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Abstract

Feelings of fear, anxiety, dyspnea and panic when inhaling carbon dioxide (CO2) are vari-

able among humans, in part due to differences in CO2 sensitivity. Rat aversion to CO2 con-

sistently varies between individuals; this variation in aversion may reflect CO2 sensitivity,

but other personality traits could also account for individual differences in aversion. The

aims of this study were to 1) assess the stability of individual differences in rat aversion to

CO2, 2) determine if individual differences in sweet reward motivation are associated with

variation in aversion to CO2, and 3) assess whether variation in aversion to CO2 is related to

individual differences in motivation to approach gains (promotion focus) or maintain safety

(prevention focus). Twelve female Sprague Dawley rats were exposed multiple times at

three different ages (3, 9 and 16 months old) to CO2 in approach-avoidance testing to

assess motivation to avoid CO2 against motivation to gain sweet rewards. Rats were also

tested for motivation to find hidden sweet rewards, and for their motivation to approach

rewards or darkness. Tolerance to CO2 increased with repeated exposures and was higher

at older ages. Individual differences in aversion to CO2 were highly repeatable but unrelated

to motivation for sweet rewards or the strength of promotion and prevention focus. These

results indicate that individual differences in aversion to CO2 reflect variation in CO2

sensitivity.

Introduction

People report feelings of fear, anxiety, dyspnea and panic during CO2 inhalation (for a review

see [1]). This emotional response to CO2 inhalation varies among individuals. With a single

inhalation of 35% CO2, around 24% of healthy humans experience panic attacks [2, 3].

Between 43 to 94% of panic disorder patients experience PAs after a single inhalation of 35%

CO2 [1]. When inhaling 35% CO2, the anxiety experienced by healthy people and the panic

attacks experienced by panic disorder patients are highly consistent between exposures [4, 5].

This between subject variability in the subjective emotional experience is often referred to as

variation in CO2 sensitivity [1].

Rats respond to CO2 exposure with defence behaviours [6–9], and are motivated to avoid

this agent [9–11]. Rats have also been used as translational models for understanding the

underlying mechanisms of the emotional response to CO2 inhalation [12, 13]. Rat behavioural

responses to CO2 are highly variable. For example, during forced (i.e. unavoidable) exposure

to CO2 “escape attempts” have ranged between 0 to 34 among rats [7], with 50% of rats
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showing an increase in locomotion [9], and 20% of rats moving around the cage perimeter

[14]. Aversion to CO2 is also variable among rats. For example, in one study the latency to

avoid CO2 varied between individuals from 7 s to 48 s in an aversion-avoidance setting (in

which the cost of avoiding the CO2 delivered in a dark compartment was escaping to a CO2-

free compartment that was brightly lit) [10]. In an approach-avoidance setting (in which the

cost of escaping to a CO2-free compartment was the loss of sweet rewards), the threshold of

aversion ranged between 11 to 19% CO2 between rats [9, 11]. In more recent work we found

that variation in rat behaviour was consistent between two exposures to CO2, during forced

exposure, aversion- and approach-avoidance testing and we found that rats that consistently

showed higher responses to CO2 forced exposure were consistently less tolerant of CO2 when

tested in aversion-avoidance [15]. These results suggest that variation in rat responses to CO2

is linked to consistent individual differences in CO2 sensitivity; i.e. like humans, rats may vary

in the emotional experience elicited by CO2 (for a review, see [16]). The first aim of the current

study was to determine whether individual differences in rat aversion to CO2 in approach-

avoidance tests assessed at 3, 9 and 16 months of age, are stable and consistent through multi-

ple exposures.

Individual differences in aversion to CO2 could be caused by behavioural differences elic-

ited by testing contingencies specific to the approach-avoidance setting. In approach-avoid-

ance tests, exposure to CO2 is paired with access to sweet rewards that rats are motivated to

approach [11]. An underlying but untested assumption is that the strength of motivation to

approach the sweet rewards is similar among rats. However, motivation for sucrose is known

to consistently vary among rats [17–19], so it is possible that variation in rat aversion to CO2

in approach-avoidance tests is due to individual variability in motivation for sweet rewards.

