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Multi-omics analysis of respiratory specimen
characterizes baseline molecular determinants
associated with SARS-CoV-2 outcome

Jaswinder Singh Maras,1,5,* Shvetank Sharma,1 Adil Bhat,1 Sheetalnath Rooge,2 Reshu aggrawal,2 Ekta Gupta,2,4

and Shiv K. Sarin1,3,4,*

SUMMARY

Rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection still remains a major challenge. Amulti-omic approach was adop-
ted to analyze the respiratory specimens of 20 SARS-CoV-2-positive, 20 negative
and 15 H1N1 pdm 2009 positive cases. Increased basal level of MX1 (MX dyna-
min-like GTPase 1) and WARS (tryptophan-tRNA ligase) correlated with SARS-
CoV-2 infection and its outcome. These markers were further validated in 200
suspects. MX1>30pg/ml and WARS>25ng/ml segregated virus positives
[AUC = 94% CI: (0.91–0.97)] and severe patients [AUC>0.85%]. Our results docu-
mented significant increase in immune activation; metabolic reprograming and
decrease in oxygen transport, wound healing and others linked proteins and me-
tabolites in patients with coronavirus disease 2019 (COVID-19). Multi-omics
profiling correlated with viremia and segregated asymptomatic patients with
COVID-19. Additionally, we identified increased respiratory pathogens (Burkhol-
deriales, Klebsiella pneumonia) and decreased lactobacillus salivarius (FDR<0.05)
in COVID-19 specimens. In conclusion, increased basal MX1 andWARS levels cor-
relates with SARS-CoV-2 infection and could aid in the identification of patient’s
predisposed to higher severity.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-

19). Spread of the virus is severe, and within few months more than 5.69 million were infected; mortality was

seen in more than 356 thousand patients and counting. The global recovery rate of COVID-19 is nearly 41%

and the mortality rate is close to 7% (Ghinai et al., 2020; Guan et al., 2020; Li et al., 2007). About 80% of the

patients infected with SARS-CoV-2 are asymptomatic or display mild symptoms and has good prognosis

(Mehta et al., 2020; Thevarajan et al., 2020). However about 20% of patients who suffer from respiratory

distress require immediate access to specialized intensive care; otherwise, they may die rapidly (Mehta

et al., 2020; Murthy et al., 2020; Thevarajan et al., 2020; Wu and McGoogan, 2020). Therefore, it is vital

to understand the pathogenesis of SARS-CoV-2 infection and identify patients who are positive, asymp-

tomatic, or patients who are predisposed to COVID-19-associated severe respiratory distress. Thus,

employment of new approaches which could characterize baseline molecular determinants associated

with SARS-CoV-2 infection and outcome becomes critical.

Currently oropharyngeal/nasopharyngeal swab (respiratory specimen) is used for real time-polymerase

chain reaction (RT-PCR) based detection of viral genetic material and is the gold standard of COVID-19

detection; clinical sensitivity ranging from 66% to 80% (Udugama et al., 2020). However, the respiratory

specimen is a mixture of viral, host molecules (proteins, metabolites), and microbiome which could be

indicative of viral presence and could be utilized as a surrogate for screening purpose. Additionally, the

respiratory specimen could work as a liquid biopsy and provide an insight into the pathophysiology of

COVID-19 disease. Methods with higher sensitivity and resolution than RT-PCR are needed to improve

the management of the pandemic. Recently, Shen et al. (Shen et al., 2020) used high-resolution mass spec-

trometry-based proteomics and metabolomics in serum specimens to provide insights into the pathophys-

iology of COVID-19. However, detailed characterization of the respiratory specimen in terms of
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proteomics, metabolomics and metaproteomics needs to be analyzed for improving viral diagnostics and

host related biomarkers linked to predisposition to severe outcome of disease.

In this pilot study, we hypothesized that SARS-CoV-2 induces characteristic molecular changes that can be

detected in the respiratory specimen of COVID-19-positive patients. These molecular changes could be

distinct and help segregate SARS-CoV-2-positive patients and provide pathophysiological insights and

help in characterization of patients predisposed to severe outcome. To test this hypothesis, global prote-

ome, metaproteome, and metabolome analysis was performed on the respiratory specimens followed by

an in-depth analysis of the regulatory networks. The integrated analysis identified correlation clusters

predictive of viral pathogenesis and promising targets for COVID-19 outcome. Targets identified in our de-

rivative cohort were validated in 200 COVID-19 suspected specimens, and the sensitivity/specificity was

recorded for COVID-19 infection and outcome (severity, symptomatic) prediction. We also analyzed the as-

sociation of combined oropharyngeal and nasopharyngeal microbiome (metaproteome) with SARS-CoV-2

infection and outcome determination.

RESULTS

Proteome profile of the respiratory specimen could stratify COVID-19-positive patients

We aimed to identify biomolecules having diagnostic value and outcome prediction value for SARS-CoV-2

infection (Figure 1A). Label-free quantitative proteomics was performed and SARS-CoV-2 proteins or

linked proteins, host proteins, and bacterial peptides were identified in the respiratory specimen of

COVID-19-positive, COVID-19-negative, and H1N1 pdm 2009 patients.

Respiratory virus (SARS-CoV-2) or linked proteome analysis

We identified significant increase in 6 SARS-CoV-2 proteins along with ACE2 in the respiratory specimen of

COVID-19-positive patients compared to negative patients (p < 0.05, Figure 1B). Principle component

analysis (PCA) and unsupervised clustering analysis segregated patients with COVID-19 (Figures 1C and

S1, and Table S1). Mean decrease in the accuracy was highest for ACE2 followed by viral proteins

Figure 1. Quantitative virome profile of the respiratory specimen

(A) Work flow for COVID-19 biomarker identification (discovery phase): Differentially regulated viral/host proteins, metabolites and bacterial peptides were

identified which was subjected to random forest and AUROC analysis for identification of candidate for validation. Correlation clustering and pathway

analysis provided insight on the pathophysiology of SARS-COV2 infection. Finally the identified candidate indicators were validated in 200 COVID suspect

for SARS-CoV-2 infection and outcome prediction.

(B) Log normalized abundance of 6 viral and 1 viral associated proteins identified in the respiratory specimen of COVID-19 positive as compared to COVID-19

negative patients. *** signifies p < 0.05.

(C) Principle component analysis score plot showing segregation of COVID-19 positive patients from COVID-19 negative based on the identified Viral and

associated proteins and Random forest analysis showing themean decrease in accuracy of the viral and associated proteins (Red = upregulated and Green =

downregulated) in COVID-19-positive as compared to COVID-19-negative patients.

(D) Partial least square discriminant analysis showing clear segregation of COVID-19-positive patients (Red dots) from COVID-19-negative (Green dots) and

influenza A H1N1 pdm 2009 pdm 2009 positive patients (Blue dots) based on host proteomic evaluation and heatmap, hierarchical cluster analysis of top 40

proteins (p < 0.05) capable of segregating COVID-19-positive (orange bar) patients from COVID-19-negative (green bar) or influenza A H1N1 pdm 2009-

positive patients (blue bar) (Red = upregulated, Green = downregulated and black = unregulated).

(E) Random forest analysis showing themean decrease in accuracy of the proteins (Red = upregulated and Green = downregulated and yellow = unchanged)

in COVID-19-positive compared to COVID-19-negative or Influenza A H1N1 pdm 2009 pdm 2009-positive patients and relative abundance (Log normalized)

for MX1 and WARS showing significant increase in MX1 and WARS levels (p value** = p < 0.05, ***<0.01).

(F) Joint AUROC analysis of MX1 and WARS documenting an AUC = 0.96 CI (0.82–1) p < 0.05 along with prediction class probability score plot showing

segregation of CoV2 positive and CoV2 negative.

(G) KEGGpathway analysis of 184 proteins up regulated in COVID-19-positive respiratory specimen as compared to COVID-19-negative or Influenza A H1N1

pdm 2009 pdm 2009-positive cases (FC > 2; p < 0.05, FDR>0.05). Darker nodes are more significantly enriched gene sets. Bigger nodes represent larger gene

sets. Thicker edges represent more overlapped genes. Yellow edge show viral linked network.

