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        Abstract   Upon cell infection, some viruses integrate their genome into the host 
chromosome, either as part of their life cycle (such as retroviruses), or incidentally. 
While possibly promoting long-term persistence of the virus into the cell, viral 
genome integration may also lead to drastic consequences for the host cell, including 
gene disruption, insertional mutagenesis and cell death, as well as contributing to 
species evolution. This review summarizes the current knowledge on viruses inte-
grating their genome into the host genome and the consequences for the host cell.      

    1   Introduction 

 Upon host infection, viruses hijack multiple cellular functions in order to promote 
their replication and favor viral particle progeny. To ensure this, some viruses evolved 
the ability to integrate their genome into the host chromosomes, yielding to various 
consequences for the host cell, including gene disruption, oncogenesis or premature 
cell death, and may ultimately contribute to species evolution through inheritable 
genome inclusions. Although viral genome integration into the host genome is an 
obligatory step for viruses such as retroviruses, it may also occur incidentally for 
some other viruses (Table  1 ). This review will summarize the current knowledge on 
viruses integrating into the host genome and the consequences for the host cell.   
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    2   RNA Viruses 

 By de fi nition, RNA viruses are not able to integrate their genome into the host 
chromosome, as their genetic information resides in RNA molecules and not DNA. 
The only exception to this are retroviruses, which are characterized by the reverse 
transcription of their viral RNA genome into a linear double-stranded DNA molecule 
(viral DNA intermediate), and thus the substrate for subsequent viral genome 
integration into the host genome. For retroviruses, integration is a mandatory step 
for productive infection. Apart from retroviruses, the genome of other RNA viruses has 
been recently identi fi ed in the host genome. However, in these cases, integration seems 
to have occurred incidentally, as demonstrated for lymphocytic choriomeningitis 
virus (LCMV), an arenavirus. This section will cover the integration process of retro-
viruses including endogenous retroviruses and the incidental integration of LCMV. 

    2.1   Retroviruses 

 The life cycle of retroviruses, including the prototypic and well studied human 
immunode fi ciency virus type 1 (HIV-1), can be divided in several crucial steps 
(Fig.  1a ): viral entry through host cell-speci fi c receptors dictating viral tropism, 
core penetration, uncoating, reverse transcription of the viral RNA genome, nuclear 
translocation and integration of the viral cDNA genome into the host chromosomes, 
transcription of the integrated provirus*, translation, virion assembly, budding and 
release (Friedrich et al.    2011  ) .  

 Viral genome integration into the host genome is a hallmark of retroviruses, as it is 
a mandatory step in the retroviral life cycle and a prerequisite for productive infection. 
Upon integration, the retrovirus will persist in the infected cell for its entire lifespan, 
and will affect host gene expression depending on the integration site. Furthermore, 
if retroviral infection and integration occurs in the germline, the provirus will be 
transmitted to the progeny, and will thus contribute shaping the genome of future 
generations. This is the case of the so called “endogenized” retroviruses or endo-
genous retroviruses (ERV). 

    2.1.1   Integration Mechanism 

 After completion of reverse transcription, the linear double-stranded cDNA  fl anked 
by the long terminal repeats (LTR) is part of a nucleoprotein complex called prein-
tegration complex (PIC). The PIC contains multiple viral and cellular proteins – 
including in the case of HIV-1: viral integrase (IN), matrix (MA), Vpr, and cellular 
barrier-to-autointegration factor (BAF), high-mobility group chromosomal protein 
A1 (HMGA1), integrase interactor 1 (Ini1), lens epithelium-derived growth factor 

  *Provirus: integrated genome sequence of a virus. 
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(LEDGF/p75) – that may contribute to nuclear translocation, integration of the viral 
genome, and subsequent immediate transcription, and which composition may vary 
along the way to the host genome (Belshan et al.  2009 ; Farnet and Haseltine  1991 ; 
Fassati and Goff  2001 ; Lin and Engelman  2003 ; Miller et al.  1997 ; Raghavendra 
et al.  2010  ) . To cross the nuclear membrane and reach the nucleus, retroviruses have 
evolved different strategies. Simple retroviruses (alpharetroviruses, betaretroviruses, 
gammaretroviruses and epsilonretroviruses) are able to reach the nucleus only upon 
nuclear membrane disruption occurring at the time of mitosis, providing a coherent 
explanation on why these retroviruses infect dividing cells but are unable to infect 
non-dividing cells (Lewis and Emerman  1994 ; Roe et al.  1993  ) . In contrast, spuma-
viruses and lentiviruses have the capacity to infect both dividing and non-dividing 
cells, entering the nucleus through an active, yet poorly elucidated, mechanism 
(Suzuki and Craigie  2007  ) . The current model for HIV-1 proposes that a PIC contain-
ing minimally the viral integrase and the viral cDNA crosses the nuclear membrane 
through the nuclear pore complex (NPC), a superstructure mediating the transport of 
macromolecules between the cytoplasm and the nucleus, via speci fi c interactions 
with NPC proteins, including importin  a 3, importin 7, NUP153*, RANBP2* and 

* NUP153: nucleoporin 153
* RANBP2: RAN binding protein 2

  Fig. 1    Integration is a mandatory step of productive retroviral infection. ( a ) Overview of the HIV-1 
life cyle. (See text for details). ( b ) Viral integration mechanism is divided in three essential steps: 
( 1 ) 3 ¢  processing, ( 2 ) strand transfer, and ( 3 ) gap  fi lling. IN: integrase (  yellow oval  ). LTR: long 
terminal repeats.  Filled red and green circles  indicate 5 ¢  phosphate and 3 ¢ OH ends respectively. 
 Arrows indicate  the actions performed by the host DNA repair machinery.  Black arrows : cleavage 
of 5 ¢  protruding viral ends.  Grey arrows : gap  fi lling of single-strand DNA. (See text for details)       
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Transportin-SR2/TNPO3 (Ao et al.  2010 ; Christ et al.  2008 ; Levin et al.  2010 ; Ocwieja 
et al.  2011 ; Woodward et al. 2009 ) . 

