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Abstract

To understand the timing, extent, and magnitude of land use/land cover (LULC) change in buffer 

areas surrounding Midwestern US waters, we analyzed the full imagery archive (1982–2017) of 

three Landsat footprints covering ~100,000 km2. The study area included urbanizing Chicago, 

Illinois and St. Louis, Missouri regions and agriculturally dominated landscapes (i.e., Peoria, 

Illinois). The Continuous Change Detection and Classification algorithm identified 1993–2017 

LULC change across three Landsat footprints and in 90 m buffers for ~110,000 surface waters; 

waters were also size-binned into five groups for buffer LULC change analyses. Importantly, 

buffer-area LULC change magnitude was frequently much greater than footprint-level change. 

Surface-water extent in buffers increased by 14–35x the footprint rate and forest decreased by 2–

9x. Development in buffering areas increased by 2–4x the footprint-rate in Chicago and Peoria 

area footprints but was similar to the change rate in the St. Louis area footprint. The LULC buffer-

area change varied in waterbody size, with the greatest change typically occurring in the smallest 

waters (e.g., <0.1 ha). These novel analyses suggest that surface-water buffer LULC change is 

occurring more rapidly than footprint-level change, likely modifying the hydrology, water quality, 
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and biotic integrity of existing water resources, as well as potentially affecting down-gradient, 

watershed-scale storages and flows of water, solutes, and particulate matter.
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1. Introduction

Land use and land cover (LULC) progression in the Midwestern United States (US) has 

changed from historically widespread tallgrass prairie and forested landscapes to intensively 

managed agricultural lands and highly developed urban landscapes [1-5]. This massive 

transformation has made the Midwestern US one of the most agriculturally productive 

regions of the US, where nine states (Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, 

Nebraska, Ohio, and South Dakota) are responsible for 76% of the total US crop production 

[6]. Similarly, urbanization has altered the landscape; between 1940 and 2000 the number of 

housing units in the Midwestern US grew by 146%, with much of the urbanization occurring 

in areas peripheral to the metropolitan centers [7].

However, LULC change such as that experienced in the Midwestern US also dramatically 

alters local- to continental-scale landscape structure, function, connectivity, productivity, and 

processes [8]. Specific to aquatic resources, research has demonstrated that LULC change 

affects hydrological functions, including stream discharge [9], peak flows [10], surface 

runoff [11], water levels [12], and sedimentation rates [13-15]. The impacts of LULC change 

at local to regional scales can further affect watershed-scale biogeochemical processing 

rates, with concomitant impacts on water quality [16]. Loss of “bioreactive” landscape 

elements [17], such as wetlands and similar waters, and transformation to different LULC 

types may cumulatively increase nutrient loading to down-gradient systems [4,18-22].

The effects of anthropogenic alterations on down-gradient biogeochemical concentrations 

can vary based on waterbody size classes. For instance, Evenson et al. [22] reported that the 

removal of smaller water bodies (e.g., drained or filled) across a watershed could 

substantially alter watershed-scale water residence times, which is also likely to affect 

biogeochemical processing rates. In a literature review of over 600 papers, Cheng and Basu 

[23] determined that smaller water bodies are more biogeochemically reactive than larger 

systems. Van Meter and Basu [24], Serran and Creed [25], and Creed et al. [19] have 

reported that small aquatic systems, such as wetlands, are more likely to experience LULC 

change (i.e., be hydrologically altered or destroyed), thereby disproportionately affecting 

watershed-scale hydrological characteristics and biogeochemical processing rates.

Modifications to the areas buffering surface waters can also have profound impacts on the 

water quantity and quality in a given water body [13,14,26-28]. Buffers affect water quality 

and quantity through energy dissipation and the physical settling of entrained particles. 

Furthermore, settled particles and solutes can undergo biogeochemical processing in areas 
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buffering water bodies [29,30]. Hence, changes to the buffers (e.g., width, structure) can 

harbinger state changes affecting aquatic resources [26,31,32], as well as affecting the 

condition of downstream systems [8].

Remotely sensed LULC change data over time provide informative LULC analyses and 

syntheses useful for managing watersheds and the water bodies of all sizes that remain 

therein. However, these analyses tend to focus on gross image-wide changes rather than on 

the effects of LULC change in areas buffering surface-water bodies [26]. Thus, the signal of 

LULC change in buffering areas may be lost in the “noise” of LULC change occurring 

elsewhere across the broader landscape. This signal dampening affects both how we quantify 

the functions and ecosystem services provided by areas buffering the remaining surface 

water resources (e.g., [8]) and how shifting LULC changes affect these waters themselves 

(e.g., [26]). Research advances are therefore needed to understand how—and to what extent

—surface water buffers are modified in the broader landscape mosaic of LULC changes.

To address these research gaps, we conducted an analysis of temporally continuous LULC 

change across a 25 year time period in the Midwestern US. The analysis covers three 

Landsat footprints including the developing urban lands of Chicago, Illinois, and St. Louis, 

Missouri, as well as the predominantly agricultural areas surrounding the smaller urban 

center of Peoria, Illinois. We explored not only 25 consecutive years of footprint-wide 

change, but also analyzed changes to buffers surrounding different surface-water body size 

classes. Specifically, we sought to answer the following research questions:

1. What is the magnitude, spatial distribution, and annual rate of LULC change 

across three Landsat footprints (nearly 100,000 km2) of the Midwestern US?

2. How has LULC change occurred over time in buffers surrounding different water 

body sizes within the three study areas?

We hypothesized that urbanizing trends would continue apace, and hence LULC change 

would be greatest in the urban-dominated Landsat footprints (i.e., Chicago, Illinois, and St. 