(H) KEGG pathway analysis of 60 proteins downregulated in COVID-19-positive respiratory specimen as compared to COVID-19-negative or Influenza A

H1N1 pdm 2009 pdm 2009-positive cases (FC > 2; p < 0.05, FDR>0.05). Darker nodes are more significantly enriched gene sets. Bigger nodes represent

larger gene sets. Thicker edges represent more overlapped genes. Three clusters of edges can be identified: (A) gas transport and oxygen transport cluster

(B) wound healing and inflammation cluster and (C) vesicle transport cluster. Yellow edge show wound healing linked network.

(I) Principle component analysis (PCA) showing clear segregation of COVID-19-positive patients based on metaproteins estimations and hierarchical cluster

analysis of the metaproteins (p < 0.05) show clear segregation of COVID-19-positive patients (Red bar) from COVID-19-negative (Green bar) or Influenza A

H1N1 pdm 2009-positive patients (Blue bar). (Dark brown = upregulated, Blue = downregulated and white = unregulated).

(J) Sunburst plot representative of microbial population difference (phylum: order: family) in COVID-19-positive respiratory specimen as compared to

COVID-19 negative or Influenza A H1N1 pdm 2009-positive cases. Percent distribution of identified peptide is provided in each sunburst plot.
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(Figures 1C and S1) suggesting that quantitation of these viral or viral linked protein could be used for early

identification of SARS-CoV-2 infection.

Respiratory proteome (host) analysis

Analysis of the host proteome (Figure S2) identified 1256 proteins, of them 132 were differentially ex-

pressed (DEP; 116 up- and 16 downregulated) in COVID-19 positive compared to negative patients

(FC > 2, p < 0.05, Table S1, Figure S4). Additionally, 166 differentially expressed host proteomes (DEPs)

(117 upregulated and 49 downregulated) were identified in COVID-19-positive patients compared to

H1N1 pdm 2009 patients (FC > 2, p < 0.05, Table S1, Figure S4). Partial least square discriminant analysis

and unsupervised hierarchical clustering analysis (Figures 1D and S3) segregated COVID-19-positive pa-

tients. Amongst the identified DEPs, mean decrease in the accuracy (random forest; 1000 trees) was highest

for MX1 (MX dynamin-like GTPase 1) andWARS (tryptophan-tRNA ligase) making them themost important

proteins for segregating COVID-19-positive patients from negative or H1N1 pdm 2009 patients (Figure 1E).

The diagnostic efficiency of MX1 was 0.895 (0.746–1) and WARS was 0.948 (0.85–1) for COVID-19-positive

detection (p < 0.05; Figure S8). Combined diagnostic efficiency of MX1 and WARS was 0.96 (0.826–1) and

showed clear segregation of COVID-19-positive from negative patients (Figure 1F).

Interestingly, COVID-19-positive patients showed significant increase in viral-associated interferon

signaling, immune activation including monocyte, and neutrophil activation (IL-2, IL-3, IL-5, and granulo-

cyte-macrophage colony-stimulating factor signaling), IL-17, and nucleotide-binding oligomerization

(NOD)-like receptor signaling, bacterial invasion of epithelial cells, fluid shear stress, and glucose meta-

bolism (Figure 1G, KEGG; Figures S5 and S6), whereas oxygen transport, wound healing, regulation of

body fluids, and other pathways were decreased (Figure 1H, KEGG, FDR<0.05, Figure S7). Together these

findings showed that COVID-19-positive patients have virus-mediated hyperimmune activation, deregu-

lated oxygen transport, increased fluid shear stress, and glucose metabolism. Furthermore, proteins

such as MX1 andWARS (tryptophan-tRNA ligase) are regulated by SARS-CoV-2 infection and could be vali-

dated for a probable indicator of COVID-19 infection and outcome prediction.

Respiratory meta-proteome analysis

Often SARS-CoV-2 infection precedes bacterial co-infection and is linked with longer duration and more

severe infection (Bengoechea and Bamford, 2020; Gu and Korteweg, 2007). SARS-CoV-2 is also known

to modulate the gut microbiota and is associated to immune cell activation and severe outcome (Dhar

and Mohanty, 2020). We hypothesized that change in naso-pharyngeal/oropharyngeal microbiome (likely

source of lung microbiome) due to SARS-CoV-2 infection could be reflective of altered pathogenesis and

help in identification of SARS-CoV-2-positive infection and outcome. To explore this, metaproteome anal-

ysis was performed in the respiratory specimen of the study group (Figure S9). PCA along with unsuper-

vised clustering analysis segregated COVID-19-positive from other groups (Figure 1I). At the phylum level,

proteobacteria and Tenericutes were increased, corroborating to an increase in alpha diversity seen in

COVID-19-positive respiratory specimen (Figures 1J and S10, p < 0.05). Linear discriminating analysis

showed significant increase in bacterial peptides linked to proteobacteria, firmicutes, and tenericutes in

COVID-19-positive respiratory specimen compared to H1N1 pdm 2009 or negative (p < 0.05; Figure S11,

Table S3). Amongst the differentially expressedmetaproteins (DEMPs), mean decrease in the accuracy was

highest for Bacillus subtilis (Variable 82), and Burkholderiales making them the most important bacterial

lowest common ancestor (LCA) which could segregate COVID-19-positive from negative or H1N1 pdm

2009 cases (AUROC>0.99; p < 0.05, Figure S12 and 13). Interestingly, functionality assessment of

COVID-19-positive microbiome showed significant increase in bacterial enzyme linked to pantothenate

and CoA biosynthesis in actinobacteria, aminoacyl-trna biosynthesis, and terpenoid backbone biosyn-

thesis in firmicutes and amino-nucleotide sugar metabolism, peptidoglycan biosynthesis, fatty acid biosyn-

thesis, glycerophospholipid metabolism, and energy metabolism in proteobacteria (Figure S14). Together,

these results suggest that SARS-CoV-2 infection modulates the oropharyngeal microbiome and associated

function which correlates with COVID-19 pathophysiology and could aid in segregation of SARS-CoV-2-

positive patients.

Metabolic phenotype of the respiratory specimen is predictive of SARS-CoV-2 infection

SARS-CoV-2 infection could change the metabolic phenotype of respiratory specimen; recently, a distinc-

tive plasma metabolomic profile associated with SARS-CoV-2 infection and severity is also reported

(Shen et al., 2020). We evaluated and compared the respiratory metabolome in COVID-19 positive,
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Figure 2. Metabolic phenotype of the respiratory specimen is predictive of SARS-CoV2 infection

(A) Volcano plot showing differentially expressed metabolites in COVID-19-positive vs. COVID-19-negative respiratory

specimen and COVID-19-positive vs. Influenza A H1N1 pdm 2009-positive (Pink dots are significant [p < 0.05, FC > 1.5]).

(B) Partial least square discriminant analysis showing clear segregation of COVID-19-positive patients (Red dots) from

COVID-19-negative (Green dots) and influenza A H1N1 pdm 2009-positive cases patients (Blue dots) based on

metabolomic estimations.

(C) Hierarchical cluster (Heatmap) analysis of the metabolites identified in the study (p < 0.05) show clear segregation of

COVID-19-positive patients (Red bar) from COVID-19-negative (Green bar) or Influenza A H1N1 pdm 2009-positive cases

patients (Blue bar; Red = upregulated, Green = downregulated and black = unregulated).

(D) Random forest analysis showing the mean decrease in accuracy of the metabolites (Red = upregulated and Green =

downregulated and yellow = unchanged) in COVID-19-positive as compared to COVID-19-negative or influenza A H1N1

pdm 2009-positive patients.