 Retroviral genome integration occurs in three steps, the  fi rst two being catalyzed 
by the retroviral integrase (IN) protein (Fig.  1b , the example of HIV-1) (Li et al.  2011  ) . 
IN is bound to the LTR and requires approximately the 32 terminal nucleotides 
(Bera et al.  2009  ) . First, when the PIC is still in the cytoplasm (Miller et al. 
 1997  ) , IN hydrolyzes a dinucleotide at each 3 ¢  end, a process called 3 ¢  processing. 
Second, IN catalyzes the strand transfer reaction, consisting in simultaneously 
breaking the host DNA asymmetrically and joining it to the recessed viral DNA 
3 ¢ -OH ends. The IN-mediated asymmetric DNA breaks in the host genome are 
determined by the retroviral protein structure and vary between 4 and 6 nucleotides 
(5 in the case of HIV-1). Finally, to stabilize the proviral insertion, the host DNA 
repair machinery – involving the DNA-dependent kinase (DNA-PK) comprising a 
DNA-PK catalytic subunit and a DNA binding Ku80/Ku70 complex, and the ligase 
IV/XRRC4 complex of the non-homologous end joining pathway (NHEJ) – cleaves 
the viral protruding 5 ¢  nucleotides and  fi lls in the 4–6 bp gap, resulting in the duplica-
tion of the gap nucleotide sequence surrounding the provirus. 

 The retroviral IN enzyme belongs to the family of polynucleotidyl transferases. 
It contains between 280 and 450 amino acids depending on the retrovirus (for 
example, HIV-1 IN: 288 amino acids), that are divided in three protein domains 
(Li et al.  2011  ) . The N-terminal domain (residues 1–50 in HIV-1 IN), containing an 
HHCC zinc-binding motif, is involved mostly in viral DNA binding, and IN multi-
merization. The C-terminal domain (residues 212–288 in HIV-1 IN) is also involved 
in DNA binding and IN multimerization. And most importantly, the catalytic core 
domain (residues 50–212 in HIV-1 IN), carrying a typical signature with the D,D(35)
E acidic triad in the active site, is essential for metal (Mg2+) binding and IN enzy-
matic activity, and is involved in viral DNA binding as well as host cellular target 
DNA binding. The catalytic core domain has also been shown to contribute to IN 
multimerization. 

  In vitro , puri fi ed recombinant IN alone is able to perform 3 ¢  processing and strand 
transfer. Initial experiments showed that IN was able to catalyze half site integration 
(one LTR end integrated in the acceptor DNA) using 21-mer oligonucleotides mimick-
ing the U3 or U5 ends of the LTR. However, the use of longer DNA substrates mixed 
with IN allowed to reconstitute concerted full-site integration (integration of both 
LTR ends) (Sinha and Grandgenett  2005 ; Sinha et al.  2002  ) , thereby mimicking the 
 in vivo  situation more faithfully and suggesting that other genomic regions in addi-
tion to LTR extremities contribute to integration ef fi ciency (Li and Craigie  2005  ) . 
Although IN is suf fi cient to perform the  fi rst two steps of integration  in vitro , mul-
tiple PIC components, including LEDGF/p75, were shown to improve the ef fi ciency 
of this process, both  in vitro  and  in vivo  (Van Maele et al.  2006  ) . 

 The current and commonly accepted model, supported by crystallography, 
implies that IN activity is linked to its oligomeric state: IN dimers bound to LTR 
termini catalyze the 3 ¢  processing whereas concerted integration requires IN tetram-
ers (Cherepanov et al.  2011 ; Delelis et al.  2007 ; Diamond and Bushman  2005 ; Faure 
et al.  2005 ; Guiot et al.  2006 ; Hare et al.  2010 ; Jaskolski et al.  2009  ) .  
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    2.1.2   Integration Site Selection 

 As mentioned in the previous section, puri fi ed IN alone is able to catalyze the  fi rst 
two steps of integration  in vitro  at any phosphodiester bond of the DNA target, sug-
gesting that IN does not have any DNA sequence preference at the level of the DNA 
recipient molecule. 

 However, a pioneering study by Schroder et al. took advantage of the published 
human genome sequence and showed that  in vivo , the sites of HIV-1 integration 
were not random but rather favored speci fi c chromosomal features, such as tran-
scription units (Schroder et al.  2002  ) . Since then and thanks to the development of 
high-throughput sequencing technologies and the availability of the genomic 
sequence of multiple species, a more complete picture of retroviral integration 
preferences emerged (Fig.  2a ) (Bushman et al.  2005 ; Ciuf fi  and Bushman  2006 ; 
Lewinski et al.  2005 ; Lewinski and Bushman  2005 ; Delelis et al.  2010 ; Desfarges 
and Ciuf fi   2010  ) .  

 All retroviruses do not display the same integration site preferences. Indeed gam-
maretroviruses, spumaretroviruses and endogenous retroviruses favor promoters and 
transcription start sites of active genes, characterized by high CpG islands and DNaseI 
hypersensitive sites (Mitchell et al.  2004 ; Wu et al.  2003 ; Trobridge et al.  2006 ; Brady 
et al.  2009 ; Kim et al.  2008,   2011  ) . Integration of alpharetroviruses and deltaret-
rovirues is also, although weakly, favored in transcription units and CpG islands 

  Fig. 2    Retroviral    integration site distribution. ( a ) Host chromosomal preferences in integration site 
selection diverge among retroviral genera. (+,  blue arrows ) Gammaretroviruses (MLV) favors 
integration in promoters and in CpG islands, close to transcription start sites (TSS). (◈,  red arrows ) 
Lentiviruses (HIV-1) integrate preferentially into active transcription units. (✯,  green arrows ) 
Betaretroviruses (MMTV) integrate randomly. ( b ) Schematic overview of the tethering model for 
HIV-1 ( left ) and MLV ( right ) (See text for details)       
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(Derse et al.  2007 ; Mitchell et al.  2004  ) . In contrast, lentiviruses prefer integrating 
in active genes, along the transcription unit, in both introns and exons, and are often 
associated with epigenetic marks characterizing active transcription, including H3Ac, 
H4Ac, H3K4me3, H3K36me3, while disfavoring epigenetic marks associated with 
repressed transcription such as H3K9me3, H3K27me3, H3K79me3, H4K20me3 
and DNA methylation (Brady et al.  2011 ; Derse et al.  2007 ; Mitchell et al.  2004 ; 
Roth et al.  2011 ; Schroder et al.  2002 ; Wang et al.  2007,   2009  ) . Finally, the MMTV 
betaretrovirus is the only one considered to integrate randomly, with no statistically 
signi fi cant preference for chromosomal features (Faschinger et al.  2008  ) , nevertheless 
some common integration sites near cellular oncogenes belonging to  Wnt  and  Fgf  
families have been reported (Callahan and Smith  2000,   2008  ) . 