Louis, Missouri; [33]). As smaller water bodies are more frequently altered as a result of 

landscape drainage and filling [13,19], we further expected that the smallest waters in our 

study, those < 0.1 ha in area, would experience the greatest LULC change in their peripheral 

buffers. We conducted our analysis using the Continuous Change Detection and 

Classification algorithm (CCDC, [34,35]) and ~1750 Landsat images for our three study 

areas, incorporating 35 years of data.

2. Materials and Methods

2.1. Study Area

The Midwestern US comprises ~25% of the conterminous US by land area and contains 

22% of the nation’s population [36]. The regional climate consists of cold and long winters, 

with wet springs and temperate summers [37]. However, global climate change models 

predict warmer and wetter fall-through-spring seasons, with notably drier summer months 

[38]. The study area is almost entirely in the Major Land Resource Area “Central Feed 

(Grains and Livestock Region” [37] and has level to gently sloping landscapes, much of 
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which consist of the formerly glaciated plains. Our Midwestern study area (Figure 1) 

includes three Landsat footprints (World Reference System path (p) and row (r) of p23r31, 

p23r32, and p24r33). The area represented by the three Landsat footprints has both major 

agricultural production zones and dense population centers [6,7]. As a result, approximately 

85% of the pre-European settlement wetlands and similar waters have been lost from the 

region to agricultural drainage and urban development [39,40]. The urban centers include 

the cities of Chicago (Illinois) and St. Louis (Missouri) in p23r31 and p24r33, respectively, 

as well as smaller urban centers in p23r32 (e.g., the Illinois cities of Peoria, Bloomington, 

Champaign, Decatur, and Springfield). For simplicity, we will hereafter refer to the 

footprints, from north to south, as Chicago for p23r31, Peoria for p23r32, and St. Louis for 

p24r33.

2.2. Data Acquisition and Preprocessing

2.2.1. Landsat Data Downloading and Preprocessing—We downloaded 

geometrically and atmospherically corrected (i.e., USGS “Level 1T”) Landsat 4 and 5 

Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 

8 Operational Land Imager (OLI) data, including all imagery with ≤ 80% cloud-coverage by 

scene area from the United States Geological Survey-Earth Resources Observation and 

Science online portal [42,43]. We downloaded a total of 1749 images for the Chicago, 

Peoria, and St. Louis footprints covering the period 1982-2017, distributed evenly across the 

years and seasons (Figure 2A-C). We converted raw digital numbers to surface reflectance 

(bands 1–5, 7) and brightness/surface temperature (band 6) values using the Landsat 

Ecosystem Disturbance Adaptive Processing System algorithm [44]. We used the GERSLab 

[45] preprocessing tool to stack the six spectral bands, one thermal band, and one Landsat 

Level-1 pixel Quality Assessment (QA) or Landsat C version of Function of Mask band 

(CFMask, providing information about the quality of the pixels in terms of clouds, cloud 

shadows and snow contaminations [46-48]), for the analyses described below.

2.2.2. Land Cover Data Downloading and Processing—We acquired thematic 

land cover classification maps from the National Land Cover Dataset (NLCD) for 2001, 

2006 and 2011 from the USGS portal [43]. We used the 2001 NLCD in the land cover 

classification, described in Section 2.3, and compared our classification with the three 

NLCD products, described in Section 2.3.3. The NLCD maps were cropped to the Landsat 

footprint boundary and re-projected to a common coordinate system (WGS 1984, UTM 

Zones 15N for St. Louis and 16N for Chicago and Peoria).

2.3. Change Detection Model Implementation and Assessment

2.3.1. Continuous Change Detection and Classification (CCDC) algorithm—
We analyzed regional time-series LULC change analysis using CCDC, which uses the 

Robust Iteratively Reweighting Least Squares (RIRLS) method to iteratively fit observed 

data to the LULC dynamic time-series model that incorporates seasonality, trend (for 

gradual changes), and breaks (for abrupt changes) [34]. We used CCDC version 13.01 (64-

bit Linux-machine version) downloaded from Global Environmental Remote Sensing 

(GERS) Laboratory [45]. The model identifies breaks or transitions using a data-driven 

thresholding approach on the included Landsat bands [34]. Breaks or changes are identified 
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in CCDC when the spectral signature deviates from the fitted model predictions in 

consecutive dates of images [34,49]. Further CCDC application fundamentals and details of 

its implementation can be found in Zhu and Woodcock [34].

2.3.2. Random Forest Training and Classification—We classified the CCDC 

model output data with version 1.02 of the CCDC Assistor tool [45] within the CCDC 

environment using random forest [50]. Inputs to the supervised classification included time-

series model coefficients and the root mean square error (RMSE) values used to generate a 

continuous land cover map of the modeling domain [34]. The 2001 NLCD dataset was used 

to train the classifier using 20,000 pixels distributed proportionally across the original 15 

land-cover classes based on the optimized training data selection strategy [47]. Accordingly, 

the approach uses 600–8000 pixels per class [47,51].

We subsequently binned the continuous land-cover classification maps produced from the 

CCDC and the NLCD data into six major land cover types for our analyses (see Figure 1): 

water (NLCD classes of open water, woody wetlands, emergent herbaceous wetlands), 

forest (NLCD classes of deciduous forest, evergreen forest, mixed forest, and shrub/scrub), 

grassland (NLCD classes of grassland/herbaceous, pasture/hay), crops (NLCD class of 

cultivated crops), developed (NLCD classes of developed—open space, developed—low 

intensity, developed—medium intensity, developed—high intensity), and barren (NLCD 

class of barren land—rock/sand/clay).