(E) Joint AUROC analysis of N-acetylserotonin (C00978) and azelaic acid (C08261) and documenting an AUC = 0.987 CI

(0.98–1) p < 0.05 along with prediction class probability score plot showing segregation of CoV2 positive and CoV2

negative.
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negative, and H1N1 pdm 2009 patients (Figure S15). Metabolomic analysis identified 106 differentially ex-

pressed metabolites (DEMs) in COVID-19 positive patients (53up- and 53 downregulated) compared to

negative (Figure 3A, FC > 1.5, P < 0.05, Figure S16, Table S2). In addition, 274 DEMs were identified

when COVID-19 positive patients were compared to H1N1 pdm 2009 patients (Figure 2A, FC > 1.5,

P < 0.05, Figure S16, Table S2). Partial least square discriminant analysis (PLS-DA), followed by unsuper-

vised clustering analysis clearly segregated COVID-19 positive from negative or H1N1 pdm 2009 cases

(Figures 2B, 2C, and S17). Amongst the DEMs, mean decrease in the accuracy was highest for N-acetylser-

otonin (C00978) and azelaic acid (C08261) making them the most important metabolites segregating

COVID-19 positive patients (Figure 2D). N-acetylserotonin and azelaic acid showed a combined diagnostic

efficiency of 0.987 (0.98–1) for SARS-CoV-2 positive segregation from negatives (Figure 2E p < 0.05; Fig-

ure S18). Interestingly COVID-19 positive patients showed significant increase in metabolic pathways

linked to biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, ubiquinone/terpe-

noid-quinone biosynthesis, aminoacyl-tRNA biosynthesis and amino acid metabolism including phenylal-

anine, tyrosine and tryptophan biosynthesis (Figure 2F). whereas, pathways linked to thiamine metabolism,

one carbon pool by folate, vitamin B6 metabolism, riboflavin metabolism and steroid biosynthesis were

decreased (Figure 2G). Together these results suggest that respiratory specimen of COVID-19 positive

are rich in oxidative and inflammatory metabolites including tryptophan and derivative, histidine, fatty

acids, glycerolipid and have significantly lower levels of anti-inflammatory steroids or vitamins. Further, me-

tabolites such as N-acetylserotonin (C00978) and azelaic acid (C08261) could segregate COVID-19 positive

patients from the negative population and warrant validation in larger cohort.

Multi-omics integration analysis delineates pathways linked to SARS-CoV-2 pathogenesis

Next we hypothesized that expression alteration of the viral proteome should reflect an analogs change in

the host proteome, metabolome and metaproteome (microbiome). For example, an increase in viral pro-

teome or bacterial proteome should recapitulate a corresponding increase in proteins or metabolites asso-

ciated pathways andmembers of known pathways should co-cluster and provide insight of COVID-19 path-

ogenesis. To explore this, global cross correlation and hierarchal clustering analysis were performed for

differentially expressed viral proteome (DEVP: 7), differentially expressed proteins (DEP: 132), differentially

expressed metaproteins (DEMP: 33), and DEM: 106) in COVID-19-positive patient compared with COVID-

19-negative (Figure 3 A). PCA recapitulates the distinction between COVID-19-positive and negative pa-

tients (Figure 3B). Correlation analysis followed by hierarchical clustering (r2>0.5, p < 0.05) showed that viral

proteins significantly correlates with bacterial and host proteins or metabolites and identified 6

clusters (Figure 3C). Mean intensity of cluster 1 and cluster 5 was significantly altered in COVID-19 positives

(p < 0.05, Figure 3D). Pathway analysis for the proteins/metabolites linked with each cluster (Figure 3E)

showed that increase in the viral proteome: cluster 1 was associated with increase in metaproteome (Bac-

terial taxa), proteins/metabolites linked to viral life cycle, regulation of angiogenesis, vasculature develop-

ment, protein processing and maturation, beta-alanine metabolism, pantothenate and CoA biosynthesis

and glycosylphosphatidylinositol (GPI) anchor biosynthesis (r2 > 0.5, p < 0.05, Figure 3E, Table S4). In addi-

tion, decrease in the bacterial taxa: cluster 5 was linked with significant decrease in oxidative phosphory-

lation, thermogenesis, beta oxidation of fatty acids, and arachidonic acid metabolism (r2>0.5, p<0.05, Fig-

ure 3E, Table S4). This analysis identifies the underlying metabolic variations associated with CoV-2

infection. Over all, these results establish a linear and direct relationship between viral proteome, bacterial

metaproteome, host proteome, and metabolome in COVID-19-positive respiratory specimen.

Respiratorymulti-omics correlates with viremia and shows increase in monocyte, platelet and

immune activation and segregate non-symptomatic COVID-19 patients

High viral load inversely relates to the CT values (Zou et al., 2020). On correlation of respiratory multi-omics

data with SARS-CoV-2 viremia, a total of 54 proteins and/or metabolites were identified. Proteins and me-

tabolites associated to energy metabolism (pentose phosphate pathway, glycolysis), glycerophospholipid

metabolism, purine metabolism and inflammation (IL-17 signaling pathway) showed inverse correlation

Figure 2. Continued

(F) Pathway andmetabolite set enrichment analysis (KEGG) for the upregulatedmetabolites (FC > 1.5, p < 0.05) in COVID-

19-positive respiratory specimen as compared to COVID-19-negative or influenza A H1N1 pdm 2009-positive specimen.

(G) Pathway and metabolite set enrichment analysis (KEGG) for the downregulated metabolites (FC > 1.5, p < 0.05) in

COVID-19-positive respiratory specimen as compared to COVID-19-negative or Influenza A H1N1 pdm 2009-positive

specimen.
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with the CT values, and these were increased with increase in viremia (R2 > 0.5, p < 0.05, Figure S19,

Table S5).

Analysis of respiratory immune imprints by enriching DEPs on the blood transcription module (BTM) space

(Li et al., 2017) showed increase in immune activation generic cluster, enriched in monocytes, cell cycle and

transcription and platelet activation module I and II in COVID-19 positives (>3 genes, Figure S20, Table S6).

These modules directly correlated with themetabolites linked to arginine biosynthesis, cysteine andmethi-

onine metabolism, and aminoacyl-tRNA biosynthesis (Table S6). Correlation of immune (monocyte and

platelet) clusters with arginine metabolism again highlights activated state of these cells in COVID-19 res-

piratory specimen.

Next, we explored the efficacy of the multi-omic profile in COVID-19 asymptomatic identification. Of the

271 (DEP, DEMP, and DEM), a total of 20 variables could segregate COVID-19 asymptomatics (Figure S21).

PLS-DA along with unsupervised clustering analysis showed clear distinction between symptomatic and

asymptomatic patients (Figure S21). The diagnostic efficiency of AKR1A1, COPE, PSME2 and C02571

(L-acetyl carnitine) was highest for asymptomatic, whereas symptomatic patients showed significant in-

crease in Klebsiella pneumoniae, CTBP2 (C-terminal-binding protein 2), and 4-alpha-methyl-5-alpha-cho-

lest-7-en-3-one (Figure S22). Together, these results show that multi-omics profile of COVID-19-positive

respiratory specimen correlates with viremia provide an insight on immune activation and could also aid

in the identification of asymptomatic patients but warrants validation in larger cohort.

Multi-omics analysis of the respiratory specimen validates MX1 and WARS as candidate

indicator of SARS-CoV-2 infection and outcome

Validation

Multi-omics analysis identified a panel of molecules (Table 1) which could segregate COVID-19 positives.

Of them, expression of MX1 and WARS (tryptophan-tRNA ligase) was evaluated in a larger cohort of 200

COVID-19 suspects. COVID-19 positives showed significant increase in MX1 and WARS expression as

compared to COVID-19 negatives (p < 0.05, Figure 4A). The diagnostic efficiency of MX1 was 92%

(AUROC = 0.92 (0.863–0.957)) and WARS was 86% (AUROC = 0.867(0.781–0.944)) for segregation of

COVID-19 positivity (p < 0.05, Figure 4B). MX1 independently had predictive accuracy of 83% (1000 permu-

tation) for SARS-CoV-2 infection (Figure 4C, Figure S23). MX1>30pg/ml sensitivity (82.5% CI (73.7%–89.3%))

and specificity (82.6% (73.76%–89.3%)) in combination with WARS>25ng/ml sensitivity (72.3% CI (65.7%–

82.3%)) and specificity (76.6% (66.6%–85.3%)) showed a diagnostic efficiency of 94% (AUROC = 0.948 CI

(0.911–0.977)) and a predictive accuracy of 86% in segregating COVID-19 (Figures 4D, 4E, and S24). Results

of our analysis clearly showed that baseline levels of MX1 and WARS could also segregate severe SARS-

CoV-2 cases (n = 10) from non-severe cases (AUC>0.75 p < 0.05) and symptomatic (n = 38) from asymptom-

atic (AUC>0.70, p < 0.05; Figure 7F) and correlated significantly with the increase in respiratory rate and

organ failure index (SOFA score; p < 0.05, r > 0.5).Further levels of MX1 and WARS significantly correlated

with IL-6, VEGFA, immune interferon gamma, and MIF levels in patients with COVID-19 (Figure S27). On

validation of MX1, WARS levels in a separate cohort (test cohort of 200 patients; CoV2+ve = 100 patients

and CoV2-ve = 100 patients) show that MX1 was able to segregate CoV2+ve patients and severe patients

with an AUC = 0.939 and WARS with AUC = 0.78. Together, they were able to document a joint

AUROC level of AUC = 0.869 which showed significance under 2000 bootstrapping experiment

(Figures S27–S29). Together, these results potentiate that basal level of MX1 and WARS could aid in early

identification of SARS-CoV-2-positive patients and help in the prediction of outcome in such patients.