 Although no DNA consensus sequence was identi fi ed  in vitro , a weak DNA 
consensus appears  in vivo  at the host insertion site as well as surrounding the inte-
gration site. Furthermore, in the case of HIV-1, a speci fi c nucleosomal DNA archi-
tecture, i.e. the outward-facing major groove of the target DNA (possibly consistent 
with the weak consensus DNA sequence), is favored for integration, presumably 
due to IN protein structure constraints (Wang et al.  2007  ) . 

 To date, many hypotheses have been imagined to explain this retroviral-speci fi c 
integration site selection, including the role of cell cycle, chromatin accessibility and 
tethering proteins. Although all these models may contribute to integration site selec-
tion, only evidence for the tethering model has been identi fi ed so far (Fig.  2b ). This 
model suggests that integration site selection is dictated by a protein, directly or 
indirectly complexed with the retroviral-speci fi c IN, and acting as a tethering protein 
between the PIC and the host chromatin, thereby promoting integration at a nearby 
DNA site (Bushman et al.  2005 ; Ciuf fi  and Bushman  2006 ; Desfarges and Ciuf fi  
 2010  ) . Therefore, any PIC component could potentially act as a tethering protein. 

 Three major lines of evidence argue in favor of this tethering model. The  fi rst one 
takes advantage of chimeric constructs between MLV and HIV-1, and the subsequent 
analysis of integration site distribution (Lewinski et al.  2006  ) . Swaps between HIV-1 
and MLV at the level of Gag and IN highlighted the role of these two viral proteins 
as major determinants for integration targeting. Indeed, HIV-1 vector containing 
MLV Gag only displayed speci fi c integration preferences that differed from both 
HIV-1 and MLV and suggesting that Gag may play a role in integration site selection. 
In contrast, HIV-1 vector containing MLV IN lost integration preferences for tran-
scription units and acquired preferences for transcription start sites close to MLV 
phenotype, suggesting that HIV-1 IN is the major determinant for HIV-1 integration 
site selection. However, an HIV-1 vector containing both MLV Gag and MLV IN 
preferentially integrated into transcription start sites, completely recapitulating 
MLV integration site distribution, thereby suggesting that in the case of MLV, both 
Gag and IN are likely to be major viral determinants of integration site selection. 

 The second line of evidence resides in the identi fi cation of the HIV-1 IN-interacting 
protein, LEDGF/p75, that was shown to play a key role in integration ef fi ciency as 
well as integration site distribution (Cherepanov et al.  2005a,   b ; Ciuf fi  et al.  2005 ; 
Engelman and Cherepanov  2008 ; Llano et al.  2006 ; Marshall et al.  2007 ; Poeschla 
 2008  ) , thereby providing the proof-of-concept that LEDGF/p75 is acting as the 



157Viral Integration and Consequences on Host Gene Expression

major tethering protein for the HIV-1 PIC. Indeed, cells depleted for LEDGF/p75 
do not favor transcription units anymore but rather CpG islands (Ciuf fi  et al.  2005 ; 
Marshall et al.  2007 ; Schrijvers et al.  2012 ; Shun et al.  2007  ) . LEDGF/p75 is 
required for ef fi cient integration and site selection, not only for HIV-1, but for many 
lentiviruses (SIV, EIAV) (Busschots et al.  2007 ; Cherepanov  2007 ; Marshall et al. 
 2007  ) . In contrast, integration site selection of other retroviruses, such as MLV 
(a gammaretrovirus), is not affected by LEDGF/p75 depletion, providing additional 
evidence that LEDGF/p75 is the major tethering factor for lentiviruses only. Of note, 
Schrijvers et al. recently demonstrated that, in absence of LEDGF/p75, hepatoma-
derived growth factor related protein 2 (HRP2) was acting as an alternative tethering 
protein for HIV-1 PIC, although less ef fi cient than LEDGF/p75 (Schrijvers et al. 
 2012  ) . Except for Foamy virus (FV), for which H2A/H2B heterodimers were shown 
to interact with FV Gag, thus tethering FV PIC to chromatin (Tobaly-Tapiero et al. 
 2008  ) , speci fi c tethering proteins for other retroviral genera remains to be identi fi ed. 

 The third line of evidence originates from experiments using LEDGF/p75 chimera, 
in which the chromatin binding domain of LEDGF/p75 was substituted with the one 
of other chromatin binding proteins, including the phage  l  repressor protein, H1 
histone, KSHV latency-associated nuclear antigen, heterochromatin protein 1- a , 
inhibitor of growth protein 2 and heterochromatin protein 1- b  (Ciuf fi  et al.  2006 ; 
Ferris et al.  2010 ; Gijsbers et al.  2010,   2011 ; Meehan and Poeschla  2010 ; Meehan 
et al.  2009 ; Silvers et al.  2010  ) . All these studies showed that, by changing the 
chromatin binding of LEDGF/p75, integration site selection can be redirected 
from transcription units to alternative preferential host chromatin sites, dictated by 
the chromatin binding speci fi city of the chimeric protein, These data con fi rm the 
role of LEDGF/p75 in HIV-1 integration site selection and suggest that integration 
targeting can be modulated, a feature of great interest for gene therapy studies 
involving retroviral-based vectors. 

 Although tethering appears so far to be a major mechanism involved in integration 
site selection, recent studies demonstrated that integration targeting could also be 
affected by nuclear import. Indeed, it has been shown that depletion of nuclear pore 
proteins, such as Transportin-SR2/TNPO3 or resulted in the reduction of HIV-1 inte-
gration events in gene dense regions, but has no effect on MLV integration distribution 
(consistent with the concept that MLV does not enter the nucleus through the nuclear 
pore). These data provide evidence of a functional coupling between HIV-1 nuclear 
import and integration, implying a role for proper nuclear traf fi cking of HIV-1 com-
plexes in integration site distribution (Ocwieja et al.  2011 ; Schaller et al.  2011  ) .   

