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Coagulation Factor VIII (FVIII) replacement therapy in hemophilia A patients is complicated

by the development of inhibitory antibodies, which often render the treatment ineffective.

Previous studies demonstrated a strong correlation between induction of regulatory

T cells (Treg) and tolerance to the therapeutic protein. We, therefore, set out to

evaluate whether the adoptive transfer of FVIII-specific CD4+ Treg cells prevents inhibitor

response to FVIII protein therapy. To this end, we first retrovirally transduced FoxP3+

into FVIII-specific CD4+ cells, which resulted in cells that stably express FoxP3, are

phenotypically similar to peripherally induced Tregs and are antigen specific suppressors,

as judged by in vitro assays. Upon transfer of the FVIII-specific CD4+ FoxP3+ cells into

hemophilia A mice, development of inhibitory antibodies in response to administering

FVIII protein was completely suppressed. Suppression was extended for 2 months,

even after transferred cells were no longer detectable in the secondary lymphoid

organs of recipient animals. Upon co-transfer of FoxP3+-transduced cells with the B

cell depleting anti-CD20 into mice with pre-existing inhibitory antibodies to FVIII, the

escalation of inhibitory antibody titers in response to subsequent FVIII protein therapy

was dramatically reduced. We conclude that reprogramed FoxP3 expressing cells are

capable of inducing the in vivo conversion of endogenous FVIII peripheral Tregs, which

results in sustained suppression of FVIII inhibitors caused by replacement therapy in

recipient hemophilia A animals.
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INTRODUCTION

Hemophilia A is one of the most common X-linked recessive disorders, affecting 1 in 5,000 male
births worldwide. This blood clotting disorder is caused by mutations in the factor VIII (FVIII)
gene, leading to a deficiency in FVIII production. Depending on the causative mutation, FVIII
production can be either completely absent or may vary up to 5–40% of normal factor activity
in blood, thus manifesting as severe, moderate, or mild forms of the disorder (1). Replacement
therapy with plasma derived or recombinant FVIII infusions are the standard of care for managing
hemophilia A patients, and exciting strides have been made in developing gene therapy for
hemophilia A and B that have the potential to provide a lifelong cure (2–5).
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The most challenging issue with conventional factor
replacement therapy in the treatment of hemophilia A is the
development of antibodies against infused FVIII, which occur in
25–30% of severe hemophilia A patients. Inhibitor prevalence is
influenced by severity of the disorder and is often associated with
large deletions/inversions in the F8 gene, which results in the
lack of FVIII formation (6). Inhibitors render factor replacement
therapy ineffective and can present a high risk of morbidity
and mortality (7). Immune tolerance induction (ITI) for the
eradication of inhibitors via frequent and high dose exposure
to FVIII concentrates for a prolonged period is expensive and
not always successful, especially in severe hemophilic patients
(8). Mechanisms for tolerance induction by ITI are not clearly
known but may include T effector cell (Teff) exhaustion/anergy,
inhibition of FVIII-specific memory B-cell differentiation, or
induction of regulatory T cells (Tregs) (9, 10). Conversely,
there is also very little information on the immune interactions
that lead to the development of inhibitors, although it has
been described to be a T helper dependent process involving
antigen uptake and presentation that requires the co-operation
of multiple macrophage, dendritic cell or B cell subsets of antigen
presenting cells (APC) (11–15).

Multiple studies have demonstrated that tolerance to
replacement FVIII protein is strongly modulated by Tregs
(16, 17). Co-administration of FVIII with drugs such as sirolimus
(rapamycin), alone or in combination with cytokines such
as IL-10 or Flt3L have been shown to induce and/or expand
CD4+CD25+FoxP3+ Tregs, either through specific deletion of
CD4+ Teff cells which are more sensitive to mTOR inhibition,
or selective expansion of plasmacytoid dendritic cells (pDCs)
(18–20). Similar results have been obtained by treatment with
IL-2/anti-IL-2 complexes or oral anti-CD3 treatment (21–24).

Tregs can be naturally occurring (central or thymic),
with specificity mainly toward endogenous “self ” antigens, or
peripherally derived (extra-thymically induced), with specificity
to exogenously introduced antigens (25). The lack of endogenous
FVIII protein expression in severe hemophilia A patients with
large mutations in the F8 gene results in ineffective FVIII Treg
induction and Teff escape during thymic selection, reflected in
the higher rate of inhibitor development for these patients.
Therefore, there is great interest in re-establishing tolerance to
FVIII in these cases.

Cellular therapy with Tregs, either freshly isolated or ex vivo
expanded, is a promising approach for tolerance induction, as
has been demonstrated in several clinical trials for autoimmune
disorders and in transplant studies (26–29). While autologous
Tregs of a polyclonal specificity are effective, as observed
in a study in hemophilia A mice (30), it is anticipated
that antigen-specific Tregs would be more effective at much
lower frequencies, with a significantly reduced risk for off-
target suppression (31). In this study, we hypothesized that
forced FoxP3 expression in conventional/effector CD4+ T cells
(Tconv/Teff) from hemophilia A mice that were immunized
with FVIII would yield an enriched pool of FVIII specific
suppressor Treg-like cells. We examined the phenotype of these
cells, and stability of FoxP3 expression over time, and were
able to suggest a potential role for lasting suppression by a

mechanism of conversion of Teff cells into antigen-specific
endogenous Tregs. Adoptively transferred FoxP3 expressing
cells from FVIII immunized mice (FoxP3FVIII) were able to
successfully prevent inhibitor formation in previously untreated
hemophilia A mice and, when applied as combination therapy
with a B-cell depleting antibody (anti-mCD20), were able to
reverse established inhibitors to FVIII. This study therefore
underlines the potential of gene-engineered cells with Treg
function to provide specific and lasting suppression. This cell-
based tolerance approach can potentially act as stand-alone
therapy or can complement conventional ITI to re-establish
tolerance to FVIII replacement therapy.