Thus, the second aim of our study was to assess if individual differences in rat responses to

CO2 in an approach-avoidance test are associated with variation in sweet reward motivation.

Following regulatory focus theory [20], variation in rat behaviour in approach-avoidance

could be related to individual differences in the strength of promotion and prevention motiva-

tions. Individuals focused on promotion are more motivated to approach gains and are more

sensitive to their presence or absence; individuals focused on prevention are more motivated

and sensitive to safety related incentives [21]. Promotion and prevention motivations are inde-

pendent; hence individuals can be high or low in promotion or prevention motivations, or

both [22]. These motivational foci are consistent over time in rats [22, 23]. Approach-avoid-

ance tests involve both gain (sweet rewards) and safety (CO2-free cage) incentives. Individual

differences in promotion and prevention motivations could account for variation in CO2

thresholds of aversion. Promotion focused individuals may tolerate CO2 concentrations to

maximize gains, and prevention focused individuals may be maintaining safety by avoiding

non-threatening CO2 concentrations. Thus, the final aim of this study was to determine if indi-

vidual differences in regulatory focus are related to variation in CO2 aversion in approach-

avoidance.

Methodology

All procedures were performed in accordance with the guidelines on care and use of rodents

in research established by the Canadian Council on Animal Care and were approved by The

University of British Columbia Animal Care Committee (protocol A15-0071).

Subjects and housing

In a previous study by our group, individual differences in rat responses to CO2 were detected

with a sample size of 12 rats [15]; therefore, 12 Sprague-Dawley rats were used in this study.
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Rats were obtained as surplus stock from the University of British Columbia as an effort to

reduce the total number of animals used; however, only female rats were available at the begin-

ning of the current study. Rats were 3 months old and weighed 328 ± 45 g (mean ± standard

deviation) at the beginning of the study. All subjects were marked with an animal marker

(Ketchum Manufacturing Inc., ON, Canada) and housed in groups of three on a 12 h light/

dark cycle at controlled temperature and humidity (21 ± 0.4˚C and 52 ± 11%, respectively).

The housing system consisted of two cages (20 cm x 50 cm x 40 cm) connected by a red poly-

carbonate tube (7.6 cm diameter, 15.0 cm long). Both cages contained bedding (Biofresh,

Absorption Corp, WA, USA) and environmental enrichment (e.g. cardboard boxes, ham-

mocks, PVC pipes, and shredded paper towels). Rats were provided ad libitum food (Rat Diet

PMI 5012, Lab Diets, Land O’Lakes, Inc., MN, USA) and tap water. Rats were also provided

daily access to a playpen (i.e. a highly enriched large cage; following [24]) for 30 min/d.

Handling and transport. Rats were habituated to handling during the week before exper-

iments started (following [24]). For all sessions, rats were individually transported in a cage

covered with black plastic. All habituation, training and test trials were conducted during the

light cycle between 900 h and 1700 h. Each rat was habituated, trained, or tested only once per

day at similar hours each day across all tests, and only separated from cage-mates for a maxi-

mum of 40 min per day. Test cages and the apparatus were cleaned with a combination of

water and isopropanol (70%), and bedding was replaced before the next session.

Experiment 1: Aversion to CO2

Apparatus. An approach-avoidance apparatus was used to assess repeatability in aversion

to CO2 through multiple exposures. The apparatus consisted of a larger top cage (one of the

rat home cages) positioned 20 cm above a smaller bottom cage (Fig 6A). Both cages contained

bedding. The top cage was connected to the bottom cage via a transparent acrylic tube fitted

with plastic cleats to improve traction. A plastic sliding door was attached to the entrance of

the connecting tube at the top cage of the tube. The top cage was covered with a wire lid, and

the bottom cage was covered with a clear acrylic lid. To allow for comparability between stud-

ies, gases were delivered from an inlet in the acrylic lid [9, 11, 15, 24]. The lid also contained

two scavenging outlets inlet (Fig 1A); the scavenging outlets were connected to a wall exhaust

system by a plastic scavenger hose.

Two flow meters (CO2: Western Medica, OH, USA; air: Dwyer instruments, Inc., NI, USA)

were used to regulate gas flow. Gases (air and CO2) were delivered from compressed gas cylin-

ders (Praxair, BC, Canada), through a clear vinyl tube inserted in the gas inlet.