    2.2   Incidental Integration of Non-retroviral RNA Viruses 

 As mentioned at the beginning of this section, RNA viruses normally do not inte-
grate. However, the genomic sequence of lymphocytic choriomeningitis virus (LCMV), 
an arenavirus, has been identi fi ed in genome of infected mice and is seemingly the 
result of an incidental event that will be described hereafter. 
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 Arenaviruses are the etiologic agents of hemorrhagic fever disease in humans. 
Arenaviruses are enveloped viruses containing a bisegmented negative single stranded 
RNA genome coding for four viral proteins: an RNA-dependent RNA polymerase, 
the nucleocapsid, the glycoprotein and a RING-domain containing protein. The rep-
lication of arenaviruses is completely different from retroviruses, with a broader cell 
tropism (Emonet et al.  2011  ) . Viral replication takes place exclusively in the cytoplasm 
in which RNA synthesis is performed by the virally encoded RNA-dependent RNA 
polymerase (RdRp). Although RdRps belong to the reverse transcriptase-like super-
family, no reverse transcriptase activity has been detected so far. Therefore, these 
viruses normally do not integrate into the host chromosomes. However, studies aim-
ing at characterizing LCMV persistence in infected mice were able to detect LCMV 
DNA sequences by PCR in ~60% of mice 200 days post-infection (long after LCMV 
blood clearance), at a frequency of about 1 LCMV DNA copy in 10 4 –10 5  spleno-
cytes (Klenerman et al.  1997  ) . LCMV DNA was also detected in murine and ham-
ster cell lines (which are considered as the natural hosts for LCMV), but not in 
non-natural host cell lines (human, monkey, dog, cow). Further analysis highlighted 
a role for retrotransposons*, encoding a reverse transcriptase (RT), in the generation 
of LCMV DNA and subsequent integration. Interestingly, murine and hamster cells 
display a high level of endogenous RT activity, consistent, in part, with the natural 
host restriction observed. Recently, Geuking et al. showed that RT from endogenous 
retrotransposons can illegitimately recombine with the exogenous LCMV RNA 
genome by template switching, providing additional data pointing towards the role 
of retrotransposons in reverse transcribing and integrating LCMV genomic sequences 
(Geuking et al.  2009  ) . 

  Totiviridae  and  Partitiviridae  are superfamilies containing a broad range of 
RNA viruses infecting fungi, protozoa, nematods, arthropods and plants. Similarly 
to arenaviruses, neither reverse transcriptase activity, nor integration activity have 
been reported for these viruses. However, sequences of the capsid and the RdRp 
genes have been identi fi ed in many eukaryotic genomes, suggesting that integration 
of these viral sequences can occur more frequently as initially expected (Liu 
et al.  2010  ) . Based on these observations, the question remains: how can these viral 
sequences integrate in the host genome? Liu and coworkers proposed two models 
(Liu et al.  2010 ): (i) an illegitimate and incidental recombination with retrotrans-
posons may occur, leading to the integration of viral sequences, as described for 
LCMV (Geuking et al.  2009 ; Tanne and Sela  2005  )  or (ii) the double-strand-break 
repair machinery of the host cell may capture nearby viral DNA sequences and 
insert them in some instable regions of the genome, as described in yeast (Frank 
and Wolfe  2009 ; Puchta  2005  ) . Although both models can each contribute, only the 
 fi rst model enacting a role for retrotransposons can explain the prior appearance 
of a viral DNA intermediate, essential for being considered as a substrate of host 
genome insertion.   

  *Retrotransposons are mobile genetic DNA elements that resemble retroviruses, with reverse 
transcription and integrase activities but devoid of the extracellular part of the life cycle.      
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    3   DNA Viruses 

 Unlike RNA viruses, the genome of DNA viruses is already a potential substrate for 
host genome integration, without the need for prior processing. In general, the 
genome of DNA viruses is translocated to the nucleus, where it remains as an 
episome to ensure viral persistence. However, the genome of some DNA viruses can 
be found inserted in the host genome. The mechanisms underlying these integration 
events, incidental or non-incidental, are still poorly characterized, and the potential 
advantages for these DNA viruses to integrate are still obscure. Understanding 
these mechanisms should help elucidate the role of DNA virus integration in the 
viral life cycle. This section will summarize the current knowledge on integration of 
some prototypic DNA viruses as well as highlighting some mechanisms involved in 
this process. 

    3.1   Adeno-Associated Virus Type 2 (AAV-2) 

 The adeno-associated virus (AAV) is a widespread virus classi fi ed among the 
 parvoviridae  family. The relationship between AAV and the host remains obscure 
due partially to the absence of associated pathology. Replication of AAV is strictly 
conditioned by the presence in the same infected cell of helper viruses such as 
adenoviruses (Ad), human papillomaviruses (HPV) or herpes simplex viruses (HSV). 
In absence of helper viruses, AAV integrates its genome in a site-speci fi c way. The 
molecular mechanism involved in AAV integration has only been investigated for the 
type 2 serotype (AAV-2). The genome organization of AAV-2 consists of two major 
open reading frames coding for the non-structural proteins Rep (Rep78, Rep68, 
Rep52 and Rep40) and structural proteins Cap (VP1, VP2 and VP3),  fl anked by 
inverted terminal repeats (ITR). The site-speci fi c integration of AAV-2 is located in a 
non-repetitive element at the position 19q13,42 corresponding to the long arm of the 
chromosome 19, in a gene-dense region named  AAVS1  (for AAV integration site 1) 
(Fig.  3a ) (Kotin et al.  1991  ) . Analysis of  AAVS1  host sequence revealed two 
cis-acting sequences involved in AAV-2 integration: the terminal resolution site 
(TRS) corresponding to the Rep-speci fi c endonuclease site and the Rep binding site 
(RBS) (Brister and Muzyczka  1999 ; McCarty et al.  1994a,   b  ) . Interestingly, this 
TRS-RBS motif is also present in the ITR of the viral genome, suggesting that the 
sequence homo logy between AAV-2 ITR and the host genome site – TRS and 
RBS sequences – plays a role in AAV-2 integration. Recently, two new AAV-2 inte-
gration sites have been reported in chromosomes 5 (5p13.3) and 3 (3p24.3), named 
 AAVS2  and  AAVS3  respectively, that also carry a RBS motif (   Hüser et al.  2010 ).  

