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Abstract

Background: The pathophysiology of changes in magnetic resonance imaging (MRI)

detected after a seizure is not fully understood.

Objective: To characterize and describe seizure-induced changes detected by MRI.

Animals: Eighty-one client-owned dogs diagnosed with idiopathic epilepsy.

Methods: Data collected retrospectively from medical records and included anatomi-

cal areas affected, T1-, T2-weighted and T2-FLAIR (fluid-attenuated inversion recov-

ery) appearance, whether changes were unilateral or bilateral, symmetry, contrast

enhancement, mass effect, and, gray and white matter distribution. Diffusion- and

perfusion weighted maps were evaluated, if available.

Results: Seizure-induced changes were T2-hyperintense with no suppression of sig-

nal on FLAIR. Lesions were T1-isointense (55/81) or hypointense (26/81), local mass

effect (23/81) and contrast enhancement (12/81). The majority of changes were

bilateral (71/81) and symmetrical (69/71). The most common areas affected were the

hippocampus (39/81) cingulate gyrus (33/81), hippocampus and piriform lobes

(32/81). Distribution analysis suggested concurrence between cingulate gyrus and

pulvinar thalamic nuclei, the cingulate gyrus and parahippocampal gyrus, hippocam-

pus and piriform lobe, and, hippocampus and parahippocampal gyrus. Diffusion

(DWI) characteristics were a mixed-pattern of restricted, facilitated, and normal diffu-

sion. Perfusion (PWI) showed either hypoperfusion (6/9) or hyperperfusion (3/9).

Conclusions and Clinical Importance: More areas, than previously reported, have

been identified that could incur seizure-induced changes. Similar to human literature,

DWI and PWI changes have been identified that could reflect the underlying meta-

bolic and vascular changes.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) can identify seizure-induced

changes in the ictal and early postictal stages of seizure activity.1 The

pathophysiology responsible for these changes is not fully under-

stood. Seizure activity increases regional glucose and oxygen con-

sumption and utilization. It has been proposed that to compensate for

this increase in metabolic demand, compensatory regional hyper-

perfusion occurs.2 However, should sustained ictal activity persist,

these compensatory mechanisms are no longer sufficient. This leads

to hypoxia, lactic acidosis and failure of cellular homeostasis causing

cellular swelling and increased membrane permeability. The cascade

of metabolic changes subsequently leads to the formation of cytotoxic

and vasogenic edema, a finding supported by experimentally induced

seizures in rats.3 The formation of identifiable changes has been docu-

mented as time-dependent4; especially dependent on duration of ictal

activity.

Peri-ictal changes are well-documented in human literature. The

prevailing conclusions from such investigations1 were that these

changes occur in specific anatomical areas of the brain, they can be uni-

lateral or bilateral, local or remote to the epileptogenic focus, and are

partially or completely reversible; resulting in partial or complete resolu-

tion. Diffusion and perfusion-weighted imaging support the presence of

pathophysiological changes within the ictal tissue and suggest a time-

dependent evolution of these changes. The reversible nature and ana-

tomical locations are described in 3 dogs with seizures of different

etiologies,5 as well as the reversible nature of these changes.

The aims of our study were to further describe the changes and

anatomical locations seen on MRI during the peri-ictal stages in a

group of dogs diagnosed with presumed idiopathic epilepsy and

describe the anatomical locations affected. If available, we aimed to

report if any changes were seen on diffusion- and perfusion-weighted

imaging.

2 | MATERIALS AND METHODS

2.1 | Study population and design

A multicenter retrospective cross-sectional study was undertaken

involving 4 centers; the Small Animal Teaching Hospital of the Univer-

sity of Liverpool, the Animal Health Trust, the Small Animal Hospital

of the University of Glasgow and the Veterinary Teaching Hospital of

the University of Georgia. The study protocol was approved by the

Veterinary Research Ethics Committees of the participating centers;

ref VREC724.

Medical records were searched for dogs presenting for investi-

gation of epileptic seizures and that had peri-ictal changes identified

on MRI of the brain between 2010 and 2019. The terms “postictal”
and “peri-ictal” were searched within the imaging reports and the

studies were identified. The inclusion criteria were further refined

to include dogs that were diagnosed with suspected idiopathic

epilepsy. The criteria included dogs that had an onset of seizures

between 6 months and 6 years, had a normal cerebrospinal fluid

(CSF) analysis, and did not develop progressive neurological deficits

after 6 months after diagnosis. Cases were also included if repeated

CSF analysis was normal, after an abnormal initial result and only if

naive of medication that could influence CSF analysis. Further data

collected included age, breed, sex, type and frequency of the most

common seizure activity, and the duration of time between the last

seizure and acquisition of MRIs. Exclusion criteria involved MRI

abnormalities that were not consistent with reports in human and

veterinary literature.

