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Introduction: Non-invasive brain stimulation (NIBS) techniques have been widely

used for the purpose of improving clinical symptoms of schizophrenia. However, the

ambiguous stimulation targets may limit the efficacy of NIBS for schizophrenia. Exploring

effective stimulation targets may improve the clinical efficacy of NIBS in schizophrenia.

Methods: We first conducted a neurosynth-based meta-analysis of 715 functional

magnetic resonance imaging studies to identify schizophrenia-related brain regions as

regions of interest. Then, we performed the resting-state functional connectivity analysis

in 32 patients with first-episode schizophrenia to find brain surface regions correlated

with the regions of interest in three pipelines. Finally, the 10–20 system coordinates

corresponding to the brain surface regions were considered as potential targets for NIBS.

Results: We identified several potential targets of NIBS, including the bilateral dorsal

lateral prefrontal cortex, supplementary motor area, bilateral inferior parietal lobule,

temporal pole, medial prefrontal cortex, precuneus, superior and middle temporal gyrus,

and superior and middle occipital gyrus. Notably, the 10-20 system location of the

bilateral dorsal lateral prefrontal cortex was posterior to F3 (F4), not F3 (F4).

Conclusion: Conclusively, our findings suggested that the stimulation locations

corresponding to these potential targets might help clinicians optimize the application

of NIBS therapy in individuals with schizophrenia.

Keywords: schizophrenia, non-invasive brain stimulation, functional magnetic resonance imaging, functional

connectivity, DLPFC (dorsolateral prefrontal cortex)

INTRODUCTION

Schizophrenia (SCZ) is a complex psychiatric disorder associated with disturbances in social
interaction and communication (1). Despite centuries of research, the pathophysiological cause
of SCZ remains elusive. Around 18.8 to 20.8% of the patients with SCZ are thought to be non-
responders to antipsychotic drugs (2). It is considered that the efficaciousmanagement also requires
non-pharmacotherapies to treat SCZ patients in clinic.
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Notably, non-invasive brain stimulation (NIBS) techniques
have been widely used to improve the clinical symptoms of
SCZ. The most commonly used NIBS technique is repetitive
transcranial magnetic stimulation (rTMS). Low-frequency (≤
1Hz) rTMS reduces cortical excitability, whereas high-frequency
(5–20Hz) rTMS does the opposite (3). It has been demonstrated
that rTMS on the left temporo-parietal region effectively reduced
auditory hallucinations than bilateral or sham stimulation
(4). Another frequent NIBS application used in treating
SCZ is transcranial direct current stimulation (tDCS), which
produces polarity-dependent cortical excitability changes (3).
The tDCS appeared to be effective not only for ambulatory
and higher-functioning patients but also for patients with ultra-
treatment resistant SCZ (5). Specifically, NIBS exerts a small
transdiagnostic effect on working memory (6). Nonetheless, a
meta-analysis indicated that NIBS was not associated with a
reliable improvement in working memory for individuals with
SCZ (7). A possible reason limiting the efficacy of NIBS for
SCZ is the ambiguous stimulation site (8). Indeed, there are
several sites reported in studies, such as dorsolateral prefrontal
cortex (dlPFC) (9–11), temporoparietal cortex (TPC) (12, 13),
and superior temporal gyrus (STG) (14, 15). The sites used in
NIBS research were empirical. Thus, it is necessary to identify
viable stimulation sites before using NIBS techniques.

Novel stimulation sites for depression (16), mild cognitive
impairment (17), and autism (18) were identified by combining
meta-analysis and functional connectivity (FC) analysis from
three pipelines. The pipelines contain brain surfaces from (1)
meta-analysis, (2) FC analysis results from disease network, and
(3) FC analysis results from each disease-associated region of
interest (ROI). This method combines the preponderance of
meta-analysis and the FC analysis. Researchers optimized the
sites of NIBS for treating neuropsychiatric disorders, suggesting
the worth of a connectivity-based targeting strategy for NIBS
techniques. However, there have been no studies using this
method to find potential sites for SCZ. In the present study,
we performed a meta-analysis and resting-state FC analysis to
identify brain surface regions associated with SCZ-related ROIs
to investigate potential targets of NIBS treatment in SCZ.