 Biochemical characterization of the proteins Rep68 and Rep78 revealed several 
activities, including DNA binding, ATPase, helicase and endonuclease activities, 
essential to direct site-speci fi c integration of AAV-2 genome (Surosky et al.  1997  ) . 
All together, these data point to a molecular model of AAV-2 integration in which 
the viral genome is tethered to a speci fi c  AAVS  locus via concomitant binding of 
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Rep68/78 on both cellular and viral RBS (Weitzman et al.  1994  ) . More particularly, 
AAV-2 integration starts with Rep68/Rep78 complex introducing a nick at the adja-
cent cellular TRS that may induce the non homologous end-joining pathway (NHEJ) 
repair machinery. Non homologous recombination between the viral ITRs and the 
host DNA results in the viral insertion of AAV-2 in the host genome and the partial 
duplication of the integration site (Henckaerts and Linden  2010 ; Lamartina et al. 
 2000 ; Urcelay et al.  1995  ) . 

 In conclusion, AAV long persistence, the absence of pathogenicity and the 
site-speci fi c integration at  AAVS  loci render AAV a very attractive candidate for 
gene therapy. However, to date, nothing is known about the long-term effect of AAV 
integration at the  AAVS  locus, which is close to a gene-dense region, containing among 
others the myosin light chain phosphatase  MBS85 , an enzyme important for smooth 
muscle contraction.  

    3.2   Herpes Viruses 

 Herpes viruses are DNA enveloped viruses, classi fi ed in three families based on 
their sequence phylogeny:   a ,  b  and  g  herpes viruses . They contain a linear double- 
stranded DNA that is delivered in the nucleus upon viral entry and circularized. 

  Fig. 3    Integration site distribution of DNA viruses. ( a ) Host chromosomal preferences in integration 
site selection of some DNA viruses. (+,  brown arrows ) MDV/HHV-6 viruses favor integration in 
telomeres. (▲,  red arrow ) AAV-2 integrates preferentially at the AAVS1 site, (◈,  purple arrows ) 
Ad integrates preferentially in gene loci, (✯,  orange arrows ) EBV integrates in heterochromatin. 
( b ) Schematic overview of the integration mechanism potentially involved in some DNA viruses, 
AAV, EBV, KHSV and Ad (from  left  to  right ).  TRS  terminal resolution site,  RBS  Rep binding 
site,  ITR  inverted terminal repeat, oriP origin of replication, HMGB2 high mobility group protein 
2,  MeCP2  methyl-CpG-binding protein 2,  MBD  methyl-CpG-binding domain,  SYREC  symmetric 
recombinant,  NHEJ  non homologous end joining repair machinery,  HR  homologous recombina-
tion repair machinery (See text for details)       
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It usually remains episomal, i.e. as an extrachromosomal circular DNA. However, 
some herpes viruses can integrate their genome into the host chromosomes, although 
these observations are considered as exceptions of the herpesvirus life cycle. In this 
part, we will highlight the features concerning integration of the   g -herpesvirus  
Epstein-Barr virus (EBV) and the   b -herpesvirus  Human Herpes Virus 6 (HHV-6) 
into the host chromosomes. 

    3.2.1   Epstein-Barr Virus (EBV) 

 EBV is the prototypical member of the   g -herpesvirus  family and is known to 
establish a long persistent infection in B-lymphocytes as well as in epithelial 
cells. EBV is associated with several proliferative disorders and cancers, including 
Burkitt’s lymphoma, Hodgkin’s lymphoma and nasopharyngeal carcinoma (Epstein 
et al.  1964 ; Gutensohn and Cole  1980 ; Zur Hausen and Schulte-Holthausen 
 1970  ) . Two stages of EBV infection exist: (i) the lytic or productive cycle, in which 
the infected cell is actively releasing new infectious viral particles, and (ii) the 
latent cycle, in which only a few viral proteins are expressed, some of which are 
directly linked with cell proliferation and thus cancer. During latent infection, the 
EBV genome persists as an episome. However, the presence of linearized EBV 
genome in the host genome has been identi fi ed and con fi rmed using different 
approaches, including cytological hybridization, FISH*, PCR*, genomic library 
screening and sequencing. The presence of integrated EBV genome suggests an 
alternative way for EBV to establish long term infection (Gao et al.  2006 ; Hurley 
et al.  1991 ; Lestou et al.  1993  ) . However, the question whether integration site 
selection occurs randomly or not is still a matter of debate, mainly due to the 
technical dif fi culties to isolate EBV integration events from EBV episomes (Gao et al. 
 2006 ; Takakuwa et al.  2004  ) . Nevertheless, data so far suggest that EBV integration 
is not random and occurs preferentially in regions corresponding to heterochro-
matin (Gao et al.  2006 ; Lestou et al.  1993  )  (Fig.  3a ). However, EBV integration 
has also been identi fi ed in genes, including  MACF1 *,  BACH-2 * (putative tumor 
suppressor gene),  REL * and  BCL-11A * (proto-oncogenes), thereby revealing a 
potential impact of EBV integration in disrupting the expression of some cellular 
genes (Takakuwa et al.  2004  ) . 

 The EBV episome maintenance is ensured by the viral Epstein-Barr nuclear antigen 
1 (EBNA-1) protein, attaching the episome to the host chromatin via AT-hook 
motifs (Fig.  3b ). The interaction of EBNA-1 with the cellular EBNA-1 Binding 

* FISH fluorescence in situ hybridization
* PCR polymerase chain reaction
* MACF1 microtubule-actin crosslinking factor 1
* BACH-2 BTB and CNC homology 1
* REL reticuloendotheliosis viral oncogene homolog (avian)
* BCL-11A B cell CLL/lymphoma 11A
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Protein 2 (EBP2) and high-mobility group protein 2 (HMGB2) may also play a 
role in attaching the EBV episome to the host chromatin during interphase and 
mitosis (Jourdan et al.  2012  ) . This chromatin attachment process could be 
enlarged to other family members, including the Kaposi’s sarcoma herpes virus 
(KSHV). Indeed, it was shown that KSHV episomal genome was attached to the 
host chromatin via the cellular histones 2A and 2B, the methyl-CpG-binding 
protein 2 (MeCP2) and the LANA (latency associated nuclear antigen) viral protein 
(Fig.  3b ) (Barbera et al.  2006 ; Matsumura et al.  2010 ; Verma and Robertson 
 2003  ) . Although the mechanisms involved in EBV and KHSV genome integration 
into the host chromatin remains to be elucidated, it is tempting to hypothesize, 
based on the retroviral tethering model, that viral DNA episome integration 
requires initially these docking proteins (EBNA-1 complex, LANA complex), 
thereby creating an opportunity for the subsequent incidental recombination 
and insertion into the host DNA, probably mediated by the cellular DNA repair 
machinery.  