METHODS

Mice
All wt animals used in the experiments were 8–10-week-old male
mice of the BALB/c [H-2d] background, which were purchased
from Jackson Laboratories (Bar Harbor, ME). DO11.10-tg
Rag2−/− mice with a transgenic T cell receptor specific for the
amino acid sequence 323–339 of chicken ovalbumin (OVA),
presented byMHCII I-Ad, were originally obtained from Taconic
(Hudson, NY). Hemophilia A mice with a deletion in exon 16 of
the F8 gene (BALB/c F8e16−/−) were originally provided by Dr.
David Lillicrap (Queens, Ontario, Canada).

Plasmids and Transduction
MIGR-mFoxP3 was a gift from Dan Littman (Addgene
plasmid # 24067). MIGR1 (IRES-GFP) was a gift from
Warren Pear (Addgene plasmid # 27490). Both plasmids are
based on the murine stem cell virus (MSCV) expression
system. Transfer plasmids were introduced into the PlatE
ecotropic retroviral packaging cell line (Cell Biolabs Inc, San
Diego, CA) using the Viafect transfection reagent (Promega,
Madison, WI) and supernatants were collected after 48 h.
CD4+CD25− Tconv cells were magnetically isolated (Miltenyi
Biotec) and pre-activated for 48 h with a 2:1 ratio of
CD3/28 mouse activator beads (Dynabeads, Invitrogen) to cells.
Cells were cultured in RPMI-1640 media (Life Technologies)
supplemented with 10% fetal bovine serum (Atlanta Biologicals,
Norcross, GA), 10,000 IU/ml penicillin, 10 mg/ml streptomycin,
1X GlutaMAX-1, 1 mmol/l sodium pyruvate, 10 mmol/l
HEPES, 1X non-essential amino acids and 10 µmol/l 2-
mercaptoethanol. Recombinant hIL-2 (Proleukin/aldesleukin,
Prometheus Therapeutics and Diagnostics, San Diego, CA) was
added at a concentration of 200 IU/ml. Activated Teff cells were
retrovirally transduced by spinoculation at 1,200 g for 90min
into retronectin (Takara) coated plates. GFP+ cells, representing
FoxP3 (MIGR-mFoxP3 IRES-GFP) or GFP only (MIGR IRES-
GFP) transduced populations of CD4+ T cells, were purified
using the FACSAria II cell sorter (BD Biosciences).

Reagents
Purified CD16/32 (Fc Block), CD3 (PerCP-Cy5.5), GITR (V500)
antibodies were from BD Biosciences (San Jose, CA); CD39
(eFluor450), CTLA-4 (PE), FoxP3 (eFluor660) antibodies were
purchased from eBioscience (San Diego, CA); CD25 (BV605),
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TNFR2 (PE), CD127 (PerCP-Cy5.5), CD62L (APC/Cy7), anti-
GFP (A488), CD4 (BV421), CD4 (A700) antibodies were from
Biolegend (San Diego, CA). Mouse neuropilin-1 antibody (PE)
was from R&D Systems (Minneapolis, MN). Mouse CD4+ T
cell isolation kit, CD4+CD25+ regulatory T cell isolation kits
were from Miltenyi Biotec (Auburn, CA). OVA peptide (323–
339) was synthesized by Anaspec (Fremont, CA). Recombinant
human B domain deleted (BDD) FVIII (Xyntha) was from
Pfizer (New York, NY). FVIII deficient plasma was from
Haematologic Technologies (Essex Junction, VT). Anti-mCD20
IgG2a subtype (clone 2B8) was a kind gift from Biogen
(Cambridge, MA).

Analysis of Plasma Samples
Plasma samples were collected by retro-orbital eye bleed into
0.38% sodium citrate buffer and analyzed using a modified
activated partial thromboplastin time assay (aPTT). Inhibitory
antibodies to FVIII were measured by Bethesda assay as
described (32). One Bethesda unit (BU) is defined as the
reciprocal of the dilution of test plasma at which 50% of FVIII
or FIX activity is inhibited. Measurements were carried out in
a Diagnostica Stago STart Hemostasis Analyzer (Parsippany,
NJ). Enzyme-linked immunosorbent assay (ELISA)-based
measurements of IgG1 antibodies to FVIII were carried out as
described (32).