2.2 | Magnetic resonance imaging

All the images were obtained from the following scanners: 1.5 T

Philips Ingenia CX, Philips Healthcare, Best, Netherlands (University

of Liverpool), 1.5T Signa Echospeed System, General Electric Medical

System, Milwaukee (Animal Health Trust), 1.5T Siemens Magnetom

Essenza, Siemens Healthcare, Germany (University of Glasgow), and,

3.0T Siemens Magnetom Skyra, Siemens Healthcare, Germany

(University of Georgia). The dog positioning and anesthetic agents

used were dependent on protocols of the individual centers enrolled.

All the images were reviewed by a board-certified radiologist (FMc).

The imaging data obtained included anatomical areas affected,

T1-weighted, T2-weighted and T2-FLAIR (fluid-attenuated inversion

recovery) signal characteristics, whether the changes were unilateral

or bilateral, symmetrical or asymmetrical, presence of contrast

enhancement, mass effect and gray and white matter distribution. For

those that had diffusion-weighted imaging, the affected areas on con-

ventional imaging were assessed. Diffusion weighted imaging (B = 0

and B = 800 or 1000) and apparent diffusion coefficient (ADC) maps

were used for analysis. Similarly, for those that underwent perfusion-

weighted imaging, changes were assessed based on the affected areas

on conventional MR imaging. Relative cerebral blood flow (rCBF), rela-

tive cerebral blood volume (rCBV) and mean transit time (MTT) maps

were needed for interpretation. Quantitative values were obtained

from the ADC, rCBF, rCBV, and MTT maps. They were obtained by

manually drawing up to 3 regions of interest (ROIs) in each affected

area identified on conventional imaging (T2-FLAIR) and formulating a

mean value. Care was taken to exclude large blood vessels from

regions of interest.

Two separate control groups were also formulated: one to compare

diffusion-weighted changes and another to compare perfusion-

weighted changes. These control groups were composed of dogs diag-

nosed with primary myopathies or cranial nerve neuropathies without

central nervous system involvement. Only images where lesions were

free from artifacts were used for analysis. Quantitative ADC and perfu-

sion map values (rCBF, rCBV and MTT) were obtained, from the respec-

tive control groups, of the areas that were known to be affected in the

study groups. The median measurement values were subsequently

obtained for each affected area based on each study group.
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To assess whether the affected area had facilitated diffusivity,

restricted diffusivity or normal diffusivity, the mean ADC values of

the study group were compared to values obtained from manually

drawn ROIs of the unaffected contralateral hemisphere (if unilateral

changes) or compared to median values of the control group of dogs

(if bilateral); that is, a higher comparative ADC value implied a facili-

tated diffusivity and a lower ADC value implied restrictive diffusivity.

A similar method was applied to the mean perfusion measurements to

assess whether an area showed evidence of hyperperfusion or hypo-

perfusion; that is, hyperperfusion was identified as increased rCBF,

increased rCBV and reduced MTT, and hypoperfusion was identified

as decreased rCBF, decreased rCBV, and prolonged MTT. Regions of

interest in both diffusion and perfusion weighted imaging maps were

defined as abnormal if the quantitative values were greater than

2 standard deviations of the control or contralateral hemisphere.

2.3 | Statistical analysis

Coexisting or concurrent peri-ictal changes were defined as identification

of 2 or more lesions in different brain regions within the same animal. A

concurrent lesion network was created using graphical network analytical

methods, implemented in the igraph package available in R.6 A node

referred to a brain location, with the size of the node being relative to the

frequency of lesions at that location. An edge (link) referred to a coexisting

lesion at a different location, with edge weight being relative to frequency

of coexisting lesions. This undirected connected graph (network) con-

sisting of 10 nodes and 35 edges was then examined for group structure

via an optimal community structure algorithm, with the aim of defining

groups (communities) of commonly seen concurrent lesions. Briefly, this

algorithm partitions the network structure to maximize its modularity

function (Q) and identify the optimal community configuration consisting

F IGURE 1 Magnetic Resonance transverse images of 1 case at the level of the mesencephalon; A, T2-weighted, B, T2-weighted fluid-
attenuated inversion recovery (FLAIR), C, T1-weighted precontrast and D, T1-weighted postcontrast. These images highlight T1-hypointense,
T2-hyperintense areas affecting the cingulate gyrus (encircled area) and the hippocampus. These hyperintensities do not suppress on FLAIR.
Contrast enhancement is identified in the periphery of the affected areas including the meninges (white arrows) and the ependymal border
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of groups with many more internal connections than expected at ran-

dom.7 A Fisher's Exact test was performed to assess whether there was

significant association between the diffusion and perfusion-weighted find-

ings and was performed on a standard statistical software package (SPSS:

Statistical Package for the Social Sciences V.22.0.1, SPSS). This was there-

fore only applied to the cases which had both diffusion and perfusion

measurements documented. The measurements assessed were qualitative

values; restricted and facilitated diffusivity, and, hypoperfusion and hyper-

perfusion. A p-value of .05 was deemed significant.