Habituation, training and testing procedures. Subjects were trained to eat 20 sweet

rewards (Cheerio; Honey Nut Cheerios TM, General Mills Inc., MN, USA) in the bottom cage

of the apparatus. At the beginning of each training session, the subject was placed in the top

cage and allowed to explore the apparatus for 5 min, with air (4 L min-1) flowing into the bot-

tom cage at all times. The experimenter then tapped her fingers on the side of the cage, gave

the rat one sweet reward in the top cage, and closed the sliding door to block access to the bot-

tom cage. The sliding door remained closed for 60 s while 20 sweet rewards were placed in a

dish in the bottom cage. The sliding door was opened and the rat was able to descend into the

bottom cage to consume the sweet rewards. The training session ended as soon as the rat left

the bottom cage (i.e. shoulders crossed into the tube exiting the bottom cage). A rat was con-

sidered to have met the training criterion when, during three consecutive training trials, it

stayed in the bottom cage for 5 min or ate all 20 sweet rewards, whichever occurred first.

Once trained, rats were repeatedly exposed to CO2 gradual-fill (3 months of age: 26% CO2

cage vol. min-1; 9 and 16 months of age: 20% CO2 cage vol. min-1) in the approach-avoidance
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apparatus. During CO2 trials, air flow was substituted with CO2 flow as soon as the rat started

eating the sweet rewards. We ran one control trial (air flow of 4 L min-1) after every two CO2

exposures. The trial ended when the rat left the bottom cage. Latency (s) to exit the bottom

cage was recorded by direct observations. If a rat failed to stay for 5 min or eat all 20 sweet

rewards in a control trial, the previous CO2 trial was excluded and the rat was re-trained before

continuing in CO2 trials. Rats were re-trained until the training criterion was met at 9 and 16

months of age (for order and length of the experiments, see Fig 2).

Assessment of CO2 concentrations. With no animal present in the approach-avoidance

apparatus, we conducted twelve CO2 flow trials for each of the two flowrates used (26% CO2

chamber vol. min-1 and 20% CO2 chamber vol. min-1) to assess changes in CO2 concentration

during gradual-fill. A clear plastic sampling tube, connected to an oxygen analyzer (Series 200,

Alpha Omega Instrument Corporation, RI, USA), was inserted through the inlet in the middle

of the acrylic glass lid. The oxygen analyzer readings were video recorded during filling (5

min). Every 0.2 s CO2 concentrations were estimated from changes in oxygen concentrations

using the formula CO2 (t = x) = 100 –([O2 (t = x)
� 100] / O2 (t = 0).

Fig 1. Experimental apparatus. a) Approach-avoidance apparatus used to assess aversion to CO2. Measurements

were: The top cage 20 cm x 50 cm x 40 cm, bottom cage 20 cm x 45 cm x 24 cm, connecting tube 10 cm diameter x 45

cm long, and plastic sliding door 10 cm x 10 cm. b) Modified approach-avoidance apparatus used to evaluate

motivation for sweet rewards, the test cage measured 20 cm x 45 cm x 24 cm and the ice cube trays 32 cm x 12 cm x 4

cm. c) Modified open field arena used to assess promotion and prevention motivation focus, the arena was made of

white acrylic glass (100 cm x 100 cm x 61 cm) and contained two smaller acrylic glass boxes (10 cm3) placed against

the center of two adjacent walls of the arena (treat and dark locations).

https://doi.org/10.1371/journal.pone.0245347.g001
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Experiment 2: Sweet reward motivation

Apparatus. A modified approach-avoidance apparatus was used for this test. During base-

line, the apparatus remained the same as described for the approach-avoidance test. During

test sessions, the bottom cage was replaced with a new test cage measuring 20 cm x 45 cm x 24

cm. The test cage was covered with a wire lid and contained two ice cube trays with 12 holes

each, and was covered with autoclaved sand (Fig 1B).