Adoptive Transfer Studies, Inhibitor
Establishment, or Reversal
To generate a source of CD4+ T cells that were enriched
for specificity toward FVIII, BALB/c F8e16−/− hemophilia
A (HA) mice were subcutaneously immunized with 1IU
FVIII/mouse delivered in adjuvant (Sigma Adjuvant System oil,
Sigma-Aldrich, St. Louis, MO). A booster immunization was
administered 2 weeks later. Immunizedmice developed high titer
antibodies (∼40 BU/ml) to FVIII. 2× 106 FoxP3 transduced cells
from either FVIII immunized mice (FoxP3FVIII) or naïve animals
(FoxP3naive) were adoptively transferred into recipient HA mice
(n = 5–7). For prevention studies, recipient BALB/c F8e16−/−

HA mice received either FoxP3FVIII, FoxP3naive, GFPFVIII, or
nothing. Mice then received 1.5 IU of BDD-FVIII by weekly tail-
vein injections for 2 months. Plasma samples were analyzed at
1 and 2 months for inhibitor development. For reversal studies,
inhibitors were established by 1.5 IU BDD-FVIII injections for 1
month. Mice then received either FoxP3FVIII cells, mCD20 IgG2a
antibody (IV, 1, and 3 weeks after inhibitor establishment) or
a combination of FoxP3FVIII cells and mCD20 IgG2a antibody,
following which, weekly BDD-FVIII injections were continued.
Plasma samples were analyzed at 1, 2, 3- and 4-months post-
inhibitor establishment.

Phenotypic Characterization of FoxP3
Transduced Cells
FoxP3 or GFP transduced cells were evaluated for expression of
Treg associated markers. Since retroviral transduction requires
pre-activation of CD4+ T cells, which can upregulate several
phenotypic markers in a non-specific manner, we attempted
to analyze cells under physiological conditions. For this, 2 ×

106 FoxP3 or GFP transduced cells were adoptively transferred
into wt BALB/c mice. Spleens were harvested after 48 h
and GFP+ cells were identified and phenotyped. Endogenous
FoxP3+ Tregs from recipient wt BALB/c mice were used as
a standard to compare the difference in expression of various
markers. For intracellular staining, cells were pre-fixed in 2%
paraformaldehyde to retain GFP expression and intracellular
staining was performed using the FoxP3 staining kit (eBioscience,
San Diego, CA). Briefly, ∼1 × 106 cells in a volume of 100
µl were blocked with CD16/32 for 15min and surface labeled
with antibodies at recommended concentrations. Fixation-
permeabilization carried out as required and intracellular
antibodies were added. Samples were acquired on the Fortessa
flow cytometer (BD Biosciences) and analyzed using FCS express
6 (DeNovo Software, Los Angeles, CA).

In vitro Suppression Assay
To assay for in vitro suppression of polyclonally activated
cells, CD4+CD25− responder cells from spleens of DO11.10-
tg Rag2−/− mice were isolated, labeled with 3–5 µmol/l
CellTrace Violet (Invitrogen, Carlsbad, CA) and cultured with
CD4− total splenocytes. DO11.10-tg Rag2−/− GFP+ FoxP3
transduced CD4+ T cells were added at various Treg: T responder
ratios and cells were cultured for 72 h at 37◦C. Dilution of
the CellTrace Violet label in GFP− proliferating responder
cells (Teff) was quantified. Proliferation was determined by
quantifying CellTrace Violet fluorescence intensity relative to
a parent population of unstimulated responder cells (0%
proliferation) and stimulated cells incubated without Treg
(100% proliferation). Percentage of CD4+ responder T cell
proliferation was also determined using ModFit LT analysis on
FCS Express 6.

In vivo Conversion Assay
FACS-purified DO11.10-tg Rag2−/− GFP+ FoxP3 transduced
CD4+ T cells were labeled with 3–5 µmol/l CellTrace Violet
(Invitrogen, Carlsbad, CA) and adoptively transferred into
cohorts of recipient DO11.10-tg Rag2−/− mice (n = 4) that
naturally lack endogenous Tregs. Recipient mice subsequently
received 50 µg OVA323−339 peptide, 3x/week for 2 weeks,
delivered via i.p. injection. Control mice received no treatment.
One group of mice received only FoxP3OVA cells, while another
received only OVA323−339 peptide and no cells. The 4th group
received both FoxP3OVA cells, as well as OVA323−339 peptide
injections. In vivo conversion of endogenous OVA specific CD4+

T effectors into FoxP3+ Tregs was assessed at the end of the
2-week period. Induced endogenous Tregs were distinguished
from adoptively transferred donor cells by the lack of GFP and
CellTrace Violet label.

Statistical Analysis
Statistical significance was determined using either student’s T-
test, 1-way or 2-way ANOVA with GraphPad Prism 7 software
(La Jolla, CA). Values at P < 0.05 were deemed significant and
indicated as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
For some samples, normality was assessed with the Shapiro-
Wilk normality test. Non-parametric analyses were carried out
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FIGURE 1 | Retrovirally transduced cells stably express FoxP3 and are suppressive in vitro. (A) Isolated splenic murine CD4+CD25− cells transduced with the

MIGR-mFoxP3 vector strongly expressed GFP (upper panel), which correlated with intracellular FoxP3 expression (lower panel). Cells transduced with the control

vector MIGR1 expressed only GFP. (B) FoxP3 transduced cells from DO11.10 Rag2−/− mice were labeled with CellTrace Violet, adoptively transferred into wt BALB/c

mice and recipients were injected with 100µg OVA323−339 peptide by the i.p. route. Spleens were recovered after 3 days. Robust proliferation of donor transgenic

cells (FoxP3OVA ) without compromise in FoxP3 expression was observed. Control DO11.10+ cells (GFPOVA ) proliferated in response to OVA323−339 peptide

administration but did not express FoxP3. (C) FoxP3OVA cells strongly suppressed the proliferation of CellTrace Violet labeled DO11.10+ CD4+CD25− responder cells

cultured with CD4− total splenocytes and stimulated with OVA323−339 peptide. Control GFP transduced cells (GFPOVA ) or (D) freshly isolated tTregs of a polyclonal

specificity did not suppress the proliferation of OVA323−339 stimulated responder T cells. Data is a single representative of at least 2 independent experiments.

using the Kruskal Wallis test. Difference in proportions of
mice that developed inhibitors was determined using Fisher’s
exact test.