    3.2.2   Human Herpes Virus-6 (HHV-6) 

 HHV-6 is the causal agent of the  roseola infantum  occurring during the  fi rst years of 
life and characterized by an intense fever for a few days. After the primary infection, 
the virus is able to establish latency in some monocytes and macrophages. Viruses 
may be reactivated from latency, particularly in immunosuppressed patients, thereby 
causing secondary infections with severe complications such as encephalitis (Kondo 
et al.  1991,   2002 ; Vu et al.  2007  ) . Integration of HHV-6 (also named chromoso-
mally integrated human herpes virus 6, ciHHV-6) into the host chromosomes is well 
de fi ned and remains one of the most consistent observations of DNA virus integra-
tion, with at least 34 published examples (Pellett et al.  2011  ) . Although the molecu-
lar mechanism involved in this process is still not fully understood, a few hints are 
starting to emerge. 

 The HHV-6 genome architecture is organized in two main regions: (i) the unique 
long region (UL) containing several gene blocks responsible for viral replication, 
and (ii) direct repeats (DR)  fl anking the genome. The right DR (DRR) and the left 
DR (DRL) contain a perfect [TAACCC] 
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  repeated sequence arrangement identical 

to the human telomeric repeat sequence, as well as an imperfect telomeric repeat 
sequence arrangement referred to the het region (Gompels and Macaulay  1995  ) . 
To date, all integration sites reported were localized in the telomeric regions with no 
preference for a given chromosome (Fig.  3a ), suggesting that HHV-6 integrates its 
genome via homologous recombination between the viral and cellular telomeric 
sequences (Arbuckle et al.  2010 ; Nacheva et al.  2008  ) . Recently, a role for the still 
poorly characterized HHV-6 U94 protein in HHV-6 integration was proposed, based 
on its strong homology with AAV-2 Rep68/78, particularly at the level of single-
stranded DNA binding activity (Dhepakson et al.  2002  ) . 

 The HHV-6 closely related Marek’s disease virus (MDV) was shown to have 
also viral telomeric sequences that facilitate MDV integration into host telomeres. 
Minimal changes in these sequences not only strongly reduced integration ef fi ciency 
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but also modi fi ed the integration site selection to regions outside the telomeres 
(Kaufer et al.  2011  ) , providing additional evidence that the viral DR sequence is 
essential for integration targeting.   

    3.3   Hepatitis B Virus (HBV) 

 The hepatitis B virus is one of the most common human pathogen responsible for the 
development of hepatocellular carcinoma (Neuveut et al.  2010  ) . During acute infec-
tion, HBV can integrate its genome into the host chromosomes and present several 
similarities with retroviral integration. Although initial analyses of several HBV 
integration sites revealed random integration events in all chromosomes (Tokino 
and Matsubara  1991 ; Yaginuma et al.  1987  ) , a recent large-scale analysis identi fi ed 
favored HBV integration events in transcriptionally active regions (Murakami 
et al.  2005  ) . Furthermore, HBV integration target genes (including hTERT*, PDGF 
receptor*, the mixed lineage leukemia 2 or the 60 S ribosomal protein) were pre-
ferentially involved in cell proliferation, survival and oncogenesis (Ferber et al.  2003 ; 
Murakami et al.  2005 ; Tamori et al.  2005  ) . Future studies are needed to further unveil 
the molecular mechanism of HBV integration the exact role of HBV integration in 
the establishment of hepatocellular carcinoma.  

    3.4   Adenoviruses (Ad) 

 Adenoviruses are double stranded DNA viruses, usually perceived as non-integrating 
viruses with a genome persisting under episomal form. However, in hamster cells, 
the complete genome of Ad12 was found to be stably integrated into the host 
chromosomes, with a few nucleotide modi fi cations at the viral junctions. Similarly, 
Stephen et al. infected hamster immortalized (HT-1080 and C32) and primary 
 fi broblasts (FF-92) with an Ad5-derived vector and identi fi ed 59 integration sites: 
29 were found in active transcription units in all chromosomes and 15 out of the 
30 integration sites identi fi ed outside genes were located near genes, suggesting 
preferential integration of Ad in gene loci (Fig.  3a ) (Stephen et al.  2008,   2010  ) . 
The current model suggests that Ad ITR contains speci fi c symmetric recombinant 
(SYREC) sequences, which have stretches homologous to cellular repetitive elements, 
and that could thus allow Ad host genome insertion through patchy nucleotide 
homology (Fig.  3b ) (Deuring and Doer fl er  1983 ; Deuring et al.  1981 ; Doer fl er  2009 ; 
Stabel and Doer fl er  1982 ; Wronka et al.  2002  ) . Further analysis of Ad integration 
events  in vitro  and  in vivo  revealed that both homologous recombination and heter-
ologous recombination (non homologous end joining pathway) were involved in this 
SYREC-mediated integration process (Hoglund et al.  1992 ; Stephen et al.  2008,   2010 ; 

* hTERT human telomerase reverse transcriptase
* PDGF receptor platelet-derived growth factor receptor
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Wronka et al.  2002  ) . Adenovirus-based vectors are currently the most used vectors 
in gene therapy, representing 24.2% of the clinical trials (source   http://www.
wiley.com//legacy/wileychi/genmed/clinical    ). Understanding the frequency and the 
mechanisms of Ad integration and recombination should help render these vectors 
safer for gene therapy trials.   

    4   Consequences of Viral Integration on the Host Cell 

 The site of the viral integration event can have multiple consequences for the host, 
as well as for the virus itself. Indeed, viral integration can lead to cell death or 
proliferation as a result of insertional mutagenesis. However, integration can also 
lead to consequences for the virus, i.e. active production or transcriptional silencing, 
a process also called latency that is key to establish viral persistence. Finally, inte-
gration in the germline can contribute shaping the host genome and participate in 
species evolution. Each of these effects will be further discussed below. 