Figure 3. Respiratory multi-omics cross correlation delineate pathways linked to SARS-CoV2 persistence and pathogenesis

(A) Schematic representation of the integration analysis performed in this study. DEVP, differently expressed viral/associated proteins; DEP, differently

expressed host proteins; DEMP, differently expressed host metaproteins; DEM, differently expressed metabolites were cross correlated to identify viral

regulatory network.

(B) Principle component analysis (PCA) showing clear segregation of COVID-19-positive patients from COVID-19-negative based on the multi-omics profile.

(C) Global cross correlation analysis identified 6 clusters (4 upregulated marked in yellow and 2 down regulated marked in white). Details of cluster 1 are

shown adjacent which show viral protein along with bacterial peptides, proteins, and metabolites correlation with each other. Each correlation is

represented with a dot where red dot = r2>0.8, p < 0.05 and pink dot = r2>0.5, p < 0.05, respectively.

(D) Mean cluster intensity is shown cluster 1 and cluster 5 are significantly different in COVID-19-positive compared to COVID-19-negative patients (p < 0.05).

(E) Global correlation map is shown for the six cluster identified; cluster1: RED, cluster2: pink, cluster3: blue, cluster4: purple, cluster5: light blue, cluster6:

light green. Viral proteins are shown in light pink, and bacterial peptide is shown in yellow (upregulated) and olive green (downregulated). The most

important cluster1 and cluster5 are highlighted. Connecting line are representing correlation r2>0.5 p < 0.05, respectively.
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Table 1. Biomarker panel identified from multi-omics analysis

SRNO Proteins

Mean decrease

accuracy AUC

p-val. (FDR

corrected)

Log 2 FC (COV2+

vs. COV2-)

1 MX1 0.008728 0.885 2.64E-09 6.038

2 WARS 0.007161 0.94 2.57E-08 4.658

3 PFN1 0.003191 0.885 0.0002 2.778

4 CPSF6 0.003086 0.8125 0.000185 -4.375

5 S100P 0.002588 0.735 0.000496 2.453

6 TFF3 0.00258 0.8725 4.75E-05 5.049

7 SERPINC1 0.002424 0.7375 0.014789 0.834

8 HBD 0.002374 0.835 3.82E-05 -5.107

9 HEBP2 0.002326 0.7375 2.63E-05 5.385

10 SRP14 0.00227 0.7725 0.000863 4.106

11 PGK1 0.002233 0.9175 5.55E-08 2.961

12 S100A12 0.00223 0.82 0.000301 2.089

13 HSP90AB1 0.002114 0.8625 9.15E-06 1.964

14 GDI2 0.00206 0.8825 6.41E-06 2.950

15 ARHGAP1 0.002021 0.795 0.000285 3.691

16 BPIFB1 0.001944 0.86 7.43E-05 1.518

17 RUVBL1 0.001919 0.7725 0.000568 3.433

18 HNRNPA1 0.001867 0.79 0.001001 1.585

19 OPRPN 0.001803 0.78 0.004863 -2.078

20 ACTN4 0.001755 0.9275 4.08E-06 3.116

21 FARSA 0.001703 0.8025 0.000251 3.813

22 DCD 0.001617 0.6675 0.032855 2.365

23 IDH1 0.001564 0.74 0.00246 2.748

24 PSME2 0.001474 0.7425 0.022482 1.186

25 CAPZB 0.001452 0.79 0.001087 2.737

26 TYMP 0.001372 0.7875 0.010334 1.540

27 PKM 0.001337 0.8525 9.5E-05 2.385

28 EEF1A1 0.001288 0.78 0.001064 2.096

29 MYL6 0.001211 0.805 0.000254 -3.703

30 S100A6 0.001197 0.8325 9.01E-05 3.629

Metabolites

Mean decrease

accuracy AUC

p-val.

(FDR corrected)

Log 2 FC (COV2+

vs. COV2-)

1 C00978 0.021992 0.99 2.89E-07 -2.096

2 C14774 0.017813 0.985 4.36E-11 -1.129

3 CE4969 0.009625 0.9475 4.03E-05 -0.944

4 C08261 0.009547 0.9075 1.03E-07 2.758

5 C01747 0.009199 0.855 0.001579 -0.848

6 C04540 0.008258 0.9125 0.001682 -1.632

7 C00135 0.008031 0.855 9.54E-05 2.310

8 HMDB0011719 0.007559 0.82 7.39E-05 1.470

9 C00864 0.007174 0.9 4.66E-07 2.104

10 C00555 0.006792 0.8625 0.000207 -1.355

11 C04500 0.006586 0.855 1.67E-05 -2.552

12 C06135 0.006539 0.885 8.24E-05 -1.280

(Continued on next page)
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Table 1. Continued

Metabolites

Mean decrease

accuracy AUC

p-val.

(FDR corrected)

Log 2 FC (COV2+

vs. COV2-)

13 CE2176 0.006415 0.8025 0.000304 1.198

14 C03017 0.006253 0.8525 0.000253 1.873

15 C04277 0.006133 0.85 0.00947 -0.857

16 C06186 0.005733 0.8375 0.000273 1.041

17 C14875 0.005561 0.835 0.013234 -0.478

18 tymsf 0.005265 0.82 0.004302 1.827

19 C01194 0.005201 0.8825 9E-06 1.694

20 prgnlones 0.004341 0.755 0.003275 -0.781

21 C03764 0.003972 0.84 0.000269 -0.966

22 C06078 0.003862 0.805 0.006341 -1.373

23 C19670 0.003857 0.8775 6.61E-05 1.918

24 C03758 0.003796 0.73 0.006803 1.549

25 C01879 0.003592 0.86 8.34E-05 -1.148

26 C06536 0.003494 0.83 0.000431 1.059

27 C03210 0.003324 0.8375 0.000301 -1.135

28 C16121 0.003144 0.8275 0.000837 -0.764

29 C04453 0.003088 0.7875 0.006481 -0.930

30 C01789 0.002887 0.685 0.002895 -0.839

Metaproteins

Mean decrease

accuracy AUC

p-val. (FDR

corrected)

Log 2 FC (COV2+

vs. COV2-)

1 Proteobacteria:Burkholderiales:

Burkholderia:GEGGEHGDGGADT

AAQNGDR

0.033543 1 4.46E-29 19.093

2 Actinobacteria:Streptomycetales:

Streptomyces:LGPMDFYGR

0.027812 1 5.28E-38 -20.577

3 Firmicutes:Bacillales:Lysinibacillus:

LLLHVAGELALK

0.026731 1 2.42E-38 -20.390

4 Actinobacteria:Corynebacteriales:

Corynebacteriales:GIGLLQADLL

VVNK

0.02583 1 4.92E-39 -21.465

5 Firmicutes:Lactobacillales:

Lactobacillus salivarius:

VELSPIIIK

0.025604 1 2.9E-38 -23.767

6 ::Bacteria:IQVLTQAR 0.025283 1 2.45E-33 17.135

7 ::Bacteria:ALQATGLK 0.025233 1 4.33E-30 17.344

8 ::Bacteria:IALIGRPNVGK 0.024892 1 3.11E-41 -18.958

9 Proteobacteria:Desulfuromonadales:

Geobacter:LIIAGGGTGGHLFPGIAI

ADEFLAR

0.024735 1 2.09E-25 22.290

10 ::Bacteria:LAALGLSLK 0.024362 1 7.76E-37 -19.295

11 Firmicutes:Bacillales:Bacillus

subtilis:AAANPVTQQQPDILP

0.02414 1 1.25E-67 -32.198

12 ::Bacteria:YSTAGAR 0.022161 0.994 1.32E-35 -19.192

13 Proteobacteria:Desulfobacterales:

Desulfatibacillum:DQEGQDVLIF

IDNIFR

0.022079 0.994 2.93E-36 16.925

(Continued on next page)
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DISCUSSION

In the present study, themolecular profile of the respiratory specimen was analyzed for the characterization

of baseline molecular determinants which could be used as putative candidate for SARS-CoV-2 infection

and outcome. This was complemented with global proteome (viral and host), metaproteome, and metab-

olome analysis of the respiratory specimens followed by analysis of the regulatory network. Multi-omics

integrated analysis helped us in the characterization of a panel of biomolecules capable of stratifying

COVID-19-positive patients but also provided insight on the pathogenesis of SARS-CoV-2 infection. Of

the panel, we validated the expression of MX1 andWARS (tryptophan-tRNA ligase) in the respiratory spec-

imen of 200 COVID-19 suspects and showed that increase in their expression corresponds to SARS-CoV-2

infection positivity. It showed a significant increase in severity and also correlated with known plasma pre-

dictors of COVID-19. These molecules could be used as a putative candidate for SARS-CoV-2 infection

monitoring or modulation/therapeutic targets.

Table 1. Continued

Metaproteins

Mean decrease

accuracy AUC

p-val. (FDR

corrected)

Log 2 FC (COV2+

vs. COV2-)

14 Firmicutes:Bacillales:Bacillus

subtilis:QINLTITVIK

0.021523 0.994 4.42E-27 21.421

15 ::Bacteria:TEDMLPILEK 0.020414 0.994 3.16E-20 25.728

16 Proteobacteria:Vibrionales:Aliivibrio:

RPLLLGIAK

0.018362 0.994 9.09E-28 19.575

17 Proteobacteria:Enterobacterales:Klebsiella

pneumoniae:VAVLXAAGGIQALALLLK

0.017897 0.982 2.98E-26 18.305

18 Firmicutes:Natranaerobiales:

Natranaerobius:IEEAGGDVEIK

0.017875 0.982 4.61E-20 -21.371

19 Firmicutes:Lactobacillales:Lactobacillus

plantarum:GIDHGMTATALDAA

AAMIAELGDGQVASGMVIGR

0.01782 0.982 4.08E-30 28.118

20 Proteobacteria:Pasteurellales:[Mannheimia]

succiniciproducens:SVTDQDSK

0.01747 0.982 1.64E-42 17.170

21 Proteobacteria::Proteobacteria:LAVAGR

PNVGK

0.017045 0.975 2.6E-38 -17.955

22 Tenericutes:Mycoplasmatales:Mycoplasma:

NQLIRPK

0.016163 0.975 1.28E-26 24.527

23 Tenericutes:Mycoplasmatales:Mycoplasma

genitalium:IEPNINLK

0.016142 0.975 4.79E-21 19.168

24 Proteobacteria:Rickettsiales:Rickettsia

bellii:ILIILSIILCSLFTK

0.015536 0.975 2.03E-36 20.833

25 Bacteroidetes:Bacteroidetes

Order II. Incertae sedis:Salinibacter

ruber:EVGCCSIESMNDAR

0.015518 0.962 1.32E-35 19.985

26 Tenericutes:Mycoplasmatales:Mycoplasma:

VIGILDSNSNPDAVDFGIPANDDSAK

0.014336 0.961 5.69E-28 19.027

27 Firmicutes::Firmicutes:ADDNAEHLFK 0.01373 0.958 3.09E-27 17.031

28 Proteobacteria:Enterobacterales:

Enterobacterales:LLNLPLQVLVK

0.012895 0.956 1.53E-31 19.306

29 Firmicutes:Bacillales:Bacillales:

VAVTAGASTPTPIVK

0.01284 0.954 7.75E-32 17.649

30 Tenericutes:Mycoplasmatales:

Ureaplasma:VLIIGKPNVGK

0.010885 0.951 5.48E-31 18.380

31 Tenericutes:Mycoplasmatales:

Mycoplasma penetrans:DFNCNN

VVLVLNK

0.005724 0.89 0.000116 2.817
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SARS-CoV-2 is known to mediate infection by entry into the cell via the ACE2 receptor (Li et al., 2003). ACE2

receptor is significantly expressed in the lung, kidney, blood vessels, and also in the mucosa of the oral cavity;

this could explain the incidence of pneumonia and bronchitis seen in COVID-19-positive patients (Ciaglia et al.,

Figure 4. Estimation of MX1 and WARS as candidate indicators for SARS-CoV-2 infection and outcome

(A) Quantitative assessment of MX1 and WARS in the respiratory specimen of 200 COVID-19 specimen show significant

increase in MX1 and WARS levels in COVID-19 positive as compared to COVID-19 negative (FC > 2, p < 0.05)

.(B) Multivariate area under the receiver operating curve analysis show significant AUC ofMX1 = 0.922 CI (0.863–0.957) and

WARS = 0.867 CI (0.781–0.944).

(C) Prediction class probability for MX1 alone show clear segregation of COVID-19-positive from COVID-19-negative

patients with a predictive accuracy of 84%.

(D) Area under the receiver operating curve analysis for MX1 and WARS together show AUC = 0.948 CI (0.911–0.977)

p < 0.05.

(E) Prediction class probability for MX1 and WARS together show clear segregation of COVID-19-positive from COVID-

19-negative patients with a predictive accuracy of 86%.

(F) Quantitative assessment of MX1 and WARS in the respiratory specimen show significant increase in MX1 and WARS

levels in severe COVID-19 (n = 10) as compared to non-severe COVID-19 (n = 90, FC > 2, p < 0.05). The right panel show

multivariate area under the receiver operating curve analysis of MX1 and WARS for the assessment of severity and

symptomatic patients in COVID-19.
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2020). Results of our study show that 6 of 29 viral encoded proteins (nucleocaspid phosphoproteins, chain b

spike glycoprotein, membrane glycoprotein, orf1ab polyprotein, replicas polyprotein 1ab, protein 9b) were

significantly increased in COVID-19-positive patients as compared to COVID-19-negative patients. These re-

sults show that viral protein quantitation using mass spectrometry could aid in SARS-CoV-2 infection and

outcome prediction. Interestingly, respiratory specimen of COVID-19-positive patient showed significant in-

crease in the level of ACE 2 receptor. This increase in the ACE2 receptor level in the respiratory specimen could

be attributed to a probable increase in ADAM17 activity (Ciaglia et al., 2020) or increase worn out bronchial

epithelial cells in the respiratory specimen, although these observation warrants further evaluations.

Deep analysis of the respiratory specimen (complex mixture of biomolecules) not only can aid in the iden-

tification of a panel of indicators for SARS-CoV-2 infection but also could provide insight on the pathophys-

iology of the patients. Thus respiratory specimen could be classified as a liquid biopsy which on detailed

analysis could provide clues for diagnostic/prognostic or therapeutic implication. Keeping this in mind, we

adopted a multi-omics approach to characterize baseline molecular determinants associated with SARS-

CoV-2 infection and outcome.

Results of our study segregate COVID-19-positive patients from COVID-19-negative or influenza A H1N1

pdm 2009 positive patients based on the respiratory specimen proteome. We were able to identify a panel

of proteomic/metabolomic or metaproteomic signatures which could be used for screening of SARS-COV2

infection and segregation of COVID-19-positive patients. Panel proposed in the study comprises proteins

linked to interferon activation, viral carcinogenesis, neutrophil and monocyte activation, and others and

metabolites linked to glycerophospholipid metabolism, histidine metabolism, and inositol phosphate

metabolism known to be linked to viral infection (Metzner et al., 2008; Thaker et al., 2019).