RESULTS

Stably Transduced FoxP3+ CD4+ T Cells
Acquire in vitro Suppressor Functions
Flow cytometric analysis of retrovirally transduced murine
CD4+CD25− Tconv cells revealed high expression of FoxP3,
which directly correlated with GFP+ cells (Figure 1A).

Transduction efficacies ranged from 25–60%. CD4+CD25−

Tconv cells transduced with the control vector only expressed
GFP, without concurrent FoxP3 expression (Figure 1A). FoxP3
transduced CD4+ T cells were shown to undergo antigen
specific proliferation without loss of FoxP3 expression in
vivo. For this, we used DO11.10 Rag2−/− mice, which lack
mature B or T lymphocytes or endogenous Tregs but are
transgenic for CD4+ T cells with OVA323−339 specificity.
Donor FoxP3 transduced CD4+CD25− cells from DO11.10
Rag2−/− mice (FoxP3OVA), when adoptively transferred into
recipient wt BALB/c mice and challenged with OVA323−339

peptide, underwent robust proliferation, as observed by
dilution of the cell dye label, without compromise in FoxP3
expression (Figure 1B). This established that under non-
inflammatory conditions, FoxP3 transduced cells can proliferate
in an antigen dependent manner while stably retaining
FoxP3 expression.

FoxP3 transduced DO11.10 CD4+ T cells were also shown to
be functionally suppressive in an antigen specific manner in vitro.
OVA323−339 peptide specific proliferation of responder DO11.10

CD4+CD25− T cells was potently suppressed on addition of

FoxP3 transduced cells of the same specificity (FoxP3OVA)
(Figure 1C). Suppression was still strongly evident at a Treg:Teff

(responder) cell ratio of 1:16, indicating that FoxP3 transduction
alone is capable of producing cells with Treg function. Control
GFP transduced OVA specific cells (GFPOVA) did not suppress
at any ratio (Figure 1C). To test if the observed suppression
was antigen specific, the same assay was carried out with
freshly isolated thymic Tregs (tTregs, Figure 1D). Because non-
specific polyclonal tTregs failed to suppress the proliferation of
OVA323−339 stimulated Teff cells, we conclude that suppression
by FoxP3 transduced cells in response to antigen is TCR specific,
and not a result of a bystander effect.
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FIGURE 2 | Phenotypic analysis of reprogrammed FoxP3 expressing Treg like

cells. (A) FoxP3 transduced cells were adoptively transferred into wt BALB/c

mice and re-isolated 2 days later to characterize them under in vivo conditions

(empty histograms). Control GFP vector transduced cells (filled histograms)

were also phenotyped for comparison. Expression levels of CD25, FoxP3,

GITR, CD39, CTLA-4, NRP-1, TNFR2, CD127, CD62L, and GFP were

quantified. (B) Median fluorescent intensity (MFI) of the above markers were

compared between endogenous tTreg (black bars), FoxP3 transduced cells

(gray bars) and GFP transduced cells (white bars). Data is representative of 2

samples and at least 2 independent experiments. *P < 0.05, **P < 0.01,

***P < 0.001.

In vivo Treg Phenotype of Re-programmed
FoxP3+ CD4+ T Cells
To characterize the phenotype of the reprogrammed cells under
physiological conditions, 2 × 106 FoxP3 or GFP transduced

cells were adoptively transferred into wt BALB/c mice and re-
isolated from spleens after 48 h. FoxP3 transduced CD4+ T
cells acquired a Treg-like phenotype, with high expression of
CD25 and GITR, low expression of IL-7Ra chain (CD127), and
FoxP3 expression levels that were higher than endogenous tTregs
(Figures 2A,B). Expression of CD39 and CTLA-4 was higher
than in CD4+ T cells transduced with GFP only, although
expression levels did not reach those observed on endogenous
tTregs. It has previously been observed that CTLA-4 expression
is independent of FoxP3 (33, 34), which might explain the
lack of correlation with FoxP3 overexpression. Furthermore, we
had earlier shown that CTLA-4 is highly expressed in ex vivo
expanded tTregs, which is a function of prolonged CD3/CD28
activation of these cells (30). FoxP3 transduced CD4+ T cells also
lacked the Neuropilin-1 marker, which is generally associated
with centrally derived tTregs in mice, (35, 36), thus confirming
their induced nature (Figures 2A,B). Thus, reprogrammed
FoxP3+ CD4+ T cells maintain a Treg phenotype in vivo
and in vitro.