2.3.3. Classification Agreement with NLCD—We evaluated the spatiotemporal 

performance of the CCDC algorithm and subsequent random forest classification over time 

through the generation of both omission and commission error metrics.

We assessed classification correspondence with the 2001, 2006, and 2011 NLCD datasets 

[52-54]. We kept a minimum linear separation distance between any two points of 250 m (a 

distance selected to decrease autocorrelation potential) that resulted in nearly 238,000 

randomly distributed points across the three footprints. We assessed classification agreement 

by (1) extracting the CCDC-derived class for each pixel using July 1st of each year (thereby 

avoiding untilled agricultural lands and snow-covered landscapes; [51]), and (2) developing 

confusion matrices contrasting the CCDC class with 2001, 2006, and 2011 NLCD thematic 

data that we binned into major land-cover types (described above in 2.3.2).

2.4. Data Analyses

We analyzed the annual LULC change for a 25-year period from 1993–2017 at both the 

image-scale and within a 90 m buffering distance around surface waters, a distance that 

approximates a commonly used 100 m buffer for aquatic monitoring and assessments 

[31,55] and one that seamlessly comports to the 30 m Landsat pixel size. The dataset from 

the period 1982–1985 was used for model initiation and a six year CCDC output window 

(1986–1991) was used to identify “waters” from the random forest classification (i.e., 

including open water, woody wetlands, and emergent herbaceous wetlands, as described 

above). A conservative rubric was applied, such that a pixel was required to be classified as 

water in at least five of six years between the period 1986–1991 to be considered “water”; 

this decreased the likelihood that climatic vagaries and/or mixed-pixel (“edge effects”) 
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would result in a pixel being misidentified as water. We used 1992 imagery for final model 

initiation and conducted LULC change analyses from the period 1993–2017. Waters ranged 

in size from a single pixel (0.09 ha) to 58,850 ha in size across the three images. We 

excluded Lake Michigan, a 4000 km2 water body (the portion within our Chicago footprint), 

from all analyses of the Chicago footprint.

We calculated the LULC change over 25 years using three approaches: (1) footprint-level 

time-series LULC change, (2) water body buffer time-series LULC change within 90 m 

buffers for each footprint, and (3) water body size-class analyses of time-series LULC 

change within a 90 m water body buffers (i.e., a post-hoc approach analyzing each water 

body uniquely). We conducted the footprint-scale 90 m assessment by first buffering each 

water body (as determined above) within a GIS environment. We then identified the 

corresponding 90 m buffer LULC pixels from the CCDC output for each year using R (using 

R packages raster, rgdal, rgeos, and sf [56-59]). For the third analysis, each water body had a 

unique 90 m buffer, with LULC calculated and exported for analyses. For the last analysis, 

we calculated the area of each water body within a GIS environment and subsequently 

analyzed LULC change over time, following Christensen et al. [40], binning surface water 

features into five size-based categories: (a) < 0.1 ha, (b) 0.1 to < 1.0 ha, (c) 1.0 to < 10.0 ha, 

(d) 10.0 to < 100.0 ha, and (e) ≥ 100 ha.

3. Results

3.1. Thematic Classification Characterization

Confusion matrices (Tables 1-3) calculated an overall agreement of 81%–89% across all 

three footprints and three NLCD datasets (2001, 2006, and 2011). Peoria (footprint p23r32) 

had the highest overall correspondence of ~89%, whereas Chicago (footprint p23r31) and St. 

Louis (footprint p24r33) had overall agreements of 84% and 81%, respectively. In general, 

water, developed, forest, and cropland cover classes were more accurately classified, and 

grassland and barren classes were more poorly classified. Misclassification errors with 

grassland and barren classes likely reflect the thresholding process inherent within the 

NLCD (e.g., barren require <15% vegetation, whereas grasslands require >80% vegetation) 

and approximate reported regional misclassification errors within the NLCD [41,60]. The 

small differences in overall agreement between years suggest that the model performed well 

over time (e.g., overall agreement in Chicago footprint for the three time periods was 84.1% 

in 2001, 84.0% in 2006, and 83.8% in 2011).

3.2. Spatiotemporal LULC Change Dynamics at Footprint Level

Across all three footprints, developed lands cumulatively increased over 25 years of 

analyses, while there were concomitant decreases in croplands in the Chicago footprint 

(Figure 3A), croplands/grasslands/forested lands in the Peoria footprint (Figure 3B), and 

forested land cover in the St. Louis footprint (Figure 3C). Whilst the percentages of LULC 

change may be relatively small (e.g., ~1% in 25 years), the actual areal change is substantive

—at least for the Chicago and St. Louis footprints. For example, there was a 25 y increase of 

280 km2 in developed lands in the Chicago footprint (Figure 3A), while nearly 300 km2 of 

forested lands in the St. Louis area were converted to other land cover types (see Figure 3C). 
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Developed lands in the Peoria footprint increased ~36 km2; all other changes at the footprint 

level in the Peoria analyses were <30 km2 (or <0.10%). All three footprints showed 

increases in water and barren lands. Interestingly, the St. Louis footprint crop LULC change 

decreased through ~2009 before demonstrating an increased cropland trend around 2009, 

ultimately resulting in a slight positive increase in croplands (see Figure 3C).

Dynamic change over time is evident in Figure 3A-C using CCDC; Figure 4A-D shows an 

LULC change in a representative area between two points (2007 and 2015). Figure 5 

provides information on the spatiotemporal “year of change”, demonstrating the power of 

time-series analyses to identify the temporal nature of LULC change.