3 | RESULTS

3.1 | Animals

A total of 81 dogs fulfilled the inclusion criteria. The study group

included the following breeds; Border Collie (9), Staffordshire Bull Ter-

rier (9), German Shepherd (6), Boxer (5), Mixed Breed (5) Border

Terrier (4), Labrador (4), French Bulldog (3), Pug (3), Springer Spaniel

(3), Cavalier King Charles Spaniel (3)Hungarian Vizsla (2), Miniature

Schnauzer (2), Lurcher (2), and one each of the following breeds

Australian Shepherd dog, Beagle, Bichon Frise, Chihuahua, Cocker

Spaniel, Doberman, Elkhound, English Bulldog, German Shorthaired

Pointer, Griffon Bruxellois, Golden Retriever, Irish Setter, Jack Russell

Terrier, Lakeland Terrier, Petite Basset Griffon Vendeen, Rottweiler,

Shih tzu, Siberian Husky, Spanish Water Dog, West Highland White

Terrier, and Wirehaired Fox Terrier. There were 54 males (36 were

neutered) and 27 females (15 were neutered).

Unrelated comorbidities documented were thrombocytopenia

(2) hypothyroidism (1), hyperadrenocorticism, and cranial cruciate liga-

ment rupture (1). The median age of onset of seizures was 30 months

(interquartile range 16-45.5).

At the time of presentation, 43/81 (53%) cases had evidence of

seizure activity within 24 hours prior to imaging acquisition, and

64/81 (79%) had evidence of seizure within a 48-hours prior to imag-

ing. The longest duration recorded between last seizure and imaging

F IGURE 2 Magnetic Resonance transverse images at the level of the piriform lobes; T2-weighted (A), T2-weighted fluid-attenuated inversion
recovery (FLAIR) (B0, T1-weighted precontrast (C), and T1-weighted postcontrast (D). These images highlight a T1-hypointense, T2-hyperintense
cavitated areas affecting the amygdala and piriform lobes (white arrowheads). These areas do suppress on FLAIR and have mild rim contrast
enhancement; suggestive of areas of necrosis
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F IGURE 3 Magnetic resonance imaging of the same case at initial presentation (A), 1 week apart (B). Both images are T2-FLAIR. Identifying a
near complete resolution of T2-weighted hyperintensities occupying the temporal and occipital cortex

F IGURE 4 Magnetic resonance images highlighting the distribution of seizure-induced changes; A, T2-weighted sagittal image showing
T2-hyperintense cingulate gyrus extending into the parahippocampal gyrus (white arrows), B, T2-weighted dorsal image showing homogeneous bilateral
symmetrical T2-hyperintensity affecting the gray matter of the frontal and olfactory lobes (dotted and hashed white encircled area), C, T2-weighted
transverse image showing well-defined wedge-shaped bilateral symmetrical T2-hyperintensities affecting the region of the pulvinar thalamic nuclei (black
arrows), D, T2-FLAIR transverse image showing bilateral T2-hyperintense piriform lobes, and, E, T2-FLAIR transverse image showing bilateral symmetrical
homogenous T2-hyperintensities affecting the hippocampus. Images C-E also show bilateral symmetrical T2-hyperintensities affecting the cingulate gyri
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acquisition was 7 days (n = 3). 70/81 (86%) cases presented with gen-

eralized seizures, 8/81 had both generalized and focal seizures, and

3/81 had partial signs only. The seizure incidence identified in the

cases was as follows; 43/81 (53%) presented with cluster seizures,

23/81 (28%) presented with isolated seizures, and 15/81 (19%) pres-

ented in status epilepticus.

3.2 | Magnetic resonance imaging

On conventional MRI, all the affected areas (n = 81) were T2-

hyperintense with no signal suppression on FLAIR. On T1-weighted

imaging, 55/81 had T1-isointense and 26/81 had T1-hypointense

areas. Contrast enhancement was identified in 12/81 dogs with 8/12

having meningeal enhancement around the affected areas and 4/12

parenchymal enhancement. Local mild mass effect (Figure 1) was

identified in 23/81 of the cases but there was no evidence of hernia-

tion as a result of the changes identified in any dog. Bilateral lesions

were seen in 71/81 cases with 69/71 having a symmetrical appear-

ance. Both bilateral areas and an additional unilateral area were identi-

fied in 3/81 cases, and 6/81 had unilateral changes only. Two dogs

had evidence of presumed malacic changes to the piriform lobes bilat-

erally (Figure 2). These affected areas were characterized by

T1-hypointense, T2-hyperintense cavitary lesions which did not

uptake any contrast; both these cases were Staffordshire bull terriers.