Training and testing procedure. Rats were habituated once and tested three times for

sweet reward motivation. At the beginning of each session, the rat was placed into the top

cage, and could freely move between the top and bottom cages for 5 min. The rat was then

given a signal by the experimenter to receive one sweet reward in the top cage, and the sliding

door was closed for 60 s. During this period the baseline bottom cage was replaced with the

test cage. The test cage contained 20 sweet rewards placed in ice tray holes and hidden under-

neath a layer of sand. One sweet reward was left on top of the sand in the middle of the cage.

The rat was then allowed to descend to the bottom test cage to search for and consume the

rewards. The session ended if the rat left the test cage (i.e. shoulders crossed into the tube exit-

ing the cage) without carrying a sweet reward, or if the subject had left the cage carrying a

sweet reward but did not return to the test cage within 3 s of having consumed the sweet

reward.

For the training trial, the sweet rewards were distributed in 6 adjacent holes of the ice tray,

with 3 to 4 sweet rewards per hole. For rats that consumed fewer than 15 sweet rewards during

their training trial (n = 5 rats), training was repeated a second time. In the first test trial, the

sweet rewards were distributed into 9 reward holes, separated by empty holes, with 2 to 3

sweet rewards per hole. In the second test trial, sweet rewards were evenly distributed through-

out the tray with only one sweet reward per reward hole and at least one empty hole between

each reward. In the third test trial, the sweet rewards were randomly distributed throughout

the tray at coordinates obtained from a random number generator with a maximum of 2

rewards per hole.

Any rewards remaining were counted at the end of the trial. All trials were video recorded

and scored using Boris software (Version 7.0.9) [25]. A trained observer, blind to rat identity

and trial number, scored the videos for the number of sweet rewards consumed and searching

time between each consecutive reward found (s). Inter-observer reliability was estimated from

10 videos scored by the trained observer and another independent observer (number of sweet

rewards consumed: r = 0.99; searching time: r = 0.99).

Fig 2. Experiments timeline. Order of testing across the three experiments (i.e. aversion to CO2, sweet reward motivation and regulatory focus). In all three

experiments rats were trained, retrained or tested every weekday but not on weekends.

https://doi.org/10.1371/journal.pone.0245347.g002
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Experiment 3: Regulatory focus

Apparatus. Following Franks and colleagues [23], a modified open field arena was used

for regulatory focus profiling. The modified open field arena was made of white acrylic and

contained two smaller acrylic boxes placed against the center of two adjacent walls of the arena

(treat and dark locations; Fig 1C). The arena was illuminated with red light and white light

that provided an average light intensity of 82 ± 1.6 lux (mean ± standard deviation) at the cen-

ter of the arena floor.

Habituation and testing procedure. Rats were habituated twice and tested twice in the

modified open field arena. Before each trial, a variety of food rewards (20 Cheerios: Honey

Nut Cheerios TM, General Mills Inc., MN, USA; 10 sunflower seeds: Raw Sunflower Seeds,

Western Family, Overwaitea Food Group LP, BC, Canada; 1 yogurt drop: Drops Yogurt Fla-

voured Treats, Living World, Hagen Inc., QC, Canada; 2 peanut M&Ms: Mars Canada Inc.,

ON, Canada; 20 peanuts: Peanuts Roasted in the Shell, Western Family, Overwaitea Food

Group LP., BC, Canada) were placed inside of one of the small boxes (treat location) inside the

arena, and the other small box was left empty (dark location). At the beginning of each trial,

the subject was introduced to the arena in the farthest corner from and equidistant to the treat

and dark locations. Rats were left in the arena for 10 min; if the rat approached the dark loca-

tion (within one body length) the light would turn off for 30 s or until the rat left the dark loca-

tion, whichever occurred first.

All trials were video recorded and scored by a trained observer, blind to rat identity and

trial number. The size of rats was bigger than that of the treat and dark locations; therefore,

and following Franks et al. [23], the observer scored the amount of time rats spent within 20

cm of the treat and dark locations (s) using Boris software. Another independent observer

scored 4 videos to estimate inter-observer reliability (treat location time: r = 0.99; dark location

time: r = 0.99).

Data analysis

Analyses were carried out with R (R Development Core Team, Version 3.4.1) and RStudio

(RStudio, Inc., Version 1.0.136). The model residuals and data were visually assessed for nor-

mality. Results are reported as mean ± standard error.