    4.1   Cell Death 

 Apopotosis is a general mechanism involved in cell homeostasis regulation elimi-
nating aberrant cells, with altered physiological parameters as well as a compro-
mised genome integrity (Roulston et al.  1999  ) . Upon viral invasion, the presence of 
a linear double-stranded DNA is sensed by the host DNA repair machinery as a 
DNA break, which will lead to cell apoptosis unless successfully repaired (Daniel 
et al.  1999 ; O’Brien  1998  ) . Following the same concept, if the cell is invaded by 
multiple viral particles, thus multiple DNA genomes, it is likely that the DNA repair 
machinery will be overwhelmed, and will thus fail in repairing all the DNA mole-
cules, thereby resulting in cell death. Similarly, if too many viral genomes integrate 
successfully, the integrity of the host genome itself may be compromised, also leading 
to cell death. In addition, viral integration will eventually lead to gene expression 
deregulation that may induce cell apoptosis. For instance, it has been reported that 
integration of HBV in ATP2A1/ SERCA-1*  gene resulted in gene disruption and 
in the expression of a chimeric non functional protein HBVx/SERCA-1 (Fig.  4 ). 
This chimeric protein lost calcium and ATP binding domains, thereby strongly 
disturbing the reticulum endoplasmic calcium homeostasis and inducing apoptosis 
(Chami et al.  2000  ) .   

* ATP2A1/SERCA-1 sarcoplasmic/endoplasmic reticulum calcium ATPase 1

http://www.wiley.com//legacy/wileychi/genmed/clinical
http://www.wiley.com//legacy/wileychi/genmed/clinical
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    4.2   Tumorigenesis 

 Many viruses have been characterized based on their ability to induce cellular trans-
formation and thus tumors. However, two mechanisms of virus-induced cellular 
transformation should be distinguished. 

 The  fi rst one leads to a rapid tumorigenesis process and is exempli fi ed by onco-
viruses, i.e. viruses coding for a viral oncogene and thus directly responsible for the 
cellular proliferation, such as some retroviruses (MMTV*, MLV*, RSV*, HTLV*) 
and DNA viruses (HPV, EBV, HBV, Ad) (Nevins  2007  ) . Of note, it has been sug-
gested that Adenoviruses are more likely to induce cell death in permissive cells 
(including human cells), while inducing a tumor in non-permissive cells (hamster 
cells), often linked to Adenoviral genome integration (Doer fl er  2011,   2012  ) . 

 The second mechanism, which is directly related to viral integration, is called 
insertional mutagenesis. In this case, tumorigenesis is a slow process directly 
related to the viral integration site, which disturbs the cell homeostasis. Indeed, 
viral integration alters and modulates the expression of cellular nearby genes 
(Fig.  4 ). A  fi rst scenario is the result of gene disruption by the viral integration 
event. If the disrupted gene is a tumor suppressor gene for example, this may 

promoter

Gene disruption Gene activation

promoter

promoter

Cell death

Cell transformation Viral persistence

Long term gain of function
(species evolution)

  Fig. 4    Schematic overview of global consequences of viral integration events. Viral genome ( red ) 
insertion into gene exons ( yellow ) or introns ( black line ) eventually leads to gene disruption ( left ). 
Viral genome insertion into or close to promoters ( blue ) leads to an in fl uence of viral enhancers on 
host gene expression regulation, thus overexpression by gene activation ( right )       

* MMTV mouse mammary tumor virus
* MLV murine leukemia virus
* RSV Rous sarcoma virus
* HTLV human T lymphotropic virus
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ultimately lead to cellular transformation. Second, viral integration occurring close 
to cellular oncogenes may result in viral promoter-induced overexpression of the 
oncogene. The best illustration of this event occurred in a gene therapy trial aiming 
at correcting the severe combined immunode fi ciency-X1 disease (SCID-X1) using 
a gammaretroviral vector providing a functional  IL2RG * gene (Cavazzana-Calvo 
et al.  2000  ) . Although this trial was successful, restoring an immune function, 
4 out of 9 patients developed leukemia in the 5 years following viral transduction 
(Hacein-Bey-Abina et al.  2008  ) . The analysis of viral integration sites in the 
transduced cells identi fi ed integration events nearby the  LMO2*  proto-oncogene, 
yielding to  LMO2  overexpression (Hacein-Bey-Abina et al.  2008  ) . The aberrant 
expression of  LMO2  is a major determinant of T cell immortalization as recently 
demonstrated  in vitro  after gammaretroviral transduction of the proto-oncogene 
 LMO2  in T cells (Newrzela et al.  2011  ) . Although it was shown that MLV vectors 
preferentially integrate at promoters and regions close to the transcription start site 
(Kim et al.  2008,   2011 ; Mitchell et al.  2004 ; Wu et al.  2003  ) , exon 1 of  LMO2  locus 
was shown to be a hotspot for MLV integration in T cells, with 1 integration out of 
2.125 ´ 10 5  (Yamada et al.  2009  ) . Nonetheless, new MLV-derived vectors contain-
ing chromatin insulator elements from the chicken  b -globin have been engineered 
to block the viral enhancer activity of the promoter, thereby reducing the risk of 
MLV-induced leukemia (Emery  2011  ) . 

 To obtain a more global picture of cellular homeostasis alterations upon viral 
integration events,    Soto-Giron and Garcia-Vallejo  (  2012  )  recently attempted at 
predicting the changes due to HIV-1 integration in macrophages, using protein 
networks interacting directly with HIV-1 or indirectly through regulatory pathways 
(Balakrishnan et al.  2009 ; Schroder et al.  2002  ) . They selected a few genes targeted 
by retroviral integration and compared the interactome of these gene products 
between non-infected and HIV-1 infected macrophages. By computational analysis, 
they showed that integration in 5 selected genes induced profound alteration of the 
global transcription network (Soto-Giron and Garcia-Vallejo  2012  ) . Another illus-
tration of cell homeostasis deregulation upon viral integration, leading to tumor 
development, resides in HBV infected cells, where multiple pathways involved in 
cell cycle are deregulated, including Wnt/ b -catenin signaling, Ras/MAPK, PTEN/
Akt, p14ARF/p53, and TGF- b  pathways (Neuveut et al.  2010  ) . 

 Accumulation of genetic changes, chromosomal rearrangements, alterations of 
gene expression and cellular pathways as consequences of viral integration contribute 
incrementally to deregulate cell growth and induce tumor development when apop-
tosis is not involved. The database named DrVIS has recently been developed in 
order to report the association between viral integration sites and malignant diseases 
(Zhao et al.  2012  ) . However, to date, the exact role of viral integration in cancer 
induction has not been fully clari fi ed for many viruses.  

* IL2RG interleukin 2 receptor gamma
* LMO2 LIM domain only 2
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    4.3   Viral Persistence 

 Many viruses can exist in a latent state, thus establishing a persistent infection. During 
this phase, viruses are transcriptionally silent, either completely or partially, allowing 
them to escape immune surveillance and establish viral reservoirs. Viral reservoirs 
represent a major obstacle for therapeutic strategies and virus eradication. 