Repeat imaging was obtained in 3/81 cases; in 2 dogs this was

F IGURE 5 Diffusion-weighted magnetic resonance imaging (DWI) of 1 case showing a transverse T2-weighted fluid-attenuation inversion
recovery (FLAIR) image (A), a transverse DWI b = 1000 image (B) and a transverse apparent diffusion coefficient (ADC) (C and D); at the level of
the caudal diencephalon. The T2-hyperintense areas appear to have very high signal intensity affecting the gray matter (white arrowhead) and
mildly higher signal intensity affecting the white matter (black arrows) on the DWI image. The mildly increased signal affecting the white matter
could be due to T2-shine through phenomenon. On the ADC map, there is high signal within the white matter (black arrowhead) and low signal
affecting the gray matter (white arrow). This could indicate facilitated diffusion in the white matter and restrictive diffusion in the gray matter of
the cingulate gyri
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performed 1 week after the initial MRI and in 1 dog after 10 months.

Full resolution of changes was identified in the latter dog and in one

of the early scans (Figure 3). In the other MRI performed 1 week after

initial investigations, there was a marked reduction in the size of the

original changes. All 3 of the repeated scans had abnormal initial CSF

analysis, namely mild increase in total nucleated cell concentration and

protein concentration (Supporting Information File S1). On repeated

analysis, all 3 cases had normal CSF analysis.

Lesions were identified in 10 anatomical areas of the brain in this

study: hippocampus, cingulate gyrus, piriform lobe (including amyg-

dala), occipital lobe, frontal lobe, pulvinar thalamic nucleus, caudate

nucleus, temporo-parietal lobes and olfactory lobes (Figure 4). The

prevalence of these lesions identified the hippocampus (n = 39), cin-

gulate gyrus (n = 33) and the piriform lobes (n = 32) being the most

commonly affected sites.

Diffusion weighted imaging (Figure 5) was obtained from 21/81

cases and the control group was composed of 40 cases. The control

group consisted of dogs diagnosed with idiopathic vestibular neuropa-

thy (17/40), idiopathic facial nerve neuropathy (14/40), idiopathic ves-

tibular and facial nerve neuropathy (4/40), masticatory muscle

myositis (2/40), otitis media (2/40), and idiopathic trigeminal neuropa-

thy (1/40). The mean values were obtained from the piriform lobes,

hippocampi, parahippocampal gyri, occipital lobes, cingulate gyri,

olfactory lobes, frontal lobes, and pulvinar nuclei. Only 19 cases were

available for analysis due to susceptibility artifact presence over the

affected areas in 2 cases (see Supporting Information File S2). There

were 34 bilateral affected regions and 4 unilateral affected regions

that were assessed. Of the bilateral affected regions, all regions had

the same type of diffusivity when compared to the contralateral

affected region. The median variance from the contralateral hemi-

sphere was 0.06 × 10−3 mm2/s (range 0-0.21 × 10−3 mm2/s). On the

ADC map, 19/38 regions had evidence of facilitated diffusivity, 14/38

regions had evidence of restricted diffusivity, 4/38 regions had normal

diffusivity and one region had a mixture of restrictive and facilitative

diffusion; cingulate gyrus gray matter was restrictive and cingulate

gyrus white matter was facilitative (Figure 4). There were 36 regions

localized to the gray matter and 3 regions localized to the white mat-

ter. In the gray matter affected areas, there was a mixture of diffusiv-

ity: 18 had facilitative diffusivity, 14 had restrictive diffusivity and

4 had normal diffusivity. All 3 white matter affected regions had facili-

tated diffusivity and were all identified in the cingulate gyrus. Evaluat-

ing by case, 4/19 cases had facilitative patterning in all affected

regions, 4/19 had restrictive patterning in all affected regions and

2/19 had normal diffusivity patterning in all affected regions. The rest

of the cases (9/19) had a mixture of diffusivity affecting each region.

When assessing affected anatomical areas, the pulvinar thalamic

nuclei (affected bilaterally in 3 cases) and amygdala (affected bilater-

ally in 3 cases) had only one type of diffusivity documented whereas

all anatomical areas had evidence of facilitative diffusivity.

Perfusion weighted imaging was obtained from 9/81 cases from

1 of the 4 centers and 20 cases from the same center composed the

control group used for analysis. The relative maps were obtained

through dynamic susceptibility contrast MRI. Scanning measurements

can be found in Supporting Information File S3. The median values for

the control group were obtained for the left and right piriform lobe,

left and right hippocampus, left and right frontal gray matter, left and

F IGURE 6 Heat map showing the proportion of coexisting lesions at each location, with each expressed as a percentage of total lesions at
that location. The x-axis represents the independent location, whereas the y-axis represents the concurrent dependent location. For example, if a
cingulate lesion was present, 30.3% were cingulate-only lesions, but 21.9% of piriform, 33.3% of hippocampal and 80% of parahippocampal
lesions were present concurrently
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right occipital gray matter and the left and right cingulate gyrus (all

areas affected within the 9 cases in the study group) (see Supporting

Information File S4). There was evidence of hyperperfusion in 3/9

cases with increased rCBV, increased rCBF and reduced MTT. There

was evidence of hypoperfusion in 6/9 cases with decreased rCBV,

decreased rCBF and prolonged MTT. Both diffusion and perfusion

weighted imaging were available in 9/81 cases; there was no signifi-

cant association (P = .34) between the diffusion findings and the per-

fusion findings identified.