Experiment 1: Aversion to CO2. We estimated the CO2% concentrations at the time

when rats exited the bottom cage (i.e. CO2% avoided), using the average concentration of CO2

at each time point (measured every 0.2 s) during the 12 CO2 flow trials. Random effects models

are a useful tool to handle unbalanced or incomplete data, and it has been shown that the

power to detect individual differences in these models is improved by the inclusion of data

from individuals with only a few observations and that removal of individuals with a low num-

ber of observations is unjustified [26]. Hence, we used all available observations from all sub-

jects using a linear mixed model (“nlme” R-package; an alternative analysis considering each

age separately is presented as Supporting Methods S1 in S1 File). The model presented here,

included the response variable CO2% avoided in approach-avoidance tests, age (3, 9 and 16

months of age) as a fixed factor, exposure number (within age) as a covariate, the interaction

between age and exposure number, and series identity (i.e. unique combination of the individ-

ual rat by the age at which observations were taken) within rat identity as a random intercept.

We found that weight as fixed effect did not significantly affect aversion to CO2, hence was not

included in the model (results not shown). Age and exposure number were both mean cen-

tered and standardized to 2 standard deviations [27]. We assessed the fit of this model as essen-

tially equivalent to a model that included exposure number as a random slope and series

identity within rat identity as random intercept (see Supporting Methods S2 in S1 File). We
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assessed the power to detect significant random intercepts and slopes given the current study

sampling structure [26] and found sufficient power (0.87) to detect differing random inter-

cepts by rat but low power to detect differing slopes by rat (Supporting Methods S3 in S1 File;

further model diagnostics are presented in Supporting Methods S4 in S1 File). The significance

of the random intercept was evaluated using the likelihood ratio test (LRT). We estimated

repeatability (R; “rptR” R-package) of CO2% avoided adjusted for age and within age exposure

number (adjusted repeatability for Gaussian data [28]). The point estimate of aversion to CO2

for each individual rat was calculated as the average best linear unbiased predictors (BLUPs) of

the random effects obtained from 1000 simulations (“arm” R-package). This method has been

used in behavioural ecology studies to reduce biases in the estimates, arising from for example

habituation or increased number of repeated tests in older animals [29].

Experiment 2: Sweet reward motivation. To assess individual differences in sweet reward

motivation, the total number of rewards consumed, and the total searching time were included

as response variables in two linear mixed models. In the models, trial number was included as

fixed factor and rat identity as random intercept. LRTs were used to assess the significance of

the random intercept, and repeatability (R) across trials was assessed.

We then estimated the average number of sweet rewards consumed and total searching

time per rat across trials. The relationship between the two measures of rat motivation for

sweet rewards and the average BLUPs of CO2% avoided in approach-avoidance tests was

assessed using Pearson correlation tests.

Experiment 3: Regulatory focus. To assess consistency in promotion (and prevention)

focus, we used Pearson correlation to examine the percentage of time spent in the treat (and

dark) location in the two test trials. For each rat, we estimated the average percentage of test

time spent in the treat (and dark) location across the two trials. Again, we used Pearson corre-

lation to assess the relationship between promotion (and prevention) focus and the average

BLUPs of CO2% avoided.

Sample disposition. For Experiment 1, some rats failed to meet training criterion after six

training trials in approach-avoidance within each age; these rats were not tested. We tested

nine, nine and six rats at 3, 9 and 16 months of age, respectively. At age 16 months, eight rats

were re-trained in approach-avoidance; however, two rats had to be euthanized due to mam-

mary tumor development. The remaining six rats were clinically healthy. Due to repeated fail-

ure to meet training criterion during control trials (four consecutive trials), not all rats were

tested with CO2 for the same number of exposures at each age (see Table 1). For experiments 2

and 3 we tested 11 rats–one of the rats tested in approach-avoidance failed to follow handling

procedures and was excluded from these experiments. We used these 11 rats to assess the rela-

tionship between aversion to CO2, sweet reward motivation and regulatory focus (see Table 1).

