size and expand the prediction index.

5. Conclusion

Based on the XGBoost prediction model, we can preliminar-
ily predict HSP renal damage according to clinical test data
in dermatological outpatient work. This can reduce the harm
caused by invasive examination of children. It provides a
new idea for the prognosis of children with Henoch-
Schönlein purpura in the first diagnosis of dermatology. In
future work, we will improve the shortcomings, starting
from clinical needs, to better serve the clinical application.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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