3.3 | Distribution data

Distribution analysis was carried out to identify if there was an associ-

ation between certain anatomical areas. The results reveal that multi-

ple affected locations were more often found than just a single

location (Figure 6). This revealed the following relationships: 80% and

89% of the all cases of cingulum lesions observed were present when

a parahippocampal lesion and pulvinar thalamic lesion was identified

respectively, and 70% of all cases of hippocampal lesions observed

were seen in the presence of a parahippocampal lesion. Connectivity

of certain locations was seen (Figure 7) and imply that there is

increased connectivity between olfactory lobe, caudate nuclei and

frontal, between the piriform lobe and the hippocampus, and between

the cingulate gyrus, parahippocampal gyrus, occipital lobe, pulvinar

thalamic nuclei, and the temporal lobe.

4 | DISCUSSION

The most common acute peri-ictal MR changes include bilateral symmetri-

cal T2- and T2-FLAIR hyperintense, T1-hypointense areawithmild contrast

uptake and have tendency for local mild mass effect. The most common

sites affected included the hippocampus, cingulate gyrus, and piriform

lobes; although other locations have now been identified. Abnormalities in

the diffusion and perfusion maps have also been recognized in this study;

whichmight reflect the underlying pathophysiological processes.

The imaging abnormalities identified on conventional MRI in this

study, are similar to those reported elsewhere.5 Studies in rodents

have identified that the T2-weighted hyperintense areas are a result

of ictal-related edema or early or developing gliosis.1,8 The patterning

of peri-ictal gadolinium enhancement seen correlated well with what

has been previously reported in human and animal studies; with a dis-

crete area of leptomeningeal enhancement around the affected

T2-hyperintense areas most commonly identified.5,9 The proposed

mechanism for this is that prolonged ictal activity leads to local lactic

acidosis, an increase in carbon dioxide and neurotransmitter release,

leading to an increase in local vascular permeability.9

There are currently no studies in humans or in domestic species

correlating seizure-induced changes with neuropathological findings.

One hypothesis behind the increased T2 signal could be related to

swelling or hypertrophy of glial cells leading to prolonged

T2-relaxation times. This is based on theories on dysregulation of

aquaporin-4 channels10 and failure of Na/K pumps11 leading to the

formation of vasogenic and cytotoxic edema.3

Conventional imaging cannot distinguish between cytotoxic and

vasogenic edema, thus more advanced techniques such as diffusion-

weighted imaging have been used. Diffusion weighted imaging

assesses the movement and distribution of water molecules within a

given time within a specific location. Changes in signal on DWI and on

ADC maps in dogs with kainite-induced status epilepticus are caused

by ictal activity.12 A reduction in ADC corresponds with decreased

diffusivity which could be directly associated with cytotoxic intracellu-

lar edema due to intracellular ictal-driven excitotoxic mechanisms.

Other theories for a decrease in ADC values include macrophagic,

microglial, and astrocytic proliferation.3 An increase in ADC values is

commonly associated with vasogenic edema formation or progressive

neuronal loss. Studies in humans have targeted their efforts to evalu-

ate the fluctuations in ADC values as they are thought to reflect neu-

ronal metabolic dynamics associated with seizure activity.13,14 Some

of these studies identify a reduction in ADC values; while others have

identified a transient increase in ADC values within the peri-ictal and

interictal period.3,12-15 The variability of findings could be time-

dependent and follow certain stages; stage 1 initial regional hyper-

perfusion with no detectable ADC change, stage 2: high ADC values

due to vasogenic edema formation, stage 3: reduction in ADC values

resulting from cytotoxic edema formation, and, stage 4: increased

ADC values due to progressive neuronal loss.16 In idiopathic epileptic

dogs, ADC values have been shown to be increased in the amygdala

within the interictal period17 and it was speculated that this change

could be secondary to neuronal cell loss or gliosis.