Results

Experiment 1: Aversion to CO2

During control trials, rats left the cage after 4.8 ± 1.8 min and ate 18 ± 3 Cheerios. In all test tri-

als rats avoided CO2 before recumbency. Concentrations of CO2 avoided by rats increased

with repeated exposures (F1,148 = 17.83, p< 0.0001; n = 12; Fig 3). Aversion to CO2 was

affected by age (F2,10 = 6.09, p< 0.02; n = 12). Compared to 3 months of age (8.4 ± 0.9% CO2),

rats tolerated higher CO2 concentrations at 9 months of age (p = 0.02; 10.9 ± 0.9% CO2). We

found no evidence for an interaction between age and exposure number (F2,148 = 0.57,

p = 0.57; n = 12). Rat identity and series identity within rat explained 45% (Likelihood ratio

test: LR = 61.67, p< 0.001; n = 12) and 5% (LR = 1.45, p = 0.21; n = 12) of the variation in the

CO2 concentrations avoided, respectively. CO2% avoided was repeatable (rat identity adjusted
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repeatability: R = 0.46, p< 0.01; series identity: R = 0.07, p = 0.06; n = 12; Fig 4); with average

CO2 concentrations avoided ranging between 4 and 15% among rats.

Experiment 2: Sweet reward motivation

Trial number did not affect rewards consumed or total searching time (sweet rewards con-

sumed: F2,20 = 0.33, p = 0.72; searching time: F2,20 = 0.19, p = 0.83; n = 11; Fig 5). Rats spent on

average 174 ± 17.2 s searching for rewards, and consumed on average 14.2 ± 1.04 sweet

rewards. The random intercept (rat identity) explained 56% (LRT = 9.9, p< 0.01, n = 11) and

60% (LRT = 11.61, p< 0.001, n = 11) of the variation in searching time and rewards con-

sumed, respectively. Searching time and sweet rewards consumed were repeatable (R = 0.56,

p< 0.0001, and R = 0.60, p< 0.001, respectively; n = 11). However, aversion to CO2 was not

related to searching time (Pearson correlation test: r = 0.13, p = 0.71; n = 11) or rewards con-

sumed (r = 0.13, p = 0.71; n = 11) in sweet reward motivation trials (Fig 6).

Table 1. Sample disposition for experiments 1 (aversion to CO2), 2 (sweet reward motivation) and 3 (regulatory focus), specifying number of exposures or trials for

each individual rat and the age at which rats were tested.

Experiment 1 Experiment 2 Experiment 3

Number of exposures to CO2 Number of trials

Rat identity 3 months 9 months 16 months 9 months 9 months

1 0 4 3 0 0

2 9 9 0 3 2

3 10 9 0 3 2

4 7 0 0 3 2

5 9 9 3 3 2

6 10 0 0 3 2

7 10 0 0 3 2

8 0 9 0 3 2

9 7 7 2 3 2

10 0 10 3 3 2

11 10 10 3 3 2

12 10 9 3 3 2

https://doi.org/10.1371/journal.pone.0245347.t001

Fig 3. Effect of repeated exposures in aversion to CO2 at 3, 9 and 16 months of age. Individuals are represented by solid lines; the color identifying individuals are

consistent across ages. Dashed lines represent the change in CO2 tolerance with repeated exposures within each age.

https://doi.org/10.1371/journal.pone.0245347.g003
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Experiment 3: Regulatory focus

Rats spent on average 31% and 51% of the test time in the treat and dark locations, respectively.

Across the two test trials, rats consistently varied in the percentage of time spent in these loca-

tions (treat: r = 0.80, p< 0.01; dark: r = 0.81, p< 0.01; n = 11 rats; Fig 7). Aversion to CO2 was

not related to the percentage of time spent in the treat (r = 0.34, p = 0.3; n = 11) or dark loca-

tions (r = -0.09, p = 0.79; n = 11).

Discussion

In agreement with previous studies [15, 24], we found that rat aversion to CO2 consistently

varied among rats, ranging between 4 and 15% CO2. As frequently occurs in longitudinal stud-

ies, despite the effort to obtain measurements of aversion to CO2 from all subjects at all time

points, data from some rats were missing for some ages. Despite this unbalance data, our

method of analysis had sufficient power test variation among individuals. To our knowledge,

the current study is the first to show that rat individual thresholds of aversion to CO2 are stable

and highly repeatable across repeated exposures and across different ages (R = 0.46; the aver-

age repeatability estimates across behaviours and among taxa has been shown to be 0.37 [30]).