FVIII-Specific Reprogrammed FoxP3+ Treg
Cells Prevent Inhibitor Formation in
Hemophilia A Mice
To determine whether engineered FoxP3+ CD4+ T cells could
suppress the development of inhibitors to FVIII, BALB/c
F8e16−/− mice with no intrinsic FVIII expression were
adoptively transferred with 2 × 106 FoxP3 transduced cells.
In order to simulate protein replacement therapy, mice were
treated with 8 weekly i.v. injections with 1.5 IU BDD-FVIII
protein (Figure 3A). Donor FoxP3+ cells were derived from
mice immunized with BDD-FVIII in adjuvant, in order to
enrich for FVIII specific Teff cells that could be reprogrammed
into engineered Tregs (FoxP3FVIII). FoxP3 transduction resulted
in 50–60% GFP+ cells, which were further purified by cell
sorting (Supplementary Figure 1). As shown in Figure 3B,

FoxP3 transduced cells completely prevented the formation
of functional inhibitory antibodies in response to repeated
administrations of BDD-FVIII. Tolerance was sustained for
2 months of BDD-FVIII exposure (Month 1: 0.04 ± 0.02,
Month 2: 0.95 ± 0.49 BU/ml). Control mice, which did
not receive FoxP3 transduced cells, developed high inhibitor
titers (Month 1: 24.45 ± 7.8, Month 2: 160.59 ± 4.1
BU/ml). Similarly, CD4+ from FVIII immunized mice that
were transduced with control GFP vector (GFPFVIII) were
unable to mediate tolerance (Month 1: 3.0 ± 1.9, Month 2:
112.34± 43.1 BU/ml).

To confirm that enrichment of antigen specific cells in the
FoxP3FVIII population contributed favorably to suppression, one
group of mice received FoxP3 transduced cells from naïve mice
that had not been pre-exposed to FVIII. These FoxP3Naive cells
were suppressive at the 1-month time point (1.28±0.02 BU/ml),
probably due to a non-specific regulatory effect at the time of
BDD-FVIII introduction. However, this suppressive effect by
FoxP3Naive cells was significantly lower at the 1-month time
point as compared to FoxP3FVIII recipient mice (p = 0.018).
The proportion of animals that developed inhibitors was also
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FIGURE 3 | Prevention of inhibitor formation by FoxP3FVIII cells. (A) Experimental timeline. BALB/c F8e16−/− mice were transplanted with 2 × 106 FoxP3

transduced cells from FVIII immunized mice (FoxP3FVIII). This was immediately followed by weekly intravenous injections with BDD-FVIII. Blood was collected at

Months 1 and 2 for inhibitor assessment. (B) Inhibitor titers (BU/ml) were assessed at specific time points by the Bethesda assay. Experimental groups tested were

control mice that received no treatment, FoxP3 transduced cells from naïve mice (FoxP3Nave), GFP transduced cells from FVIII immunized mice (GFPFVIII), and FoxP3

transduced cells from FVIII immunized mice (FoxP3FVIII). (C) Anti-FVIII IgG1 titers (ng/ml) at Months 1 and 2 were tested by ELISA. Data are average ±SD. Statistically

significant differences are indicated for each time point. *P < 0.05, **P < 0.01, ***P < 0.001.

significantly greater at the 1-month time point in mice that
received FoxP3Naive cells (60% vs. 0%, p = 0.045). Furthermore,
the observed tolerogenic effect conferred by the FoxP3Naive

cell population was not long-lasting, and high-titer inhibitors
(>5BU/ml) developed in 80% of the mice by Month 2 (44.8± 23
BU/ml), which was in contrast to the sustained tolerance exerted
by FoxP3FVIII cells (Month 2: 0.95 ± 0.49 BU/ml). Therefore,
using FVIII experienced T cells for FoxP3 gene transfer resulted
in more consistent and durable suppression of inhibitors upon
transplant. Similar findings were obtained for FVIII-specific IgG1
titers (Figure 3C).

Taken together, we conclude that upon the adoptive transfer
of re-programmed FoxP3FVIII Treg cells, anti-FVIII inhibitor
formation is stably suppressed.

Combination Therapy With Reprogrammed
FoxP3FVIII Cells and Anti-mCD20 Reduce
Pre-existing Inhibitors in Hemophilia A
Mice
To further evaluate the pre-clinical capability of engineered
FoxP3FVIII cells we transferred these cells in combination
with B-cell-depleting anti-mCD20 antibodies in Hemophilia A
mice which contained previously induced FVIII inhibitors. We
previously showed that a short course treatment with anti-
mCD20 resulted in a rapid decline of inhibitors, although this
effect was transient, and inhibitors rapidly rebounded to their
initial titers (37). We therefore tested the ability of FoxP3FVIII

cells to tolerize mice with existing inhibitor titers, alone or
in combination with anti-mCD20 B cell targeting therapy.

As shown in Figure 4A, BALB/c F8e16−/− mice (n = 5–7)
received 4 weekly i.v. injections of BDD-FVIII to allow inhibitor
development. Mice developed average inhibitor titers of 5 BU/ml,
which are considered high titer. This was followed by treatment
with either FoxP3FVIII cells, anti-mCD20 (2 i.v. injections
spaced at a 3-week interval), or a combination treatment
with anti-mCD20, followed immediately by FoxP3FVIII adoptive
transfer. Mice continued to receive BDD-FVIII injections
following treatment.