PATIENTS AND METHODS

Patients
A total of 32 right-handed first episode SCZ patients (13 males
and 19 females) were included in the FC analysis. The age of these
patients was 23.625± 7.404, 17∼ 42 (M± SD,Min∼Max) years
old. All examinations were carried out under the guidance of the
Declaration of Helsinki. The present study was approved by the
Ethics Committee of Beijing Anding Hospital, Capital medical
university, China. All the subjects were Chinese Han people.
Diagnoses were given by two trained psychiatrists using theMini-
International Neuropsychiatric Interview (M.I.N.I.) (19) under
DSM-IV criteria. Psychiatric symptomatology was evaluated by
using the Positive and Negative Syndrome Scale (PANSS) (20).
Participants were excluded if they (a) were< 16 years old, (b) had
current comorbid substance-use disorder (daily consumption of
substances for at least one year), (c) had a history of neurological

disorders or family history of hereditary neurological disorders,
(d) had gross morphological anomalies as evidenced by brain
MRI scans, and (e) had any electronic or metal implants.

MRI Data Acquisition
Resting-state functional magnetic resonance imaging (RS-fMRI)
data were acquired with a 3.0 Tesla MRI scanner (Prisma 3.0;
Siemens, Germany) in the Beijing Anding Hospital, Capital
medical university, China. RS-fMRI were acquired with a single-
shot, gradient-recalled echo-planar imaging sequence with the
following parameters: repetition time = 2000ms, echo time =

30ms, flip angle = 90◦, matrix = 64 × 64, field of view =

200mm × 200mm, slice thickness = 3.5mm, gap = 1mm, 33
axial sections, and 240 volumes.

High-resolution brain structural images were acquired with a
T1-weighted three-dimensional (3D) multi-echo magnetization-
prepared rapid gradient-echo (MPRAGE) sequence [echo time:
3.39ms, repetition time: 2,530ms, slice thickness 1.3mm, voxel
size: 1.3× 1× 1 mm3, field of view (FOV): 256× 256 mm2, and
volume number: 128].

Before scanning, all participants were asked to rest for 30min
and were instructed to stay still, keep their eyes closed, and not
fall asleep during scanning. Foam head holders were immobilized
to minimize head movements during scanning.

Image Processing
Firstly, the initial five volumes of the RS-fMRI data were
removed. Secondly, the subjects whose head motion evaluated
by the mean relative root mean square (RMS) exceeded
0.2mm or whose maximum head motion exceeded 3mm
were excluded from the analysis. The two steps were
conducted by Data Processing and Analysis for Brain
Imaging (DPABI) version 5.1 (http://rfmri.org/dpabi) (21).
Finally, the remaining subjects’ images were preprocessed
and analyzed in Conn version 18a (https://sites.google.
com/view/conn/) (22) and SPM12 (using Conn’s default
preprocessing pipeline).

Conn’s default preprocessing pipelines included both
functional images’ and structural images’ preprocessing steps.
Functional images were slice-timing corrected, realigned,
normalized [3 × 3 × 3 mm3 in Montreal Neurological
Institute (MNI) space], and smoothed (6 × 6 × 6 mm3).
The outliers (>3 SD and >0.5mm) for subsequent scrubbing
regression were detected by the Artifact Detection Tool
(www.nitrc.org/projects/artifact_detect/). The structural
images were segmented into gray matter, white matter (WM),
and cerebral spinal fluid (CSF) and normalized (3 × 3 ×

3 mm3) to MNI space. Then, linear regression using WM
and CSF signals (CompCor; 10 components for WM and
five components for CSF), linear trend, subject motion (six
rotation/translation motion parameters and six first-order
temporal derivatives), and outliers (scrubbing) was conducted
to remove confounding effects. After that, the residual blood
oxygen level dependent (BOLD) time series was band-pass
filtered (0.01–0.1 Hz).
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Identifying SCZ-Associated ROIs From
Meta-Analysis
In order to identify SCZ-associated ROIs, we conducted a meta-
analysis including 715 fMRI studies under the “schizophrenia”
term via Neurosynth platform (https://neurosynth.org/;accessed
13 August 2020) (23). The complete list of studies can be found

in Supplementary Table S1. Neurosynth platform provides two
types of meta-analysis results: the uniformity test maps and
association test maps. The uniformity test map was used to
identify the SCZ-associated brain regions since the uniformity
test maps provide information about the consistency of activation
for a given process. Association test maps provided information

FIGURE 1 | Data processing procedure. SCZ associated ROIs were identified from meta-analysis conducted by Neurosynth. The ROIs were used for FC analysis in

32 SCZ patients. Then, three pipelines were applied to explore potential targets for NIBS in SCZ. ROI, region of interest; FC, functional connectivity; RMS, root mean

square; SCZ, schizophrenia.
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about the relative selectivity with which regions activate in a
particular process (23). A false discovery rate (FDR) adjusted p-
value of 0.01 was applied to produce the uniformity test map.
Next, the coordinates with peak z-scores with all clusters larger
than 50 voxels were identified by the xjview toolbox (http://
www.alivelearn.net/xjview/). Finally, the 6-mm radius spherical
masks centered on the specified peak coordinates were exacted by
MarsBaR (http://marsbar.sourceforge.net/, version 0.44). Finally,
the masks from MarsBaR and the original uniformity test map
from Neurosynth were taken the overlap by xjview. The final
ROIs only included the voxels from the original uniformity
test map.