Fig 4. Individual differences in aversion to CO2, arranged from the least to the most tolerant rat. Bigger and solid shapes indicate the mean and

error bars show the standard error for each individual rat within each age. Smaller and transparent shapes represent observation from each rat at each

age. Each age is presented with a different shape (circles: 3 months, triangles: 9 months, squares: 16 months) and each color represents an individual

rat.

https://doi.org/10.1371/journal.pone.0245347.g004
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Fig 5. Individual differences in sweet reward motivation. Individual rat (n = 11) mean (± SE) a) searching time, and b) rewards consumed, across three sweet

reward motivation trials. Rat identity follows that shown in Fig 4.

https://doi.org/10.1371/journal.pone.0245347.g005

Fig 6. Relationship between aversion to CO2 and sweet reward motivation. Each dot represents an individual rat’s point estimate (obtained from the BLUPs of

the random effects of 1000 simulations) of aversion to CO2 and their average a) searching time, and b) rewards consumed, from the sweet reward motivation trials

(n = 11).

https://doi.org/10.1371/journal.pone.0245347.g006
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Previous studies have reported high between-individual variation in rat responses to CO2

during forced exposure [7, 9, 14], choice [31, 32], and aversion tests [10, 11, 33], but the source

of this variation remained unexplained. Rat defence behaviours are plastic, varying with envi-

ronmental familiarity (i.e. habituation) [34–36], situational contingencies (for example, threat

proximity and possibility to escape) [37–39], and with specific conditions prior to or during

testing [40–45]. Although we found that the thresholds of aversion to CO2 were higher at older

ages, at 3 months of age rats were exposed to a higher flowrate than that used at later ages,

impeding our ability to draw age-related inferences. Contrary to the general trend, as it can be

seen in Fig 4, rat number 12 experienced a decrease in aversion to CO2 measured at ages 9 and

16 months when compared to age 3 months. This could indicate the presence of individual dif-

ferences in plasticity; however, the current study lacks power to make strong claims about rat

differences in slopes. Consistent with previous results from our research group [9], we found

that thresholds of aversion to CO2 increased over repeated exposures at 3 and 9 months of age.

This result is also consistent with human studies showing that chemoreceptor sensitivity [46]

and feelings of anxiety [47, 48] decrease with habituation to CO2 inhalation. Overall, these

results indicate that aversion to CO2 is plastic and sensitive to habituation.

Behaviours consistent across time and contexts are often referred to as personality traits.

These individual differences are more or less permanent characteristics that distinguish indi-

viduals from one another [49, 50]. For example, within the same strain, the degree to which

rats explore novel environments is consistent between four and eight months of age [51]. Indi-

vidual differences in this behavioural trait are heritable; two lines, originating from rats that

differed in active avoidance acquisition (i.e. Roman high avoidance and Roman low avoid-

ance), consistently differ in their degree of exploration of novel environments [52]. Our results

showed that rat thresholds of aversion to CO2 vary among individuals, are highly repeatable,

and can be considered a lasting characteristic of the individual (i.e. personality trait).

Fig 7. Regulatory focus consistency for individual rats (n = 11) tested in two trials; results are shown separately for measures of a) treat location time (promotion

motivation), and b) dark location time (prevention motivation). Rat identity is given by a number following the order presented in Fig 4.

https://doi.org/10.1371/journal.pone.0245347.g007
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In the current study we tested individual differences in motivation to access a sweet reward

using a modified approach-avoidance apparatus. Traditionally, rat motivation is measured

through a progressive ratio schedule, in which the cost of gaining a reward is increased. Ani-

mals continue to invest as the required effort increases, until the cost is higher than the value

of the reward [53]. In the current study, rat motivation was assessed in an experimental setting

similar to that used to assess differences in foraging wild rodents [54, 55]. The individual’s

motivation to engage in a goal directed behaviour, like searching for food, is affected by expec-

tancy and value [56, 57]. Motivation is expected to be higher as the likelihood of success and

the value of the resources increase. When foraging in a patch, animals experience a decrease in

the rate at which resources are found as they consume the available items (diminishing

returns); this decrease imposes a trade-off between investing time searching for resources and

leaving the patch (marginal value theorem) [58]. In the current experiment, rats searched for

access to sweet rewards that were hidden in a layer of sand, and rewards were progressively

dispersed across trials. The assumption was that rats would invest time searching and digging

to gain access to the rewards until the required effort surpassed the value of the reward.