Mice that received FoxP3FVIII cells developed high titer
inhibitors that were comparable to control mice that received
only BDD-FVIII injections. Immediately following anti-mCD20
treatment (Month 1), both experimental groups (anti-mCD20
and anti-mCD20+FoxP3FVIII group) saw a decline in inhibitor
titers (1.67–1.98 BU/ml), which was sustained for another
month after resuming BDD-FVIII injections (Month 2, anti-
mCD20 group: 4.09±3.12 BU/ml, anti-mCD20+FoxP3FVIII

group: 0.948±0.42 BU/ml) (Figure 4B). However, tolerance was
short-lived, and titers escalated when BDD-FVIII injections
were continued at the Month 3 timepoint (anti-mCD20
group: 24.77±18.24 BU/ml, anti-mCD20+FoxP3FVIII group:
8.65±4.15 BU/ml). As observed, mice that received the
treatment combination of anti-mCD20+FoxP3FVIII had
lower inhibitor titers as compared to mice that received anti-
mCD20 only. This difference was more obvious at the Month

4 timepoint (anti-mCD20 group: 116.447±104.784 BU/ml,
anti-mCD20+FoxP3FVIII group: 22.27 ± 8.015 BU/ml). It
therefore appears that whilst anti-mCD20 treatment is effective
at short term inhibitor reduction, the re-establishment of
inhibitors in response to continued BDD-FVIII injections
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FIGURE 4 | Reduction of pre-existing inhibitors by combination therapy with FoxP3FVIII cells and anti-mCD20. (A) Experimental timeline. Inhibitors were established in

BALB/c F8e16−/− mice by 4 weekly injections of BDD-FVIII. Mice received 2 IV injections of anti-mCD20 spaced 3 weeks apart (α-mCD20 group) following which,

inhibitor titers were quantified (Month 1). Another group received 2 × 106 FoxP3FVIII cells 1 week after the last anti-mCD20 injection (FoxP3 FVIII + α-mCD20 group).

Control groups received only FoxP3 FVIII cells or no treatment (Control). BDD-FVIII administrations were continued for another 2 months following treatment. Blood

was collected on Months 2, 3 and 4, respectively. (B) Inhibitor titers (BU/ml) measured over time from control and treated mice that received α-mCD20 only, FoxP3FVIII

cells only, or a combination of α-mCD20 + FoxP3 FVIII cells. (C) Anti-FVIII IgG1 titers (ng/ml) over time were tested by ELISA. Data are average ±SD. Statistically

significant differences are indicated for each time point. *P < 0.05, **P < 0.01, ***P < 0.001.

is more effectively controlled by anti-mCD20+FoxP3FVIII

treatment, hinting at a more sustained tolerance mediated
by the transplanted engineered Tregs. IgG1 ELISA titers
(Figure 4C) were unable to completely recapitulate this
difference in functional antibody titers, but this could be
attributed to the development of non-neutralizing IgG1
antibodies, which do not interfere with functional activity.
Quantification of total B cell, memory B cell, and plasma cell
(Supplementary Figure 2) populations from spleen and bone
marrow of anti-mCD20 treated mice after the Month 4 time
point confirmed that B cell depletion was transient and the
decrease in inhibitor titers at latter time points was not due to
generalized immunosuppression. We have earlier shown that
immunosuppression mediated by anti-mCD20 is transient and
B cell populations in various immune compartments completely
recover within 2 months after depletion, while frequencies
of T cells remain unaffected by anti-mCD20 treatment
[(37); Supplementary Figure 1].

Conversion of Teff Into Tregs by
Reprogrammed FoxP3 Cells as a Putative
Mechanism of Lasting Tolerance
Previous observations by us and others indicated that Tregs that
are adoptively transferred into immuno-competent recipients

are only transiently detectable for a period of 2–3 weeks
(21, 30, 38). Not surprisingly, when we tested a subset of
the experimental animals in Figure 3 one-month post-transfer
for the presence of donor-derived FoxP3 Tregs, using GFP
as an identifier, we were unable to detect any donor cells
(data not shown). We therefore looked at the possibility of
in vivo conversion of host endogenous antigen specific Teff

cells into Tregs, which would account for a more long-lasting
suppression of FVIII inhibitors. For this, we again used the
surrogate CD4+ T cell epitope system recognizing OVA323−339.
We showed that adoptive transfer of CellTrace Violet+FoxP3-
GFP+ DO11.10+ CD4+ T cells into recipient animals of the
same strain was capable of inducing antigen specific Tregs in
the recipient mice, which was dependent on the presence of
antigen (50 µg OVA323−339 peptide injected 3 × /week ×

2 weeks) (Figure 5).
As DO11.10 Rag−/− mice lack endogenous FoxP3+ CD4+

Tregs, were identified with the OVA specific TCR DO11.10
antibody (KJ1.26) and were distinguished from donor DO11.10+

FoxP3 transduced Tregs, which were dually positive for
GFP and the CellTrace Violet label (Figure 5A). As shown
in Figure 5B, transplanting only donor DO11.10+ FoxP3
transduced Tregs (FoxP3OVA) did not induce conversion of
endogenous CD4+ Teffs into OVA specific Tregs in recipient
mice spleens (% DO11.10+ Tregs: 0.28 ± 0.06 of total CD4+ T
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FIGURE 5 | In vivo conversion into antigen specific Tregs by transplanted

FoxP3 expressing cells. (A) Representative dot plots depicting gating scheme.