SARS-CoV-2 infection leads to severe immune activation which is followed by acute respiratory distress (Astuti

and Ysrafil, 2020), concordant to the pathogenesis, proteome analysis of the respiratory specimen of COVID-

19-positive patients showed significant increase in proteins linked to viral life cycle and carcinogenesis, immune

activation including neutrophil, monocyte activation and degranulation, IL-17 signaling, NOD-like receptor

signaling, leukocyte transendothelial migration, and antigen presentation which are known to be increase

with the increase in SARS-CoV-2 infection (Li et al., 2020). Viral infection are also known formetabolic reprogram-

ingof host (Thaker et al., 2019) andproteomeanalysisof the respiratory specimenshowed that there is significant

increase in proteins associated toglucosemetabolism suggesting that SARS-CoV-2 induces energymetabolism

(Figure S25). Interestingly, we found increase in proteins linked to fluid shear stress and bacterial invasion of the

epithelial cells in the respiratory specimen. This suggests that COVID-19-positive patients may have secondary

bacterial infections and associated comorbidities which need further evaluation. Decrease in the oxygen caring

capacity is a hall mark feature of SARS-CoV-2 infectionwhich leads to acute respiratory distress syndrome (Geier

and Geier, 2020), and respiratory specimen of COVID-19-positive patients showed concordant decrease in pro-

teins linked to gas transport particularly oxygen transport (heamoglobin binding, haptoglobin binding),

hydrogen peroxide, and cofactor catabolic/metabolic process. Decrease in the oxygen transport proteins was

linked to an associated decrease in wound healing, regulation of body fluid levels and vesicular transport

seen in the respiratory specimen of COVID-19-positive patients. These disturbances can lead to uncontrolled

production of inflammatorymediators, contributing to a state of persistent injury in COVID-19-positive patients.

Together, theseobservations suggest that the respiratory specimencouldprovidean insight into thepathophys-

iology (virusmediated hyper immune activation and decrease in oxygen transport and wound healing) of SARS-

CoV-2 infection which could be explored for prognosis and therapeutic intervention.

Concordant to the proteomic analysis, results of the metabolome analysis showed that respiratory

specimen of COVID-19 patients is enriched for metabolites linked to unsaturated fatty acids and glycero-

phospholipid metabolism involved in the early development of virus (Schoggins and Randall, 2013).

Furthermore, there was significant increase in ubiquinone/terpenoid-quinone biosynthesis, aminoacyl-

tRNA biosynthesis along with amino acid metabolism, whereas metabolites linked to vitamin metabolism

and steroid metabolism was significantly decreased in COVID-19 respiratory specimen. These results sug-

gest that respiratory specimen of COVID-19-positive patients is rich in oxidative and inflammatory metab-

olite and has significantly lower levels of anti-inflammatory steroids or vitamins.

Results of the respiratory proteomics show significant increase in bacterial invasion of the epithelial cells.

Further bacterial co-infection aggravates viral infection and increase the duration of the disease (Gu and
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Korteweg, 2007). In addition, alteration of microbiome (gut) is linked to immune activation in SARS-CoV2

infection (Dhar andMohanty, 2020). As oropharyngealmicrobiome is reflective of lungmicrobiome (Dickson

and Huffnagle, 2015) and SARS-COV2 infection could modulate it. Change in the oropharyngeal

microbiome could be reflective of altered pathogenesis in COVID-19. This prompted us to perform meta-

proteome (microbiome) analysis of the respiratory specimen in COVID-19-positive, negative, and H1N1

pdm 2009 positive patients. Metaproteome analysis of COVID-19-positive respiratory specimen showed

significant increase in Bacteroidetes Order II. Incertae sedis, Bacillales, Burkholderiales, Klebsiella-pneu-

monia, Pasteurellales, andother bacterial species known to be increased in lung andupper respiratory path-

ogenesis such as severe asthma, COPD, or SARS (Wu and Segal, 2017) and (Gu and Korteweg, 2007). Inter-

estingly, Lactobacillus salivarius known as a potent antiallergic and probiotic was significantly reduced in

COVID-19-positive patients (Li et al., 2010). Functionality assessment based on the respiratory metapro-

teome showed that proteobacteria: enzyme encode pathways such as fatty acid biosynthesis, glycerolipid

metabolism, amino acid, energy metabolism, and oxidative phosphorylation and firmicutes or tenericutes:

enzyme encodes pathways aminoacyl-trna biosynthesis and terpenoid backbone biosynthesis show similar-

ity with the respiratory metabolome enriched pathways, suggesting to the involvement of bacteria in the

metabolic regulation of SARS-CoV-2 infection. Together, these results suggest that SARS-CoV-2 infection

modulates the respiratory microbiome and functionality thus providing destabilized microenvironment

which may predispose patients to respiratory distress such as allergic cough, fever, and others.

Viral infection induces angiogenesis (Cerimele et al., 2003) and is known to increase proteins processing/

maturation and GPI anchor biosynthesis (Metzner et al., 2008). Results of the global cross correlation

analysis were concordant and showed that the viral proteome share a direct correlation with bacterial meta-

proteome and proteins or metabolites linked to viral life cycle, regulation of angiogenesis, vasculature

development, protein processing/maturation, beta-alanine metabolism, pantothenate and CoA biosyn-

thesis, and GPI anchor biosynthesis. Results of the multi-omics integration also show that with the increase

in SARS-CoV-2 viremia, there is significant increase in energy metabolism (pentose phosphate pathway,

glycolysis), glycerophospholipid metabolism, purine metabolism and inflammation (IL-17 signaling

pathway) in COVID-19-positive patients; these observation correlates with classical features of virus repli-

cation, metabolic regulation, and inflammation (Thaker et al., 2019). Recently, Shen et al. (Shen et al., 2020)

documented dysregulated lipid metabolism, increase in acute phase reactant, immune activation (macro-

phage, platelets) in patients with severe COVID-19. Our results was able to recapitulate the findings and

showed that respiratory specimen of COVID-19-positive patients have significant increase inmodules asso-

ciated to immune activation generic cluster, enriched in monocytes and platelet activation module I and II.

We additionally showed that these modules show direct correlation with the metabolites linked to arginine

biosynthesis, cysteine, and methionine metabolism and aminoacyl-tRNA biosynthesis. Arginine meta-

bolism is a classical feature of inflammatory macrophages and increase in arginine biosynthesis in mono-

cytes suggests inflammatory activation of monocytes (Rath et al., 2014). Interestingly, multi-omics analysis

was also able to segregated COVID-19 asymptomatic from the symptomatic. Molecules such as AKR1A1

(aldo-keto reductase family 1 member A), COPE (coatomer subunit epsilon), and C02571 (L-acetylcarnitine)

were asymptomatic-specific, whereas symptomatic COVID-19 patients showed significant increase in Kleb-

siella pneumoniae, CTBP2 (C-terminal-binding protein 2), and 4-alpha-methyl-5-alpha-cholest-7-en-3-one

suggesting that the multi-omics profile could also identify asymptomatic (silent carrier of infection) which

could mediate an exponential increase in the infection rate.

Finally, molecular signatures (Table 1) capable of segregating COVID-19-positive patients. We validated

MX1 and WARS (tryptophan-tRNA ligase) in 200 COVID-19 suspects. MX1 is an effector anti-viral protein

which modulate the type-I interferon-mediated inflammatory response in lungs (Makris et al., 2017). MX1

is activated in response to novel viruses for which the body has no immune defense (antibodies) (Haller

et al., 2015). SARS-COV2 as a novel virus mediates cellular entry via ACE2 receptor or via membrane fusion

(cleavage of the spike glycoprotein by TMPRSS2 [type II transmembrane serine protease]). This increases

expression of bothMX1 and TMPRSS2 via interferon regulatory factor 1 (Panda et al., 2019). Increase inMX1

(chemoattractant) mediates infiltration of immune cells (neutrophil, monocyte) and induces interferon

response (Haller et al., 2015). Increase in site-specific interferon response increases secretion of WARS

(housekeeping enzyme) which activates monocytes to macrophage via TLR2-TLR4 pathway (Jin, 2019) fol-

lowed by other immune cell activation which may lead to cytokine storm seen in patients with COVID-19.