3.3. Spatiotemporal LULC in Surface Water Buffers

3.3.1. LULC Change in Water Body Buffers Compared to Footprint-Scale—We 

identified 51,619 surface waters in Chicago, 22,186 in Peoria, and 34,475 in St. Louis 

footprints, covering 3.9%, 2.1%, and 3.3% of each footprint, respectively. Adding the 90 m 

buffer resulted in the buffer analyses covering approximately 8.2% of Chicago, 4.2% of 

Peoria, and 6.3% of the St. Louis footprint areas. LULC change over the 25 year horizon 

occurred in the buffers of 41% of waters in the Chicago-area footprint, 30% in the Peoria-

area footprint, and 51% in the St. Louis-area footprint. In Figure 6A-E, LULC change within 

the buffer surrounding a water body in the Chicago-area footprint is evident, with 

development encroaching upon the water body (e.g., Figure 6E). Change to the sinusoidal 

CCDC curves for select points within Figure 6 are presented in Figure 7A-E; indications of 

LULC change-points across the 25 year time-period for pixels within the areas buffering the 

water body have evidently occurred ~2004.

The overall LULC change in buffers surrounding water bodies, given in Figure 8A-C, was 

typically similar in direction to that occurring in footprint-wide analyses (see Figure 3A-C). 

However, the magnitude of LULC change in the buffering areas was frequently much greater 

than the footprint-level analyses across all three footprints, as evidenced when contrasting 

between LULC change in the footprint and the 90 m surface water buffer for Chicago 

(Figure 9A-F), Peoria (Figure 10A-F), and St. Louis (Figure 11A-F). For example, 

substantial water expansion occurred in the Chicago study area buffers at 35 times (35x) the 

relative footprint-wide rate (0.66% versus 0.02% over 25 years, see Figure 9A). Areas 

buffering surface waters in the Chicago footprint followed the image-wide trend of increased 

LULC development over 25 years, yet buffer increases were double the image-wide 

proportional change (1.8% increase compared to ~0.9% increase, respectively (see Figure 

9E)). Over the 25 years of Chicago footprint analyses, forests and grasslands buffering 

surface waters changed at faster rates (decreasing at ~7x and ~3x, respectively; see Figure 

9B-C) relative to the full footprint.

Twenty-five years of Peoria imagery analyses follow a similar pattern, with a nearly 15x 

increase in surface water into the buffers relative to the footprint-wide analyses (see Figure 

10A). Developed lands increased 4x in the Peoria buffers relative to the full footprint-wide 

change (0.35% versus 0.10%, see Figure 10E), whereas there was a 9x decrease in forested 

lands (−0.63% versus −0.07%, see Figure 10B) and a 4x decrease in grasslands (−0.28% 

Berhane et al. Page 7

Remote Sens (Basel). Author manuscript; available in PMC 2021 February 25.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



versus −0.07%, see Figure 10C). This footprint also had an increase in barren lands within 

the buffers 2x greater than the footprint-wide change (0.12% versus 0.06%, see Figure 10F).

Like Chicago and Peoria, surface waters in the St. Louis footprint buffers increased 

markedly, 14x greater than the entire footprint (1.31% versus 0.09%, see Figure 11A). St. 

Louis imagery analyses demonstrated no meaningful differences in developed lands between 

the buffered and footprint-wide changes over 25 years (0.71% versus 0.68%, respectively, 

see Figure 11E). Forested lands buffering waters were converted at ~2x the footprint rate 

(−1.48% versus −0.95% over 25 years, see Figure 11B). Grasslands buffering surface waters 

were converted more slowly than grassland change across the St. Louis footprint, at 1/5 the 

LULC change rate (−0.03% in the buffer versus −0.16% at the footprint-level over 25 years, 

see Figure 11C). Croplands in the buffer and footprint-wide followed a similar decreasing 

trend through ~2008, increasing from that point such that by 2017 there was a slight increase 

(0.07%) in footprint-wide cropland abundance (though still a substantial decrease in buffer-

area croplands (−0.42%; see Figure 11D)). Barren lands decreased in buffering areas 

(−0.09%) but switched direction and increased at the footprint-scale (0.27%; see Figure 

11F).

Changes in lands buffering surface waters were typically not a one-off event. Of the water 

buffers that changed LULC during our study period, two changes was the mode within each 

of the three footprints (e.g., from forest to barren, then from barren to developed); 39.6% of 

Chicago, 46.2% of Peoria, and 38.6% of St. Louis buffers changed LULC twice during the 

study period. Three or more cumulative LULC buffering area changes occurred in Chicago 

(57.5%), Peoria (51.6%), and St. Louis (57.9%) across the 25 year analysis.

3.3.2. LULC Change in Buffers by Water Body Sizes—The vast majority of extant 

surface waters across all three Landsat footprints were <1.0 ha in size (87% of 51,619 

surface waters in Chicago, 85% of 22,186 surface waters in Peoria, 88% of 34,475 surface 

waters in St. Louis). The smallest size class (< 0.1 ha) was the mode in Chicago (44%) 

though the second-most abundant size class in Peoria (40%) and St. Louis (42%), after 

waters between 0.1 to <1.0 ha in both areas (Table 4). The largest waters, those ≥ 100 ha 

(and excluding Lake Michigan in the Chicago footprint), represented 0.1%–0.2% of the 

extant surface waters in our study areas.