Transplanted FoxP3OVA cells are KJ1.26+CD4+FoxP3+GFP+CTV+ and thus

distinguishable from endogenous de novo induced Tregs that are

KJ1.26+CD4+FoxP3+GFP−CTV−. OVA specific FoxP3+ Treg induction in

DO11.10 Rag2−/− mice is compared between either control group that

received no treatment, mice that received FoxP3OVA transplanted cells,

administration of OVA323−339 peptide only, and mice that received FoxP3OVA

cells and OVA323−339 peptide, delivered i.p. for 2 weeks. (B) Bar graphs of

induced DO11.10+FoxP3+ Tregs in treated DO11.10 Rag2−/− mice,

indicated as a percentage of total CD4+ T cells. Mice received no treatment,

FoxP3OVA cells, OVA323−339 peptide, or FoxP3OVA cells + OVA323−339

peptide. Data are average ±SD of at least 4 animals per group and are a

single representative of 2 independent experiments. Statistically significant

differences are indicated. *P < 0.05, **P < 0.01, ***P < 0.001.

cells). OVA323−339 administration without FoxP3OVA transfer
yielded a small percentage of OVA specific Tregs (% DO11.10+

Tregs: 1.73 ± 0.45). These numbers were however, significantly
higher in spleens of mice that received FoxP3OVA transfer
combined with successive OVA323−339 injections (3.228±0.83).
Therefore, administration of donor antigen specific FoxP3+

cells induced the emergence of endogenous Tregs of the
same specificity in recipients, ensuring the persistence
of tolerance.

DISCUSSION

Regulatory T cells are mainly specific for autologous antigens,
thus maintaining self-tolerance (39). During autoimmune or
inflammatory conditions, the ratio of Tregs to immune effector
T cells is perturbed, and an immune response is mounted against

self (40). Ex vivo expansion of thymic Tregs can increase the
population of self-antigen specific Tregs. However, for genetic
disorders like severe hemophilia A where significant mutations
do not allow expression of the protein of interest, central
tolerance often cannot be established resulting in very few
antigen specific Tregs.

While the formation of inhibitors during clotting factor
replacement therapy has been shown to be dependent on
T helper cells, T cell help can in turn be suppressed by
Tregs (41), which are instrumental in peripheral tolerance
induction. Tregs can also directly interact with and regulate
B cells and plasma cells in various niches (42, 43), although
this has not yet been demonstrated for hemophilia. Extra
thymically induced peripheral or induced Tregs can be FoxP3+,
LAP+ (Th3), or LAG3+ (TR1). Of these subsets, FoxP3+

Tregs have been the most extensively studied in hemophilia
(44, 45). However, this does not discount the role of other
Treg subtypes, as LAP+ Tregs have been shown to be
involved in mediating tolerance to FVIII by oral delivery of
antigen (46).

For this study, we reprogrammed antigen enriched Teff cells by
ectopic FoxP3 expression, to generate a large pool of engineered
cells with Treg function. FoxP3 expression alone has been shown
to strongly regulate Treg development and function (47–49)
by controlling a transcriptional network of target genes that
are involved in promoting the suppressive phenotype among
other immunological and non-immunological functions (50–
53), as we observed in our studies. FoxP3 transduced cells
expressed many Treg associated markers and were strongly
suppressive both in vitro and in vivo. There is valid concern that
reprogrammed FoxP3 expressing cells may revert into Th2 cells,
or pathogenic Th17 cells in vivo (54–56). While this possibility
exists, given the plastic nature of T-lineage cells (57, 58), it may
depend on attenuation of FoxP3 expression, or may require an
inflammatory trigger, which is more common with autoimmune
disease. FoxP3 tTregs have also been shown to be remarkably
stable in vivo and it is possible that this stability extends to
peripherally induced Tregs (59). We were able to confirm stable
FoxP3 expression in proliferating engineered Tregs in vivo after
adoptive transfer.

Some pre-clinical studies have been carried out using adoptive
therapy with FoxP3 transduced cells, particularly in autoimmune
disease and in transplant rejection (33, 60–62). In a few of these
studies, antigen specificity has been re-directed by the addition
of either a TCR of a single specificity or a chimeric antigen
receptor (CAR) molecule upstream of the FoxP3 gene construct
(63–65). All of these studies showed efficacy. Using transgenic
mice, Jaeckel et al. were able to report that FoxP3 transduction
of naïve polyclonal CD4+ T cells was not completely effective
in suppressing established type I diabetes in mice. Instead,
antigen specific FoxP3 transduced cells were highly effective at
reversing recent onset diabetes (66). This complements other
studies that suggest that antigen specific Treg are superior to
their polyclonal counterparts (67–69). Indeed, our data implies
that FoxP3 transduction of a population of Teffs that are
antigen experienced for FVIII and thus enriched for antigen
specificity leads to sustained tolerance. The lack of an MHCII
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tetramer system to identify and isolate FVIII specific Th2 cells
in BALB/c mice limits the scope of this study to ascertain
the effective minimum dose of antigen specific FoxP3+ cells
required to suppress an inhibitor response in the hemophilia A
experimental model.