FC Analysis
To explore potential brain surface regions of SCZ, we conducted
a seed-to-voxel FC analysis by Conn. At the subject level,
the residual BOLD time course was extracted from the ROIs,
and Pearson’s correlation coefficients were computed between
ROIs and all other brain voxels. Then, the coefficients were
subsequently transformed into z-scores to increase normality.
All subject-level seed maps of seed-to-voxel connectivity
were included in a one sample t-test to get a group-level
correlation map.

Exploring Potential NIBS Locations for SCZ
As the NIBS technique could not access whole brain regions,
we used a brain surface mask created in previous studies
(16, 18). The mask included the following brain regions:
the bilateral pre and post-central gyrus; superior and middle
frontal gyrus; superior, inferior, and middle occipital gyrus;
superior and inferior parietal lobule; supramarginal gyrus;
angular gyrus; superior temporal gyrus; superior temporal
pole; middle temporal gyrus (MTG); middle temporal pole;
inferior temporal gyrus; opercular inferior frontal gyrus (IFG);
Rolandic operculum; triangular IFG; superior medial frontal
gyrus; calcarine sulcus; orbital middle, superior and inferior
frontal gyri; orbital medial frontal gyrus; supplementary motor
area (SMA); paracentral lobule; precuneus; and cuneus. To
explore the potential NIBS locations for SCZ, we picked brain
surfaces from three different pipelines (Figure 1): (1) meta-
analysis; (2) FC analysis results of SCZ network; (3) binary masks
combined from each SCZ ROI FC analysis results. In pipelines
2 and 3, a voxel-wise level threshold of p < 0.001 and a cluster
level family-wise error (FWE) of p < 0.05 were applied to obtain
group-level correlation maps of ROIs.

Pipeline 1 Meta-Analysis
The brain surface clusters were directly picked from the
Neurosynth meta-analysis (the uniformity test map) since the
brain regions may be directly involved in the pathophysiology
of SCZ.

Pipeline 2 FC Analysis Results of SCZ Network
The SCZ-associated ROIs were formed into an SCZ network,
which was regarded as an ROI for FC analysis in CONN. Next,
we excluded the clusters smaller than 20 voxels on the group-
level correction map. Finally, four to six surface clusters with
the largest peak z-scores were picked, with positive and negative

TABLE 1 | Coordinates of schizophrenia (SCZ) ROIs identified from meta-analysis.

ClusterID Cluster size T peak Peak coordinates Brain regions

x y z

1 188 12.68 −24 −6 −16 Amygdala_L

2 107 10.21 24 −6 −16 Amygdala_R

3 452 20.45 34 26 −4 Insula_R

4 681 20.45 −32 22 −4 Insula_L

5 118 10.91 −10 10 4 Caudate_L

6 149 10.91 14 10 4 Caudate_R

7 81 8.79 6 −14 4 Thalamus_R

8 119 11.62 −10 −16 6 Thalamus_L

9 674 17.27 −46 10 32 Precentral_L

10 97 8.44 40 38 24 Frontal_Mid_R

11 229 13.03 −2 −56 26 Precuneus_L

12 246 14.45 46 8 28 Frontal_Inf_Oper_R

13 722 16.21 0 14 48 SMA_L

14 158 11.62 −30 −56 40 Inferior Parietal_L

15 50 10.21 34 −56 44 Angular_R

L, left; R, right; SMA, supplementary motor area.

correlation maps, respectively. These clusters represent the brain
surface regions possessing the strongest correlations with the
SCZ network.