Buffer LULC change differed substantially depending on the size of the water body being 

buffered (Figure 12A-C). In the Chicago footprint, developed, croplands, grasslands, and 

forested lands all had the same approximate stair-step LULC-change trend over 25 y (Figure 

12A), with the largest LULC changes in the buffers surrounding the smallest waters and the 

least change around the largest water bodies. For instance, there was a cumulative 25 y 

increase in developed lands that was greatest in the buffers surrounding the smallest waters 

(<0.1 ha, 2.84%) followed by the second-smallest (0.1 to <1.0 ha, 2.37%,), etc. This trend 

held for decreases in the abundance of forested lands and grasslands; croplands followed 

suit, but no meaningful difference was discerned between changes in buffers surrounding 

waters of 1.0 to <10.0 ha (−0.68%) and 10.0 to <100.0 ha (−0.70%). Water (and barren 

lands) increased over the course of 25 y without any apparent trend associated with size 

classes in the Chicago footprint. Exploring the temporal nature of the LULC changes, there 
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was a substantive increase in water (in particular), as well as forested and crops around 1999 

across all five size classes (Figure 13A-E).

The smallest water bodies in Peoria had the largest LULC increase in percentage water, 

followed in stair-step fashion by the second smallest, etc. (see Figure 12B). The abundance 

of forested lands decreased in a similar manner, with the greatest change in the areas 

surrounding the smallest waterbodies and the least change in the largest waterbodies. 

Developed lands in buffers increased in tandem between waterbodies<1.0 ha (0.52–0.55%) 

and those between 1.0 ha and <100.0 ha (0.38–0.39%) before halving to 0.18% in the largest 

waters. Croplands, grasslands, and barren lands did not evince any particular manner of 

change when contrasted with the binned data. There was a decrease in grasslands in the 

buffers surrounding the largest waters, starting in 1999, while LULC change in the 

remaining four size classes demonstrated a more consistent change-trajectory over the 25 y 

period of record in the Peoria footprint (Figure 14A-E). The largest water bodies (> 100.0 

ha) in the St. Louis footprint experienced the greatest increase in water in the buffering areas 

(1.73%), followed by the smallest water bodies (1.42%); the remaining size classes 

vacillated between 0.84%–0.99% increases (see Figure 12C). The two largest classes, those 

water bodies ≥10.0 ha and larger, demonstrated the greatest decrease in croplands in the 

buffering areas (−0.65% to −1.36%). The smaller water bodies (i.e., the three binned classes 

<10.0 ha) had the greatest increases in developed lands in the St. Louis footprint (0.86%–

0.92%). Forested lands in the St. Louis footprint decreased in a stair-step manner as in 

Peoria and Chicago, with the greatest decrease in the buffers surrounding the smallest water 

bodies (<0.1 ha, −1.71%) followed by the next size class (0.1 to <1.0 ha) and so on. CCDC 

analyses indicated a substantive increase in the abundance of water in areas buffering the 

largest systems, those ≥ 100 ha, in 2007 (Figure 15A-E).

4. Discussion

Dynamics of LULC Change in the Midwestern US

The progression of LULC change across the Midwestern US has resulted in significant 

advances in agricultural production, industrialization, and urban growth. Analyzed through 

the lens of an entire Landsat footprint (or, here, three such footprints), the last 25 years have 

seen a decrease in forested and agricultural (crop) lands and an increase in developed lands, 

especially in the urbanizing exurbs of Chicago and St. Louis. This finding follows similar 

results from LULC change analyses at the conterminous US-scale [62], as well as more 

regional analyses (e.g., [63,64]). For instance, Maimaitijiang et al. [54] analyzed LULC 

change in the St. Louis metropolitan area (not a full Landsat footprint) between 1972–2010 

at five time-steps (i.e., 1972, 1982, 1990, 2000, and 2010) and reported increases in 

developed lands and decreases in croplands and grasslands (similar to our study). However, 

using time-series analyses through CCDC, we found a substantive uptick in agricultural 

lands around 2010, when their study period ended and near the onset of a near doubling in 

the per-bushel price of corn [65]. The authors also found decreases in the forested lands and 

increases in water extent in the greater St. Louis region through 2010 [54], and the change 

continued apace through to the end of our study in 2017.
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Novel to our study of three Landsat footprints covering nearly 100,000 km2 is the finding 

that development is particularly prevalent in the buffered areas surrounding existing small 

waterbodies—the wetlands, ponds, and lakes providing numerous ecosystem services 

[19,23,66-68]. Across all three Landsat images, the smallest water bodies (i.e., those < 1.0 

ha) experienced the greatest change in the lands buffering them from terrestrial inputs. 

Furthermore, these changes in the buffers surrounding water bodies occurred at rates 

substantially faster than the prevailing footprint-wide Landsat changes. Specifically, buffered 

areas in the Chicago and Peoria footprints converted to developed lands at two to four times 

the footprint-wide rate, and forested and grasslands decreased between seven to nine times 

faster (for forested) and three to four times faster (for grasslands) in buffers than occurred 

across the footprint. Lands buffering water bodies in the St. Louis footprint analysis 

changed, though at rates similar to the footprint-wide change, with no discernable 

differences between development (increasing 0.69% in the footprint-wide analysis and 

0.72% in the buffers) and relatively minor changes in the forested land conversion in the 

buffers (~2x the footprint-wide change). Nevertheless, the smaller water bodies in St. Louis 

(i.e., those <10.0 ha) experienced a higher developed land conversion rate (0.86%-0.92% 

over 25 years) than the footprint-wide analyses (0.72% over 25 years).