F IGURE 7 Concurrent lesion network showing coexisting lesions
and identified groupings of commonly concurrent lesions. Cingulate

lesions were those most frequently seen in conjunction with lesions
at other locations and are hence placed at the center of the network.
Node diameter is proportion to the frequency of lesions identified at
that location and the edges (connecting lines) are proportional to the
frequency of coexisting lesions. Black edges show coexisting lesion
within a group (intragroup) and red edges show coexisting lesions
between groups (intergroup)

NAGENDRAN ET AL. 1015



The results of this study similarly identified a variety of patterns

of diffusivity. The small size of the group limits statistical power. How-

ever, the variation might suggest a similar dynamic time-dependent

change to the ictal and paraictal tissues. In some cases, both high and

low signal were identified on the ADC maps, suggesting that these

stages might overlap. Consistent changes in the piriform lobes and the

amygdala are similar to interictal findings in idiopathic epileptic

dogs.17 A subgroup of our cases had a normal signal on ADC maps

but an increased signal on DWI. This could be associated with differ-

ent underlying mechanisms including that DWI is not only dependent

on ADC map but also on the T2-weighted appearance. Therefore,

having a high signal on DWI and a normal signal on ADC could imply

“T2-shine through”. Other possibilities for a normal signal on an ADC

map are that there could be combined effects of vasogenic and cyto-

toxic edema, or, cytotoxic edema and gliosis, affecting the same area

of tissue. Lastly, it is possible that the images acquired in the 3-Tesla

scanner, compared to the 1.5-Tesla, gave a better resolution of

images, making it easier to differentiate between areas of reduced

and increased signal. It is well established in humans that there is an

initial local hyperperfusion during ictal activity followed by hypo-

perfusion in the postictal period.18 Our study group has identified that

these changes in perfusion occur in dogs.

The affected anatomical areas identified are more extensive than

those previously reported.5 The cingulate gyrus in particular features

as one of the most prevalent areas affected, alongside the piriform

lobe and the hippocampus. Another new location identified in this

study was the medial pulvinar thalamic nucleus. It was interesting to

note that all the thalamic affected areas were in this particular loca-

tion. Electrophysiologic and resting state functional connectivity

human studies demonstrate that the medial pulvinar nucleus is partic-

ularly important in genesis and reciprocal propagation of seizure activ-

ity with the mesial temporal structures.19,20

This study identified that some affected areas had potential influ-

ence over the likelihood of other areas being affected. One possibility

is that two locations could have a contiguous relationship. Examples

of this association include the cingulate gyrus and parahippocampal

gyrus and the parahippocampal gyrus and hippocampus, which have

been identified in our study as frequently affected at the same time.

Another suggestion is that there likely are projection fibers connecting

certain other areas with each other. An example of this would the

pulvinar thalamic nuclei and certain areas of the cortex due to

thalamocortical relay circuits. The anatomical areas identified, and the

connectivity proposed, resembles an already defined circuitry; the

Papez's circuit. The Papez's circuit is a fundamental component of

the limbic system and therefore a control of emotional expression and

memory. The structures include the entorhinal cortex, hippocampus,

fornix, mammillary bodies, parahippocampal gyrus, cingulate gyrus,

amygdala, and anterior thalamus. Abnormalities of Papez's circuitry

has been identified in human patients with mesial temporal

epilepsy.21

CSF abnormalities were identified in 3 cases, which had normali-

zation of measurements on repeat analysis within a few days without

specific treatment. Increased protein and total nucleated cell

concentration are a transient phenomena in humans and suspected in

dogs although this finding remains controversial.22-24

As part of the inclusion of this study, we identified two cases that

had bilateral necrotic changes to the amygdala and piriform lobes.

These changes have been documented in experimental studies as well

as other retrospective imaging-based studies.12,25 However, these

have only been described in the interictal period of idiopathic epileptic

dogs. In addition to these studies, hippocampal atrophy has also been

observed in dogs.26-28 Such peri-ictal changes might be the prequel to

such irreversible changes; brain atrophy and cortical laminar necrosis,

as a result of sustained epileptic discharges in humans.29

There are several limitations in this study, mostly related to its

retrospective nature. There were few repeated studies (only per-

formed in 3 cases) and for this reason it was difficult to completely

exclude other differentials for seizure activity such as metabolic, vas-

cular, or neoplastic changes. Also, without this information, pertinent

data related to evidence of persistent changes and whether they were

related to the areas of suspected cytotoxic edema could not be evalu-

ated. The perfusion maps were based on T2* based sequences and

some of the DWI were also gradient echo-based. This results in sus-

ceptibility artifacts around air-filled chambers such as the frontal

sinuses and tympanic bullae. In some cases, the artifacts distorted the

areas of interest making it difficult to analyze and interpret. Lastly, it

was difficult to fully define the boundaries between piriform cortex

and amygdala on conventional imaging; due to close proximity of the

structures and similarities in appearance in T1- and T2-weighted

sequences. Volumetry using higher resolution MRI and 3-dimensional

software would need to be incorporated to analyze amygdaloid

changes in more detail.30

The variability of the MRI changes in this study implies limited

clinical utility. These abnormalities can be a mixture of local and

remote changes and thus adjunctive diagnostic utility of electroen-

cephalography should be used to aid the diagnosis of the epilepto-

genic focus.31

Ischemic infarcts can be difficult to differentiate from the MRI

changes described in this study. However, the combination of hyper-

perfusion, increased T2-signal and restricted diffusion is uncharacter-

istic of ischemia.32 Also, ictal changes will not align vascular

territories.33

ACKNOWLEDGMENT

No funding was received for this study. This work has been presented

at the 32nd ECVN/ESVN Annual Symposium in Wroclaw 2019.