 A well-known example is illustrated by HIV-1, which can persist in resting memory 
CD4+ T cells (Chomont et al.  2009 ; Chun et al.  1997a,   b,   1995 ; Finzi et al.  1999, 
  1997  ) . Indeed, despite a very ef fi cient combination therapy (highly active antiretro-
viral therapy, HAART), HIV-1 is not eliminated from the organism and rebounds 
upon HAART interruption. Although the mechanisms underlying virus reactivation, 
allowing the virus to exit a transcriptionally silent and latent state in favor of a pro-
ductive state releasing infectious particles, is not yet completely understood, it is 
nevertheless obvious that this can only be achieved thanks to the presence of the 
integrated HIV-1 genome in the infected cell (Joos et al.  2008 ; Zhang et al.  2000  ) . 
To date, it is thought that the only way to successful HIV-1 eradication resides in 
purging the viral reservoir, and that this could be achieved by reactivation of viral 
transcription from latently infected cells (Siliciano  2010  ) . 

 The molecular mechanisms promoting and maintaining  in vivo  latency of DNA 
and RNA viruses have not been completely elucidated and are still the focus of many 
investigations. In the case of HIV-1, three major players are currently involved in 
latency: (i) the availability of cellular transcription factors. Indeed, a current model 
implies that HIV-1 is transcriptionally active in activated infected T cells, and that 
when the T cells evolve to a resting memory state, many transcription factors become 
unavailable, thus silencing viral transcription (Coiras et al.  2009  ) . Furthermore, epi-
genetic modi fi cations implicating  de novo  methylation of the provirus and chromatin 
remodeling complexes may also contribute to the transcriptional silencing of the 
integrated retrovirus (Agbottah et al.  2006 ; Blazkova et al.  2009 ; Kauder et al.  2009 ; 
Mahmoudi et al.  2006 ; Treand et al.  2006  ) . (ii) The level of the viral transactivator 
protein, Tat, which is responsible for ef fi cient viral transcription, and (iii) the site of 
viral integration. Indeed, it has been shown that infected cells in a latent state were 
characterized with proviruses in heterochromatin and centromeric regions (Jordan 
et al.  2003 ; Lewinski et al.  2005  )  and were found more often in sense orientation, 
leading to decreased viral transcription due to RNA interference (Shan et al.  2011  ) . 

 Although herpes viruses establish latency via persistent episomes, it has been 
shown that HHV-6 integration was also able to promote latency. Indeed, by a mech-
anism similar to HIV-1, HHV-6 integration into telomeric heterochromatin, which 
are transcriptionally inactive regions may affect viral transcriptional activity, thereby 
favoring latency (Arbuckle et al.  2010 ; Arbuckle and Medveczky  2011 ; Nacheva 
et al.  2008  ) . This latent HHV-6 is non cytopathic as completely or partially silent. 
However, the reactivation of integrated HHV-6 by HDAC inhibitors, such as tricho-
statin-A, induces ef fi cient viral production, as well as cytopathic effects (cell death 
and syncytium formation), which are eventually deleterious for the host (Arbuckle 
et al.  2010 ; Duelli and Lazebnik  2007  ) .  
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    4.4   Species Evolution 

 The integrating virus can be persistent not only at the level of the cell but also at the 
level of the organism. Indeed, viral integration may have a signi fi cant impact on 
the organism and its progeny if the virus succeeds in infecting the germ line. 

 Retroviruses are the only viral group that has remnants in the form of integrated 
endogenous elements (ERV for Endogenous Retrovirus), accumulating over time in 
the human genome, and reaching to date approximately 8% of the total genome 
(Jern and Cof fi n  2008  ) . In humans, HERVs resemble to exogenous retroviruses, 
however, due to accumulated mutations, they lost their ability to replicate and can 
thus be considered as defective endogenous retroviruses. Even if retroviruses usually 
infect somatic cells, infection of a germ line cell can sometimes occur. In this way, 
HERVs were  fi xed in the human genome and could be transmitted through genera-
tions as a classical human gene driven by Mendelien’s rules. 

 Integration of viral elements followed by endogenization can lead to profound 
consequences for the host, ultimately shaping its genome. The proof of concept 
of this is illustrated by  syncytin  genes that are expressed in trophoblasts. Syncytins 
display fusogenic activities that contribute to the formation of multinucleated syn-
cytiotrophoblast cells, and are thus essential for placenta morphogenesis (Rawn and 
Cross  2008  ) . It has been shown that the  syncytin-1  gene corresponds to the  env  
gene of an endogenous retrovirus belonging to the HERV-W family that was  fi xed 
in the human genome 45 million years ago (Mi et al.  2000  ) . Similarly, another 
fusogenic protein named Syncytin-2 has been identi fi ed, corresponding to the 
 env  gene of HERV-FRD (Blaise et al.  2003  ) . During primate evolution, these 
genes were conserved, and thus “captured” by the host as they provided a bene fi t 
for the host. In contrast,  gag  and  pol  genes accumulated inactivating mutations, 
leading to a replication-incompetent retrovirus that could be otherwise detri-
mental to the host. 

 As mentioned earlier, 8% of the human genome is composed of ERV remnants. 
Further investigations on these retroviral sequences should provide additional infor-
mation about retroviral genes that are functional, like  env -derived  syncytins , and 
therefore likely to play a role in host cellular processes.   

    5   General Conclusions 

 Integration of viral genome into host chromosomes results from (i) an essential 
step of life cycle, such as for retroviruses, or (ii) an incident, for some RNA viruses 
and DNA viruses. However, the high integration frequency of some DNA viruses 
( i.e.  HHV-6) and its role in establishing bene fi cial latency may challenge the view of 
incidental integration. Nevertheless, incidental or not, genome integration of DNA 
and RNA viruses have profound consequences for the host, including premature 
cell death and tumorigenesis, and that will in turn affect the rate of viral expression, 
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thereby guiding the virus in a productive or latent cycle. In addition, viral integration 
events in the germ line may contribute to shaping the host genome, eventually pro-
viding selective advantages for the host, and contributing to species evolution. 

 A better understanding of viral integration mechanisms, integration frequency, 
integration site selection and the impact of viral integration on the virus-associated 
disease outcome should help designing new strategies aiming at eradicating 
persistent viral infections, as well as improving virus-derived delivery vectors for 
gene therapy.      
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