Conversion of the lands buffering water bodies may have profound effects on the waters 

themselves [29,32,69,70]. For instance, Christensen et al. [71] reported that lands buffering 

stream networks in agricultural landscapes removed 52% of the edge-of-field nitrogen, a 

major determinant of aquatic resource eutrophication (e.g., [72]). The buffering areas can 

filter out pollutants and sediments that affect water quality and aquatic biota, as well as 

modify temperatures in aquatic systems through shading mechanisms. Supporting the 

maintenance of aquatic buffers, Wahl et al. [73] found the greatest abundance of pollution-

sensitive insect orders Ephemeroptera, Plecoptera, and Trichoptera (“EPT”) in aquatic 

networks with forested buffers and the lowest in agriculturally cultivated or urban-developed 

catchments (i.e., those without buffers). Biogeochemical cycling rates within water bodies 

respond to the differences in loading rates, which can vary depending on the surrounding 

land uses [70]. Furthermore, the conversion of lands buffering water bodies can increase 

sedimentation rates and decrease hydroperiods, which can threaten migratory waterfowl and 

other organisms [26,74-77].

However, while the conversion and development of lands buffering water bodies occurred at 

elevated rates vis-a-vis the Landsat footprint (in Chicago and Peoria footprints in particular), 

this study found a substantial expansion of existing waters into the buffering lands across all 

three footprints analyzed (i.e., buffer expansion rates ranging from 14–35x footprint-wide 

rates). The smallest waters in Peoria (<0.1 ha) had the greatest expansion, whereas the 

largest waters in St. Louis (>100 ha) expanded at the highest rates (followed by the smallest 

waters) in 25 years.

The reasoning behind these surface water expansions remains elusive. Whereas increasing 

precipitation rates across the Midwestern US [38,78] ascribed to global climate change 

likely has some effect, the spatio-temporal impacts of precipitation modifications vary across 

the study areas. For instance, Dai et al. [78] noted increases in Midwestern early growing-

season precipitation but cautioned that few trends were statistically significant across their 
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study locations. Furthermore, they found decreases in late growing-season precipitation 

within Missouri, Illinois, and six other Midwestern states [78]. In a time-series analysis of 

water body area across the conterminous US, Zou et al. [79] reported waters in the 

Midwestern US to be increasing in extent and correlated with climate variables (e.g., annual 

precipitation), though they note that surface-area changes were also associated with dam 

construction and affected by water withdrawals.

Surface water expansion may also result from the combination of precipitation non-

stationarity coupled with anthropogenic alterations to the landscape drainage network. 

McCauley et al. [32] found that consolidation drainage (wherein many smaller water bodies 

are connected and drained into fewer larger ones) has increased water surface areas of the 

Upper Midwestern Prairie Pothole Region (PPR) by 86%; waters in “extensively drained 

landscapes” were 197% larger than historical records (1937–1969). Similarly, Vanderhoof 

and Alexander [80] analyzed lake expansion in the Upper Midwestern PPR, reporting 

substantial lake expansion between 1990–2011. Three large lakes in their study area 

increased between 237%–578%, subsuming over 7000 surrounding wetlands in the process.

Our analyses determined change is more pervasive in the areas buffering waters across the 

Midwest than a footprint-wide, regional change analysis would suggest. However, our 

CCDC analyses were predicated on using the available Landsat archive for the study. These 

data are remarkable for long-term change analyses, though a caveat is that the analyses were 

conducted with medium-resolution data (e.g., 30 m pixel size). Our class descriptors 

incorporated NLCD products using Landsat data, and we binned these data for our purposes. 

Though our overall accuracy ranged from 81%–89%, certain classes were more poorly 

discerned than others. For instance, grasslands were often confused (e.g., with developed 

and/or crops), leading to some uncertainty in the results regarding changes associated with 

grasslands. While ideally our overall correspondence in our confusion matrices would have 

been >80% for all classes, our analyses trended within ranges shown for the NLCD products 

(e.g., NLCD 2001 regional producer’s accuracies for Level I Water of ~60%, or Level I 

Grassland of ~25%; see, e.g., [81]). The inclusion of ancillary datasets, such as greenness or 

wetness indices, may improve subsequent classification accuracy in future studies. 

Furthermore, the increasing availability of high-resolution satellite data and cloud-based 

computing (Google Earth Engine; see, e.g., [79,82,83]) augurs well for the improved 

granularity of class and change in the future. For instance, we combined the various 

developed land cover classes, but future analyses may choose to separate them to more 

finely discern change or create additional classes to suit emerging needs (e.g., focusing on 

wetland or forest LULC changes over time, [83]).

Multiple factors affect surface water dynamics, from climate-change induced non-

stationarity (e.g., [84]), decadal precipitation cycling, artificial barriers such as roads and 

berms, and artificial drainage. The influence of these effects, including the magnitude and 

frequency of storm events as well as the influence of water-retention on surface-water extent 

and landscape inundation dynamics (e.g., [85,86]), warrant additional investigation.
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5. Conclusions

The Midwestern US states included in this study have had substantial water body losses 

since the European settlement. For example, Dahl [39] calculated pre-European settlement 

wetland losses of −85% for Illinois and −87% for Missouri. However, water body expansion, 

as evidenced by the increase in water in the buffers across all three Landsat footprints over 

25 years, suggests that the prevailing precipitation patterning may be sufficient at the 

macroscale to maintain a series of inundated water bodies (e.g., for migratory waterfowl). 