Pipeline 3 Combined Binary Masks From FC Analysis

Results of Each SCZ-Associated ROI
The group-level correlation map of each SCZ-associated ROI
was saved to a binary mask. The binary masks of all ROIs
formed a third-level map (positive and negative correlation
maps, respectively). The intensity of each voxel in the third-
level map represents the number of SCZ–ROIs correlated with
the voxel. Finally, we identified four to six surface clusters
as potential regions with the largest peak z-scores among
all clusters larger than 20 voxels. These clusters represented
the brain surface regions which were correlated with the
largest number of SCZ-ROIs. The results of the three pipelines
were mapped onto a standard brain and a standard head
with the international 10–20 system in MNI space (24)
using Surf Ice (www.nitrc.org/projects/surfice/) and MRIcroGL
(www.mccauslandcenter.sc.edu/mricrogl/).

RESULTS

SCZ-Associated ROIs Identified From
Meta-Analysis
Fifteen clusters with peak coordinates were identified from
the meta-analysis (Table 1). The included studies are listed in
the (Supplementary Table S1). These coordinates were used
to create 6mm radius spherical masks, including the bilateral
amygdala, insula, thalamus, caudate, and the left caudate,
precentral, precuneus, supplementary motor area (SMA),
inferior parietal lobule, and the right middle frontal cortex. We
took the overlap of these masks and the original meta-analysis
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TABLE 2 | Potential locations for non-invasive brain stimulation (NIBS) techniques in SCZ from the three pipelines.

ID Cluster size Peak Intensity* Peak coordinates Brain regions 10–20 system locations

x y z

Pipeline 1

1 674 17.2731 −46 10 32 dlPFC/IFG_R Posterior to F4

2 535 16.2133 0 14 48 SMA Midpoint to Fz-Cz

3 310 13.3871 −38 22 −6 dlPFC/IFG_L Posterior to F3

4 246 14.447 46 8 29 dlPFC/IFG_R

5 158 11.6208 −30 −56 40 IPL_L P3

6 133 13.0339 −2 −56 26 Precuneus_bilateral Anterior to Pz

7 97 8.4414 40 38 24 dlPFC/IFG_R Posterior to F4

8 67 17.2731 34 26 −6 dlPFC/IFG_R Posterior to F4

9 50 10.2077 34 −56 44 IPL/AG_R P4

Pipeline 2 positive

1 1,100 19.6838 −42 10 30 dlPFC/IFG_L Posterior to F3

2 983 17.2673 46 14 30 dlPFC/IFG_R Posterior to F4

3 529 16.623 −34 −54 48 IPL_L P3

4 257 18.8981 32 −54 42 IPL_R P4

5 597 19.5042 6 20 46 SMA Midpoint to Fz-Cz

Pipeline 2 negative

1 106 −5.3925 52 10 −42 TPO_R Inferior to T4-F8

2 49 −4.9283 −50 20 −32 TPO_L Inferior to T3-F7

3 3,888 −8.0841 −16 −90 24 SOG and MOG_bilateral O1 to O2

4 627 −5.743 −8 62 28 mPFC Anterior to Fz

5 24 −4.2461 14 58 38 mPFC Anterior to Fz

Pipeline 3 positive

1 2,724 13 NA NA NA dlPFC/IFG_L Posterior to F3

2 1,990 15 NA NA NA dlPFC/IFG_R Posterior to F4

3 857 13 NA NA NA SMA Midpoint to Fz-Cz

4 605 13 NA NA NA SMG_L Midpoint to C3-T3

5 439 12 NA NA NA STG_R Midpoint to F8-T4

6 259 12 NA NA NA MTG/STG_L Anterior to T5

Pipeline 3 Negative

1 1,227 8 NA NA NA mPFC Anterior to Fz

2 162 8 NA NA NA MTG_L Anterior to T3

3 117 8 NA NA NA TPO_R Inferior to T4-F8

4 39 8 NA NA NA MTG_R Anterior to T4

* The intensity of voxels in each pipeline has different meanings. In pipeline 1, it represents z-score from meta-analysis conducted by Neurosynth; in pipeline 2, it represents Z-value

from functional connectivity (FC) analysis conducted by Conn; in pipeline 3, it represents the number of SCZ-ROIs correlated with the voxels. Pipeline 3 has no peak intensity because

the voxels in each cluster have equal intensity. L, left; R, right; NA, not applicable; IPL, Inferior Parietal Lobule; AG, angular gyrus; SMG, supramarginal gyrus SMA, supplementary motor

area; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; mPFC, medial prefrontal cortex; MTG, middle temporal gyrus; STG, superior temporal gyrus; MTG, middle temporal

gyrus; TPO, temporal pole; SOG, superior occipital gyrus; MOG, middle occipital gyrus.

map (Supplementary Figure S2). Finally, the refined masks were
used for seed-to-voxel connectivity analysis.