CONFLICT OF INTEREST DECLARATION

Authors declare no conflict of interest.

OFF-LABEL ANTIMICROBIAL DECLARATION

Authors declare no off-label use of antimicrobials.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE

(IACUC) OR OTHER APPROVAL DECLARATION

Authors declare no IACUC or other approval was needed.

1016 NAGENDRAN ET AL.



HUMAN ETHICS APPROVAL DECLARATION

Authors declare human ethics approval was not needed for this study.

ORCID

Aran Nagendran https://orcid.org/0000-0002-8705-8576

Luisa De Risio https://orcid.org/0000-0001-9005-4165

Roberto José-López https://orcid.org/0000-0002-0661-5562

Rodrigo Gutierrez Quintana https://orcid.org/0000-0002-3570-

2542

Simon R. Platt https://orcid.org/0000-0002-7818-1011

REFERENCES

1. Williams JA, Bede P, Doherty CP. An exploration of the spectrum of

peri-ictal MRI change; a comprehensive literature review. Seizure.

2017;50:19-32.

2. Schwartz TH. Neurovascular coupling and epilepsy: hemodynamic

markers for localizing and predicting seizure onset. Epilepsy Curr.

2007;7(4):91-94.

3. Wall CJ, Kendall EJ, Obenaus A. Rapid alterations in diffusion-

weighted images with anatomic correlates in a rodent model of status

epilepticus. Am J Neuroradiol. 2000;21(10):1841-1852.

4. Requena M, Sarria-Estrada S, Santamarina E, et al. Peri-ictal magnetic

resonance imaging in status epilepticus: temporal relationship and

prognostic value in 60 patients. Seizure. 2019;71:289-294.

5. Mellema LM, Koblik PD, Kortz GD, Lecouteur RA, Chechowitz MA,

Dickinson PJ. Reversible magnetic resonance imaging abnormalities in

dogs following seizures. Vet Radiol Ultrasound. 1999;40(6):588-595.

6. Csardi G, Nepusz T. The igraph software package for complex net-

work research. Int J Complex Syst. 2006;1695(5):1-9.

7. Brandes U, Delling D, Gaertler M, et al. On modularity clustering. IEEE

Trans Knowl Data Eng. 2007;20(2):172-188.

8. Jupp B, Williams JP, Tesiram YA, Vosmansky M, O'Brien TJ. Hippo-

campal T2 signal change during amygdala kindling epileptogenesis.

Epilepsia. 2006;47(1):41-46.

9. Nitsch C, Goping G, Klatzo I. Pathophysiological aspects of blood-

brain barrier permeability in epileptic seizures. Excitatory Amino Acids

and Epilepsy. Boston, MA: Springer; 1986:175-189.

10. Lee DJ, Amini M, Hamamura MJ, et al. Aquaporin-4-dependent

edema clearance following status epilepticus. Epilepsy Res. 2012;98

(2–3):264-268.hyu.
11. Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mecha-

nisms of pathological cell swelling. Neurosurg Focus. 2007;22(5):1-9.

12. Hasegawa D, Orima H, Fujita M, et al. Diffusion-weighted imaging in

kainic acid-induced complex partial status epilepticus in dogs. Brain

Res. 2003;983(1–2):115-127.
13. Kim SE, Lee BI, Shin KJ, et al. Characteristics of seizure-induced signal

changes on MRI in patients with first seizures. Seizure. 2017;48:

62-68.

14. Di Bonaventura C, Bonini F, Fattouch J, et al. Diffusion-weighted

magnetic resonance imaging in patients with partial status epilepticus.

Epilepsia. 2009;50:45-52.

15. Engelhorn T, Weise J, Hammen T, Bluemcke I, Hufnagel A,

Doerfler A. Early diffusion-weighted MRI predicts regional neuronal

damage in generalized status epilepticus in rats treated with diaze-

pam. Neurosci Lett. 2007;417(3):275-280.

16. Yu JT, Tan L. Diffusion-weighted magnetic resonance imaging dem-

onstrates parenchymal pathophysiological changes in epilepsy. Brain

Res Rev. 2008;59(1):34-41.

17. Hartmann A, Sager S, Failing K, Sparenberg M, Schmidt MJ. Diffu-

sion-weighted imaging of the brains of dogs with idiopathic epilepsy.

BMC Vet Res. 2017;13(1):338.

18. Pizzini FB, Farace P, Manganotti P, et al. Cerebral perfusion alter-

ations in epileptic patients during peri-ictal and post-ictal phase: PASL

vs DSC-MRI. Magn Reson Imaging. 2013;31(6):1001-1005.