Thus, over expression of MX1 and WARS in response to SARS-COV2 infections in the respiratory specimen

serves as attractive molecular targets and were cherry picked for evaluation of diagnostic potential in 200
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COVID-19 suspects. Results of our study showed that MX1>30pg/ml andWARS>25ng/ml in the respiratory

specimen was able to segregate COVID-19-positive from COVID-19-negative patients with a combined

diagnostic efficiency of 94% and a predictive accuracy of 86%. Further results of our study also show that

MX1 and WARS also have the potential to stratify severe SARS-CoV-2 from non-severe and symptomatic

SARS-CoV-2 from non-symptomatic 85%. These results show a validated assessment that baseline level

of MX1 and WARS could aid in identification of SARS-CoV-2-positive patients and help in segregating pa-

tients predisposed to differed outcome.

Many previous published proteomics studies (Coombs et al., 2010; Dove et al., 2012; Vester et al., 2009) has

already highlighted significant increase in levels of the Mx proteins (interferon-induced key components of

the host cell defense), postinfection of human influenza A virus in a cell culture setting. These observations

were corroborated in our study; further, we additionally show that both human influenza A virus and SARS-

CoV-2 modulates several global pathways including cell cycle regulation, carbohydrate metabolism, lipid

metabolism, and others suggesting that the proteomic regulation of both human influenza A virus and

SARS-CoV-2 are similar which could be one of the reason for similarity in there clinical presentation.

Thus studies which compare different influenza virus and SARS-CoV-2 in terms of host proteomic and me-

tabolomic response is warranted and should be performed in large cohort of patients.

Recently, Juan Bizzotto et al. (Bizzotto et al., 2020) showed that the expression of MX1 and MX2 are higher

in patients with COVID-19 which is concordant to what we show in our study. In addition, they show that

both MX1 and MX2 expression increases significantly with viral load and was seen to be reduced with

age, which they pointed out to be linked with the severity of illness. Finally, they concludedMX1 as a solid

responder to SARS-CoV-2 infection, and these results are concordant to our results.

Further as compared with human influenza A virus, the SARS-CoV-2 infection is much severe and induces

significantly higher expression of MX-1, immune interferon gamma, and WARS (which works as an antiviral

cytokine and also in activating the innate immune system) (Jin, 2019). Results of our study potentiates that

MX-1 in combination with WARS give better diagnostic ability for SARS-CoV-2-positive patients as

compared to SARS-CoV-2-negative patients.

Limitations of study

Owing to biosafety constrains in SARS-CoV-2 infection, large number of samples were not collected nor

analyzed in the study. Only previously archived (left over) respiratory specimen of the patients coming

for COVID-19 testing at the Institute of Liver and Biliary Sciences New Delhi were analyzed in the study.

Detailed demographic profile and severity indices of the patients could not be collected as only archived

samples were used for analysis. Parallel reaction monitoring-based assessment of viral proteins could help

in absolute quantitation of viral proteins but was not performed in the study. We also want to emphasize

that due to on-going pandemic and lockdown situation in most of the country, our sample size for control

group on other respiratory virus was not there; future prospective studies can be done to evaluate the role

of these respiratory proteins in the other respiratory viral infections also. We performed absolute quanti-

tation of two best indicators of COVID-19 positivity. However, molecular targets such asmetabolites, meta-

proteins, and viral proteins amongst the diagnostic panel for COVID-19 segregation warrant further

validation. The multi-omics analysis performed in the study can be used for comparative analysis and to

identify commonly altered proteomic and metabolic patterns and functional pathways during SARS-

CoV-2 infection among diverse populations from different geographic locations.

In conclusion, our study presents a multi-omics investigation of respiratory specimen from COVID-19 positive

and controls. Our data provides a systemic overview of the host response induced by SARS-COV2 infection

in the respiratory specimen. Baseline levels of MX1 and WARS (tryptophan-tRNA ligase) could be utilized for

early identification of SARS-COV2 infection, its prognosis, and outcome prediction and could be used for

mass screening of patients with COVID-19. Systemic overview of the respiratory specimen could provide useful

prognostic and therapeutic indications in the ongoing battle against the COVID-19 pandemic.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Discovery Cohort: Serum samples from 20

COVID-19 positive patients and 20 COVID-19

negative patients and 05 H1N1 pdm 2009

subjects in discovery cohort. Validation:

Targets were validated on 200 COVID-19

patients.

ILBS, Hospital (Table S7) in this Manuscript.

Proteomics COVID-19 positive, negative and H1N1

Samples

Figure 1, Tables S1 and S3, Figures S1–S14

Meta-proteomics COVID-19 positive, negative and H1N1

Samples

Figure 1, Table S1 and S3, Figures S1–S14

Metabolomics COVID-19 positive, negative and H1N1

Samples

Figure 2, Table S2, Figures S15–S18

Multi-omics integration COVID-19 positive, negative and H1N1

Samples

Figure 3, Table S4

Chemicals, peptides, and recombinant proteins

Triethylammonium bicarbonate buffer (TEAB) Thermo Fisher Scientific Cat # PI90114

Urea Thermo Fisher Scientific Cat # 29,700

Tris (2-carboxyethyl) phosphine (TCEP) Thermo Fisher Scientific Cat #T2556

Iodoacetamide (IAA) Sigma-Aldrich Cat #I6125

Dithiothreitol Sigma-Aldrich Cat #D0632

Trypsin Promega Cat #V5111

Acetone JT Baker Cat # 9006–03

Water Thermo Fisher Scientific Cat #W6-4

Acetonitrile JT Baker Cat # 14650359

Formic acid (FA) Sigma-Aldrich Cat #F0507

Ammonium hydroxide solution Sigma-Aldrich Cat # 221228

Methanol Sigma-Aldrich Cat # 34,860

C18 Spin Columns Thermo Fisher Scientific Cat # 89,870

Bradford Total protein assay kit Thermo Fisher Scientific Cat # 22,662

ELISA/Antibodies

MX1 ELISA Cusabio Cat: No; csb-El015249HU

WARS ELISA Elabscience Cat: No; E-EL-H1874

Software and Algorithms

Xcalibur Thermo Fisher Scientific Cat # OPTON-30965

Proteome Discoverer Version 2.4.1.15 Thermo Fisher Scientific https://www.thermofisher.com/us/en/home/

industial/mass spectrometry/

liquidchromatography-mass-spectrometry-

lc-ms/lc-ms-software/multi-omics-data-

analysis/proteome-discoverer-software.html

Compound Discoverer Software 3.1 Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/

product/OPTON-30925#/OPTON-30925

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr. Jaswinder Singh Maras (jassi2param@gmail.com).

Material availability

The study did not generate any materials.

Data and code availability

The processed data is provided as supplemental information, and the raw data for the manuscript is avail-

able on request to the lead contact Dr. Jaswinder Singh Maras (jassi2param@gmail.com).

EXPERIMENTAL MODE AND SUBJECT DETAILS

Sample/patient selection

A cross sectional study was planned, and previously archived (left over) respiratory specimens (combined

oropharyngeal and nasopharyngeal swabs in viral transport media) of the patients coming for COVID-19

testing at the Institute of Liver and Biliary Sciences New Delhi, were selected for the study. Multi-omics

analysis was performed on respiratory specimen of RT-PCR proven COVID-19 positive, negative (n = 20)

or H1N1 pdm 2009 patients. Fourteen of the 20 COVID-19 positive patients showed classical symptoms

including fever, sore throat, cough and breathlessness, whereas 6 patients were asymptomatic yet positive

for COVID-19 and were included in the study.

Discovery: For the discovery phase 150 ul of the respiratory specimen from COVID-19 positive patients

(n = 20), COVID-19 negative patients (n = 20) and respiratory diseases control Influenza A H1N1 pdm

2009 pdm 2009 positive samples (n = 5) were subjected to proteomics (SARS-CoV-2 virus proteins and

linked proteins and host proteins), metaproteomics (bacterial peptide) and metabolomics evaluations

(Table S7). Baseline demographic profiles were recorded and baseline samples were used for multi-omics

evaluation and correlation to disease pathogenesis. In brief, for proteomics and metaproteomics applica-

tion, 4% SDS was added to 100 ul of the respiratory specimen, kept at 95�C for 15 min (viral deactivation).