However, this assumption requires the development of local to regional water budgets to 

more robustly discern the long-term implications of LULC change on inundation patterning 

and the maintenance of aquatic landscapes (e.g., [67,76]). While the Midwestern US is 

experiencing increases in surface water extent, our novel analyses have shown that 

developed lands are encroaching upon existing water bodies. These landscape shifts are very 

likely modifying the vegetation structure, hydrology, water quality and biotic integrity of the 

existing water resources. As noted, development or cultivation in areas buffering aquatic 

resources can result in increased nutrient loading rates [29], changes in hydrology and 

inundation extent [87], and increased sedimentation [13-15]. The waters analyzed in this 

study cumulatively perform myriad functions affecting watershed-scale phenomena, such as 

nutrient retention and processing [88,89]) and river storm-flow attenuation and baseflow 

maintenance [22,90,91]. Pervasive change to the areas buffering the water bodies within the 

three study footprints suggests that even when water bodies are not lost to development or 

cultivation, their functioning (e.g., nutrient processing or hydrologic attenuation) may be 

modified, thereby affecting down-gradient, watershed-scale rates, storages, and flows of 

water, solutes, and particulate matter [19,26].
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Figure 1. 
Midwestern US study area encompasses over 100,000 km2, including urbanizing Chicago, 

Illinois (p23r31) and St. Louis, Missouri (p24r33) regions, as well as rural areas of central 

Illinois (including Peoria, the developed area in the northwestern corner of p23r32). The 

background land use/land cover (LULC) data are from the 2001 national land cover dataset 

(NLCD) [41], binned into gross LULC classes, as described in Section 2.3.2, below.
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Figure 2. 
Distribution of Landsat data utilized for LULC change by footprint, sensor type, year and 

Julian date of the year (DOY) for (A) Chicago (p23r31), (B) Peoria (p23r32), and (C) St. 

Louis (p24r33).

Berhane et al. Page 19

Remote Sens (Basel). Author manuscript; available in PMC 2021 February 25.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Berhane et al. Page 20

Remote Sens (Basel). Author manuscript; available in PMC 2021 February 25.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3. 
Cumulative footprint-level LULC change, both in percentage and approximate area, between 

the period 1993–2017 for (A) Chicago, (B) Peoria, and (C) St. Louis footprints. Our areal 

analyses throughout were calculated on pixel-change; we did not use a reference 

classification [61]. Note the differences in y-axis values across panels A–C.
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Figure 4. 
Example of Chicago footprint LULC change between two points in time, (A) National 

Agricultural Inventory Program (NAIP, 1 m resolution) image from 21 July 2007, (B) NAIP 

image from 21 September 2015, (C) CCDC map contemporaneous with (A), from 1 July 

2007, and (D) CCDC map contemporaneous with (B), from 1 July 2015.
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Figure 5. 
CCDC-informed year-of-LULC change in Figure 4; the expansive barren area in the center 

of the image appears to be a quarry that substantially expanded in the period from ~2008 

onwards.
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Figure 6. 
LULC change within a 90 m water body buffer, (A aerial photo of surfaces water in 

Yorkville, IL dated 05 April 1998, (B) aerial photo from 06 August 2009 after significant 

development, (C) CCDC LULC classification of July 01, 1998, (D) CCDC LULC 

classification of 01 July 2009, (E) CCDC-informed year of change (see Figure 7 for further 

information on inset points A–E).
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Figure 7. 
LULC change occurred to the select pixels identified in Figure 6 ~2004, as indicated by the 

break in the CCDC-fitted RIRLS models, (A) water body (no change indicated), (B) crops 

(no change indicated), (C) LULC change (from crop) to developed class), (D) LULC change 

(from crop to developed class), (E) LULC change (from crops to grassland). The panels in 

Figure 7 align with the five points (A–E) given in Figure 6.
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Figure 8. 
Cumulative LULC change in 90 m areas buffering surface waters between the period 1993–

2017 for (A) Chicago, (B) Peoria, and (C) St. Louis footprints.
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Figure 9. 
Contrasting LULC change in the areas buffering waters with the Chicago-area footprint-

wide change for (A) water, (B) forest, (C) grassland, (D) crops, (E) developed, and (F) 

barren classes.
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Figure 10. 
Contrasting LULC change in the areas buffering waters with the Peoria-area footprint-wide 

change for (A) water, (B) forest, (C) grassland, (D) crops, (E) developed, and (F) barren 

classes.
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Figure 11. 
Contrasting LULC change in the areas buffering waters with the St. Louis-area footprint-

wide change for (A) water, (B) forest, (C) grassland, (D) crops, (E) developed, and (F) 

barren classes.
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Figure 12. 
Twenty-five years of LULC change in surface-water buffers binned into five aquatic system 

size classes across (A) Chicago, (B) Peoria, and (C) St. Louis footprints.
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Figure 13. 
Chicago footprint LULC change over time in surface-water buffers binned into five aquatic 

system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, 

(E) ≥ 100.0 ha. Note the differences in the Y-values between plots.
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Figure 14. 
Peoria footprint LULC change over time in surface-water buffers binned into five aquatic 

system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, 

(E) ≥ 100.0 ha. Note the differences in the Y-values between plots.
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Figure 15. 
St. Louis footprint LULC change over time in surface-water buffers binned into five aquatic 

system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, 

(E) ≥ 100.0 ha. Note the differences in the Y-values between plots.
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Table 1.

Chicago footprint confusion matrix contrasting agreement between the three NLCD validation datasets. 