For clinical application, the ratios of transduced FVIII
specific Tregs and untransduced Teffs may vary between patients.
However, it is expected that patients with a stronger Teff response
would in turn generate more FVIII-specific Tregs. FoxP3
transduction of a mixed population of FVIII specific and non-
specific cells may also result in the generation of unwanted Tregs
against non-specific antigens. This can be resolved by identifying
antigen specific Teffs upon short term FVIII specific stimulation
in vitro. Rapid cell-surface upregulation of activation markers
such as CD154 (CD40L) and CD137 (41BB) on antigen-specific
triggering (70, 71) allows for detection and isolation of activated
cells by cell-sorting before FoxP3 transduction. Ex vivo expansion
can increase the pool of reprogramed antigen-specific Tregs
before infusion.

Among other limitations, the use of the retroviral LTR
promoter system for FoxP3 expression has been shown to lead
to fluctuations in FoxP3 expression in other studies, depending
on the activation status of the transduced cell (33). However,
ours is only a proof-of concept study that can be easily adapted
to the lentiviral delivery system, as has successfully been shown
in PBMC from immune dysregulation, polyendocrinopathy,
enteropathy, X-linked (IPEX) syndrome patients, which was
able to generate a large pool of FoxP3 expressing Tregs,
phenotypically and functionally identical to Tregs from healthy
donors (72).

Our in vivo studies reveal that a single adoptive transfer
with FoxP3FVIII Tregs is able to completely prevent the
development of inhibitors, using an antigen dose of 1.5IU of
FVIII administered weekly. This was not sufficient to reverse
established inhibitors, however, and FoxP3FVIII treatment alone
was ineffective to prevent inhibitor escalation in response to
continuous FVIII administration. We have observed this in
previous studies, where ex vivo expanded polyclonal Tregs were
unable to completely reverse pre-existing inhibitors to FVIII,
although they did halt any further increases in inhibitor titers
(30). This is understandable since although it has been shown
that Tregs can interact with B cells and plasma cells, it is
unclear whether this interaction can lead to a suppressive or
cytotoxic outcome. Previously, we have shown that targeting
both the B and T cellular compartments by combination therapy
with the murine equivalent of rituximab (anti-CD20) and
rapamycin (sirolimus) can have a positive outcome in inhibitor
reversal (37), which was corroborated in a recent study on a
hemophilia B patient with inhibitors (73). On applying this
combination therapy to this study, we observed that FoxP3FVIII

and anti-CD20 together were superior to either treatment
alone and that Treg therapy appeared to prolong the delay in
inhibitor re-emergence.

Studies have shown that both murine and human Treg can
initiate infectious tolerance, transmitting suppressive capacity
from the Treg to the target cell (74, 75). Conversion of

CD4+CD25−FoxP3− Teff cells into Tregs may occur under
several conditions, where a number of triggers may induce
FoxP3 expression. These may include IL-2 deprivation by
Tregs, which reduces the availability of this cytokine for Teff

proliferation (76), or the production of suppressive cytokines
or receptors by Tregs, such as IL-10 (77), IL-35 (78), TGF-
B (79, 80), or CTLA-4 (81). This is also observed in tumors,
where tumor antigen specific CD4+ T cells in the tumor
draining lymph node (TDLN) are activated, but diverted
either into anergy or Treg formation, which is enhanced
by already present Tregs in the TDLN (82). The complete
mechanism is not understood, but strongly depends on Treg:
DC interactions in both a contact dependent and independent
manner, inducing suboptimal presentation of antigen (83–85).
This is usually enhanced by immunosuppressants like rapamycin,
which inhibits the mTOR pathway, by interfering with T cell
co-stimulation, activation and proliferation (86). We and others
have shown that infused Tregs can generate a similar suppressive
microenvironment that can promote antigen presentation in a
tolerogenic manner, thus inducing the conversion of endogenous
Teff cells into antigen specific Tregs (30, 80, 87). In this study,
we were able to extend our earlier findings to show that
reprogramed FoxP3 expressing cells are capable of inducing de
novo Tregs of a desired antigen specificity in host animals. We
speculate that co-administration of FoxP3FVIII Tregs and FVIII
antigen initially generates an immunosuppressive environment
due to the high proportion of infused non-specific FoxP3
Tregs. Moreover, the small population of antigen specific
Tregs can directly interact with DC to enhance sub-optimal
presentation, thus diverting antigen specific Teff cells into
Tregs. Tolerance to FVIII protein administration is thus due
to a combination of various mechanisms: initial non-specific
suppression, interaction of antigen-specific FoxP3 Tregs with DC
in the context of antigen presentation, and conversion of Teff
cells into endogenous antigen-specific Tregs to confer lasting
suppression. Both transplanted FVIII-specific and non-specific
Tregs may enhance the latter. Our results imply that a transplant
that includes FVIII-specific cells directs a more consistent and
durable effect.

Finally, adoptive immunotherapy with Tregs has reported
safety and therapeutic efficacy in clinical trials for diseases
ranging from autoimmune disorders to transplantation (88). For
this treatment to reach its full potential, ex vivo expansion of
Treg to sufficient numbers of a desired purity needs to be fully
optimized. This is particularly challenging in cases where there
are perturbations in Treg numbers, or when a desired specificity
is required. Engineering conventional T cells to exhibit Treg
function and/or antigen specificity therefore has the potential to
enhance both Treg numbers and function.
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