Total proteins in the respiratory specimen were precipitated by adding 63 cold acetone followed by centri-

fugation at 13,000 rpm for 10 min. The precipitated proteins were re-dissolved in ammonium bicarbonate

buffer (pH-7) and were subjected to LC MS/MS evaluation of virome, host proteome and metaproteome

detailed below. The left over 50 ul of the respiratory specimen was subjected to methanol precipitation fol-

lowed by total metabolome evaluation as detailed below.

Validation: An annotated set of 200 COVID-19 suspect patients (100 COVID-19 positive and 100 COVID-19

negative; Table S7) was taken to validate the most significant indicators of SARS-CoV-2 infection and

outcome in the discovery phase. The sensitivity/specificity and predictive accuracy was analyzed. Of the

100 positives a total of 10 SARS-CoV-2 patients were severe and 38 showed symptoms and were analyzed

for outcome prediction analysis.

Proteomics of the respiratory specimen

Total proteins were isolated from the respiratory specimen of the study groups. 100 ug equivalent protein

was subjected to reduction, alkylation followed by digestion for 16–20 hr at 37�C using sequencing-grade

modified trypsin: proteins (1ug:20ug w/w). The samples were desalted and subjected to LC-MS/MS

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Metaboanalyst 4.0 Webserver https://www.metaboanalyst.ca/

MetaboAnalyst/home.xhtml

R version 3.5.2 R Project https://www.r-project.org

Cytoscape United States (Java) https://cytoscape.org/

Unipept Webserver https://unipept.ugent.be/
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analysis. The peptides were eluted by a 3–95% gradient of buffer B (aqueous 80% acetonitrile in 0.1% formic

acid) at a flow rate of 300 nL/min for about 60 min on a 25-cm analytical C18 column (C18, 3 mm, 100 Å) The

peptides were ionized by nano-electrospray and subsequent tandem mass spectrometry (MS/MS) on a

Q-ExactiveTM Plus (Thermo Fisher Scientific, San Jose, CA, United States). The peptides were analyzed us-

ing amass spectrometer with the collision-induced dissociationmode with the electrospray voltage was 2.3

kV. Analysis on the orbitrap was performed with full scan MS spectra with a resolution of 70,000 from m/z

350 to 1800.The MS/MS data was analyzed by Proteome Discoverer (version 2.0, Thermo Fisher Scientific,

Waltham, MA, United States) using the uniprot COVID-19 database (https://covid-19.uniprot.org) contain-

ing 14 SARS2, 15 CVHSA and 12 human protein for virome and virus linked proteins detection. The MS/MS

data was reanalyzed by Proteome Discoverer (version 2.0, Thermo Fisher Scientific, Waltham, MA, United

States) using the uniprot homo sapiens (Human) database (UP000005640) and human proteome with

Mascot algorithm (Mascot 2.4, Matrix Science). Significant proteins were identified at (p < 0.05) and q

values (p < 0.05). The threshold of false discovery rate was kept at 0.01. The identified proteins were sub-

jected to standard statistical analysis and network and pathway analysis.

Metabolomics of the respiratory specimen

Metabolites were extracted from the 50ul of respiratory specimen using organic phase extraction protocol

(Boudah et al., 2014). To 50 ul of respiratory specimen, 500 ul methanol was added and kept overnight

at�20� for protein precipitation. The samples were centrifuged at 13.3*1000 rpm for 10 min and the super-

natant was dried under vacuum. The dried samples were reconstituted with (5:95:5) 5% acetonitrile: 95%

water: 5% internal standards at known concentrations, for reverse-phase chromatography by using C18 col-

umn (Thermo Scientific25003102130: 3 mm, 2.1 mm, 100 mm) using ultra-high performance liquid chro-

matographic system followed by high-resolution mass spectrometry (MS) (Boudah et al., 2014). Metabolite

features were extracted using compound discoverer 3.0 (Thermo) (Basu et al., 2017). Annotation of the fea-

tures was performed using mass list searches (Basu et al., 2017; Boudah et al., 2014) mzCloud (www.

mzcloud.org) and mummichog (Li et al., 2017). Identified and annotated features were subjected to log

normalization and pareto-scaling using metaboanalyst 4.0 (http://metaboanalyst.ca.) server (Chong

et al., 2018) and into SIMCA P12 software (Umetrix, Sweden) for multivariate projection analyses, such as

principal component analysis and partial least square discriminant analysis. Pathway enrichment patterns

were analyzed using Metaboanalyst 4.0 (Chong et al., 2018).

Metaproteome (microbiome) analysis of the respiratory specimens

Proteins were isolated from the respiratory specimen of the study groups. The isolated proteins were

reduced, alkylated and digested using trypsin followed by mass spectrometry analysis similar to that stated

in respiratory specimen proteome analysis section. The MS/MS data was acquired and analyzed by Prote-

ome Discoverer (version 2.0, Thermo Fisher Scientific, Waltham, MA, United States) using the bacterial/

fungal sequence (UniprotSwP_20170609, with sequences 467231 and MG_BG_UPSP with sequences

2019194). This was cross validated using Mascot algorithm (Mascot 2.4, Matrix Science) specifically for all

possible microbial species. In brief, significant peptide groups were identified at (p < 0.05) and q values

(p < 0.05) and the false discovery rate at 0.01. Only rank-1 peptides with Peptide Sequence Match

(PSM) > 3 were subjected to biodiversity and functional analysis using unipept (Zhang et al., 2018). Peptides

mapping to eukaryotic, fungal and viral database were rejected and only bacterial species associated pep-

tides were segregated and were subjected to statistical, functional and biodiversity analysis (Zhang et al.,

2018).

Global cross correlation, clustering, and integration analysis

Differentially expressed viral proteome (DEVP), differentially expressed host proteome (DEPs), differen-

tially expressed metabolites (DEMs) and differentially expressed metaproteins (DEMP) were identified

and subjected to cross correlation and clustering analysis (r2>0.5,p < 0.05). Significant and prominent clus-

ters were identified and subjected to pathway analysis; for proteins (enricher/KEGG) and metabolites

(KEGG/metaboanalyst). This was followed by developing a global cross correlation map between the vi-

rome, metaproteome and the pathways linked to the proteins and metabolites using cytoscape (https://

cytoscape.org/) (Shannon et al., 2003).

ELISA quantitation: MX1 (Cat: No; csb-El015249HU) with a detection limit of 15.6 pg/mL-1000 pg/mL,

sensitivity 3.9 pg/mL andWARS (Cat: No; E-EL-H1874) with a detection range 0.78–50 ng/mL and sensitivity

of 0.47 ng/mL were used for validation as per manufacture protocol.
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STATISTICAL ANALYSES

Results are shown as mean and standard deviation unless indicated otherwise. Statically analysis was per-

formed usingGraph Pad Prism v6, SPSS V20 and p values of <0.05 using Benjamini & Hochberg correction

was considered statistically significant. Unpaired (two-tail) Student’s t test, Mann- Whitney U test were per-

formed for comparison of two groups. For comparison among more than two groups, one-way analysis of

variance, Kruskal-Wallis test was performed. All correlations were performed using Spearman correlation

analysis and R2 > 0.5, p < 0.05 was considered as statically significant. For the multi-omics analysis, features

with over 80% missing values in particular group were neglected further feature with less than 80% missing

values in particular group were imputed with the minimal value of the feature in the assigned group. Data

for virome, proteome, metabolome and metaproteome analysis was log normalized and subjected to Per-

ato scaling this was followed by calculation of Log2 Fold change for each pair of comparing group. Differ-

entially expressed virome, proteome, metabolome or metaproteome were identified at p < 0.05 and fold

change >G1.5 FC. From the discovery cohort important viral proteins, host proteins, metabolites and

metaproteins were selected for validation based on random forest analysis and area under the curve

(AUROC) analysis (AUROC>0.8,p < 0.05). Prediction class probability and predictive accuracy (for most

important variables) was calculated in the discovery cohort and cross validated in the validation cohort.
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