19. Rosenberg DS, Mauguière F, Demarquay G, et al. M v. Epilepsia.

2006;47(1):98-107.

20. Jo HJ, Kenny-Jung DL, Balzekas I, Benarroch EE, et al. Nuclei-specific

thalamic connectivity predicts seizure frequency in drug-resistant

medial temporal lobe epilepsy. NeuroImage Clin. 2019;21:101671.

21. Oikawa H, Sasaki M, Tamakawa Y, Kamei A. The circuit of Papez in

mesial temporal sclerosis: MRI. Neuroradiology. 2001;43(3):205-210.

22. Zisimopoulou V, Mamali M, Katsavos S, Siatouni A, Tavernarakis A,

Gatzonis S. Cerebrospinal fluid analysis after unprovoked first seizure.

Funct Neurol. 2016;31(2):101-107.

23. Goncalves R, Anderson TJ, Innocent G, et al. Effect of seizures on

cerebrospinal fluid analysis in dogs with idiopathic epilepsy. Vet Rec.

2010;166(16):497-498.

24. Coelho AM, Maddox TW, Sanchez-Masian D, et al. Diagnostic value

of cerebrospinal fluid analysis in a population of dogs with suspected

idiopathic epilepsy. Vet Rec. 2019;185(17):539.

25. Pruessner JC, Li LM, Serles W, et al. Volumetry of hippocampus and

amygdala with high-resolution MRI and three-dimensional analysis

software: minimizing the discrepancies between laboratories. Cereb

Cortex. 2000;10(4):433-442.

26. Kuwabara T, Hasegawa D, Kobayashi M, et al. Clinical magnetic reso-

nance volumetry of the hippocampus in 58 epileptic dogs. Vet Radiol

Ultrasound. 2010;51(5):485-490.

27. Estey CM, Dewey CW, Rishniw M, et al. A subset of dogs with pre-

sumptive idiopathic epilepsy show hippocampal asymmetry: a volu-

metric comparison with non-epileptic dogs using MRI. Front Vet Sci.

2017;4:183.

28. Czerwik A, Płonek M, Podgórski P, Wrzosek M. Comparison of elec-

troencephalographic findings with hippocampal magnetic resonance

imaging volumetry in dogs with idiopathic epilepsy. J Vet Intern Med.

2018;32(6):2037-2044.

29. Donaire A, Carreno M, Gomez B, et al. Cortical laminar necrosis

related to prolonged focal status epilepticus. J Neurol Neurosurg

Psychiatry. 2006;77(1):104-106.

30. Hasegawa D, Nakamura S, Fujita M, et al. A dog showing Klüver-Bucy

syndrome-like behavior and bilateral limbic necrosis after status

epilepticus. Vet Neurol Neurosurg. 2005;7:1-14.

31. Hasegawa D. Diagnostic techniques to detect the epileptogenic zone:

pathophysiological and presurgical analysis of epilepsy in dogs and

cats. Vet J. 2016;215:64-75.

32. Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and

perfusion MRI demonstrates parenchymal changes in complex partial

status epilepticus. Brain. 2005;128(6):1369-1376.

33. Lansberg MG, O'Brien MW, Norbash AM, et al. MRI abnormalities

associated with partial status epilepticus. Neurology. 1999;52(5):

1021-1021, 1027.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Nagendran A, McConnell JF, De

Risio L, et al. Peri-ictal magnetic resonance imaging

characteristics in dogs with suspected idiopathic epilepsy.

J Vet Intern Med. 2021;35:1008–1017. https://doi.org/10.

1111/jvim.16058

NAGENDRAN ET AL. 1017

https://orcid.org/0000-0002-8705-8576
https://orcid.org/0000-0002-8705-8576
https://orcid.org/0000-0001-9005-4165
https://orcid.org/0000-0001-9005-4165
https://orcid.org/0000-0002-0661-5562
https://orcid.org/0000-0002-0661-5562
https://orcid.org/0000-0002-3570-2542
https://orcid.org/0000-0002-3570-2542
https://orcid.org/0000-0002-3570-2542
https://orcid.org/0000-0002-7818-1011
https://orcid.org/0000-0002-7818-1011
https://doi.org/10.1111/jvim.16058
https://doi.org/10.1111/jvim.16058

	Peri-ictal magnetic resonance imaging characteristics in dogs with suspected idiopathic epilepsy
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study population and design
	2.2  Magnetic resonance imaging
	2.3  Statistical analysis

	3  RESULTS
	3.1  Animals
	3.2  Magnetic resonance imaging
	3.3  Distribution data

	4  DISCUSSION
	ACKNOWLEDGMENT
	  CONFLICT OF INTEREST DECLARATION
	  OFF-LABEL ANTIMICROBIAL DECLARATION
	  INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) OR OTHER APPROVAL DECLARATION
	  HUMAN ETHICS APPROVAL DECLARATION
	REFERENCES