Overall agreement was consistently ~84%. Note that units are counts of 30 × 30 m pixels, except Producer’s 

and User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

Water 2015 120 625 24 31 85

Developed 261 15,191 1056 319 561 2460

Forest 8 48 4524 8 5 73

Barren 489 257 5 119 161 457

2001 NLCD Grassland 135 993 481 66 1370 1814

Crops 187 671 481 193 540 43,413

Producer’s Accuracy (%) 65.1 87.9 63.1 16.3 51.3 89.9

User’s Accuracy (%) 69.5 76.5 76.7 46.1 28.2 95.4

Overall Agreement (%) 84.1

Water 2026 120 610 22 30 81

Developed 281 15,764 1099 541 601 2699

Forest 4 59 4454 7 4 58

Barren 478 241 2 119 154 437

2006 NLCD Grassland 136 882 456 53 1317 1752

Crops 185 623 466 105 520 42,870

Producer’s Accuracy (%) 65.1 89.1 62.8 14.0 50.2 89.5

User’s Accuracy (%) 70.1 75.1 77.2 48.4 28.7 95.8

Overall Agreement (%) 84.0

Water 2035 111 607 20 35 100

Developed 307 16,025 1159 618 631 2921

Forest 10 53 4402 8 4 37

Barren 480 235 2 108 172 458

2011 NLCD Grassland 128 778 418 43 1265 1714

Crops 176 567 453 91 510 42,573

Producer’s Accuracy (%) 64.9 90.2 62.5 12.2 48.3 89.1

User’s Accuracy (%) 70.0 74.0 76.5 50.5 29.1 95.9

Overall Agreement (%) 83.8
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Table 2.

Peoria footprint confusion matrix contrasting agreement between the three NLCD validation datasets. Overall 

agreement was consistently ~89%. Note that units are counts of 30 × 30 m pixels, except Producer’s and 

User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

Water 1068 13 166 3 23 26

Developed 52 3434 458 120 448 2983

Forest 2 3 3458 4 0 2

Barren 381 90 0 26 260 281

2001 NLCD Grassland 33 206 427 5 1216 839

Crops 68 748 877 48 744 61,363

Producer’s Accuracy (%) 66.6 76.4 64.2 12.6 45.2 93.7

User’s Accuracy (%) 82.2 45.8 77.3 78.8 44.6 96.1

Overall Agreement (%) 88.3

Water 1076 12 145 6 24 36

Developed 56 3473 364 132 447 3011

Forest 2 3 3305 6 2 2

Barren 374 88 0 28 260 277

2006 NLCD Grassland 33 199 282 8 1209 837

Crops 61 738 633 39 729 61,122

Producer’s Accuracy (%) 67.2 77.0 69.9 12.8 45.3 93.6

User’s Accuracy (%) 82.8 46.4 76.7 75.7 47.1 96.5

Overall Agreement (%) 88.9

Water 1064 11 148 6 28 38

Developed 60 3486 369 147 454 3041

Forest 1 2 3289 5 1 2

Barren 373 83 1 25 258 285

2011 NLCD Grassland 36 192 285 10 1191 840

Crops 64 729 629 42 723 61,086

Producer’s Accuracy (%) 66.6 77.4 69.7 10.6 44.9 93.6

User’s Accuracy (%) 82.2 46.1 76.6 78.1 46.6 96.5

Overall Agreement (%) 88.8
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Table 3.

St. Louis footprint confusion matrix contrasting agreement between the three NLCD validation datasets. 

Overall agreement was consistently ~81%. Note that units are counts of 30 × 30 m pixels, except Producer’s 

and User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

Water 2292 57 980 77 57 140

Developed 55 4622 1585 151 1430 1114

Forest 10 17 27,031 26 9 11

Barren 229 208 16 82 1237 760

2001 NLCD Grassland 40 251 1834 39 9418 1865

Crops 146 162 896 63 1332 21,011

Producer’s Accuracy (%) 82.7 86.9 83.6 18.7 69.9 84.4

User’s Accuracy (%) 63.6 51.6 91.7 56.6 70.0 89.0

Overall Agreement (%) 81.3

Water 2315 60 988 70 52 226

Developed 62 4779 1594 189 1449 1151

Forest 13 15 26,820 49 11 10

Barren 220 235 12 87 1267 731

2006 NLCD Grassland 45 260 1825 49 9356 1862

Crops 148 163 883 68 1315 20,874

Producer’s Accuracy (%) 82.6 86.7 83.5 17.0 69.6 84.0

User’s Accuracy (%) 62.4 51.8 91.5 58.8 69.8 89.0

Overall Agreement (%) 81.0

Water 2365 50 978 63 53 223

Developed 69 4884 1628 198 1485 1189

Forest 13 16 26,712 52 12 9

Barren 215 217 14 90 1279 724

2011 NLCD Grassland 54 240 1824 50 9202 1844

Crops 137 146 880 72 1405 20,861

Producer’s Accuracy (%) 82.9 88.0 83.4 17.1 68.5 83.9

User’s Accuracy (%) 63.4 51.7 91.5 58.4 69.6 88.8

Overall Agreement (%) 80.9
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Table 4.

LULC change around all study area water bodies was analyzed according to water body size class, ranging 

from < 0.1 to ≥ 100 ha.

Chicago Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 22,877 2058.9 0.1 0

0.1 to <1.0 21,828 7921.3 0.4 0.3

1.0 to <10.0 6019 17,631.6 2.9 2.1

10.0 to <100.0 822 21,582.8 26.3 19.5

≥ 100.0 73 20,612.1 282.4 303.9

All 51,619 69,806.7 1.4 16.1

Peoria Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 8821 793.9 0.1 0

0.1 to <1.0 10,120 3785.3 0.4 0.2

1.0 to <10.0 2842 8015.4 2.8 2.0

10.0 to <100.0 363 9247.2 25.5 18.9

≥ 100.0 40 21,826.7 545.7 74.2

All 22,186 43,668.5 2.0 39.0

St. Louis Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 14,291 1286.2 0.09 0

0.1 to < 1.0 15,869 5895.4 0.4 0.2

1.0 to <10.0 3920 10,511.2 2.7 1.9

10.0 to <100.0 365 9064.4 24.8 18.4

≥ 100.0 30 6958.1 231.9 209.8

All 34,475 33,715.4 1.0 9.7
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