We found that rat motivation for sweet rewards varied among individuals. For example, one

rat invested on average 5 min searching and consumed all rewards, and another rat consumed on

average just 6 rewards and spent less than 40 s searching. We also found that motivation for sweet

rewards was highly repeatable and not affected by repeated testing. These results align with what

has been reported in the literature; rat preference and motivation for sucrose is a stable personality

trait [19, 59] that does not change with repeated testing [19]. High sucrose consumers ingest more

than double the intake of low consumers [18, 60, 61], but among-individual variation in sucrose

preference is not related to variation in food consumption [60]. Under a progressive ratio sched-

ule, high consumers work harder than low consumers to earn sucrose [17].

We found no evidence that individual differences in motivation for sweet rewards were

related to aversion to CO2. However, it is important to note that rats that showed low motiva-

tion for sweet rewards frequently failed to meet the training criterion for the approach-avoid-

ance test. This result suggests that a bias of approach-avoidance tests is that only reward-

motivated rats are likely to be selected.

In the current study rats spent a similar amount of time in the treat location (31% of the test

time) but less time in the dark location (51% of the test time), compared to results from Franks

and colleagues [23]. It is likely that the lower time in the dark location was due to methodolog-

ical differences. Franks and colleagues kept the light off for 30 s, or while the subject stayed in

the dark location, whichever was longer. In our study the light was turned on after 30 s or

when the rat left the dark location, whichever occurred first. We argue that our experimental

methodology allows for the assessment of prevention and promotion foci since rats frequently

brought food rewards to consume in the dark location, and rats consistently varied in their

motivation to approach gains (promotion motivation) and pursue darkness (prevention moti-

vation). These results correspond to those previously reported. For example, rats that consis-

tently pursued darkness in the modified open field, also consistently spent more time burying

a noxious object [23]. High prevention motivated rats avoided risk, but also approach potential

threats to maintain safety. In the current study, we found no evidence for a relationship

between individual differences in the strength of promotion or prevention motivation and rat

aversion to CO2, indicating that personality differences in regulatory focus are not related to

aversion to CO2 in approach-avoidance.

Variation among human subjects in the felt experience (i.e. conscious awareness of emo-

tions) during CO2 inhalation is well documented. The increase in feelings of anxiety is eight

times higher in individuals that are more responsive to CO2, than that of less responsive indi-

viduals [62]. Feelings of anxiety and experiences of panic due to ~ 7% CO2 inhalation are
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consistent between repeated inhalations [62, 63]. Vulnerability to CO2-induced anxiety and

panic increases in people diagnosed with panic disorder [3, 64] and individuals with a first-

degree relative diagnosed with panic disorder [4, 65, 66]. Thus, human CO2 sensitivity involves

stable individual differences in the emotional response to CO2. We found that individual dif-

ferences in rat thresholds of aversion to CO2 were stable and consistent, and not related to

sweet reward motivation or the strength of promotion and prevention motivations. It is likely

that individual differences in the affective states experienced are the underlying cause of

among-rat variation in aversion to CO2 (i.e. CO2 sensitivity), indicating that some rats experi-

ence a more aversive emotional response when exposed to CO2.

Conclusion

Variation in rat aversion to CO2 was repeatable through multiple exposures and across three

different ages but was not related to individual differences in motivation for sweet rewards,

promotion or prevention foci. These results indicate that individual differences in aversion to

CO2 reflects variation in CO2 sensitivity.
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Methodology: Lucı́a Améndola, Daniel M. Weary.

Project administration: Lucı́a Améndola, Anna Ratuski.
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