Potential NIBS Locations for SCZ
Thirty-two SCZ patients were included in this meta-analysis.
The results of these three pipelines mapped on a standard brain
and a standard head in the MNI space were shown in Table 2

and Figure 2. The original results of each pipeline were in
(Supplementary Figures S3–S7).

In pipeline 1, we directly picked up the brain surface
regions from the meta-analysis. Finally, the bilateral

dlPFC/IFG, SMA, inferior parietal lobule, and precuneus
were identified as potential brain surface regions. The 10–
20 system coordinates corresponding to the center of these
regions were located approximately posterior to F3(F4),
midpoint to Fz-Cz, P3(P4), and anterior to Pz. These brain
regions may be directly involved in the pathophysiology
of SCZ.

In pipeline 2, group-level FC analysis results (SCZ-network as
seed) were mapped onto the head surface. Finally, the bilateral
dlPFC/IFG (approximately posterior to F3/F4), inferior parietal
lobule [IPL (P3/P4)], and SMA (midpoint to Fz-Cz) were found
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FIGURE 2 | Results of three pipelines. Brain surface regions identified from the three pipelines were presented on the top. Scalp locations corresponding to the brain

surface regions were presented on the bottom. Results from pipeline 1, pipeline 2 (positive correlation), pipeline 2 (negative correlation), pipeline 3 (positive correlation),

pipeline 3 (negative correlation) were presented as green, yellow, blue, red, and cyan, respectively. L, left; R, right; IPL, Inferior Parietal Lobule; AG, angular gyrus;

SMG, supramarginal gyrus SMA, supplementary motor area; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; mPFC, medial prefrontal cortex; MTG,

middle temporal gyrus; STG, superior temporal gyrus; MTG, middle temporal gyrus; TPO, temporal pole; SOG, superior occipital gyrus; MOG, middle occipital gyrus.

to be positively correlated with the SCZ network. The bilateral
temporal pole, superior and middle occipital gyrus, and medial
prefrontal cortex were showed overlap negatively correlated with
the SCZ network. These regions were located approximately
inferior to T4-F8 (T3-F7), midpoint to O1-O2, and anterior to
Fz. These brain regions possessed the strongest correlations with
the SCZ network.

In pipeline 3, the largest number of brain surface regions from
the third-level FC analysis were picked. Finally, we found that
the bilateral dlPFC/IFG, SMA, the right STG, the left MTG/STS,
and the left supramarginal gyrus were positively correlated with
SCZ-associated ROIs, located approximately posterior to F3(F4),
midpoint to Fz-Cz, midpoint to F8-T4, anterior to T5, and
midpoint to C3-T3. The bilateral MTG, medial prefrontal cortex,
and the right temporal pole were potential brain surface regions
positively correlated with SCZ-associated ROIs. The 10–20
system coordinates corresponding to the center of these regions
were located approximately anterior to T3(T4), anterior to Fz,
and inferior to T4-F8. These brain surface regions correlated with
the largest number of SCZ-ROIs.

Previous NIBS Studies in SCZ
We summarized the targets used in the previous NIBS studies in
SCZ from several systematic reviews (8, 25–27) in Table 3. The

left dlPFC and the left TPJ were the most frequency targets used
in the rTMS and tDCS.

DISCUSSION

In the present study, we attempt to explore potential brain
regions and their corresponding scalp locations for NIBS
techniques in treating SCZ. We have detected several potential
brain regions by combiningmeta-analysis and FC analysis, which
may contribute to improve the clinical efficacy of NIBS in SCZ.

The bilateral dlPFC/IFG and SMA are the most frequent
targets for NIBS treatment in SCZ. Previous meta-analyses have
demonstrated that high frequency rTMS and tDCS did not
have a reliable improvement on treating SCZ by modulating
the dlPFC (7, 70, 71). Contrary to previous clinical trials, our
results showed that the location of dlPFC was posterior to F3 (F4)
rather than exactly F3 (F4). The brain stimulation experiments
in healthy subjects have illustrated that posterior to F3 was the
optimal location for stimulating the dlPFC (72). Particularly, the
Brodmann Area 9 located on the posterior to F4 in the dlPFC
was remarkably associated with negative symptom severity (73).
These findings suggest that stimulating the posterior to the F3
(F4) rather than the exact F3 (F4) may improve NIBS efficacy for
negative symptoms.
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TABLE 3 | The targets used in prior studies.

Targets Reference Symptoms effect

rTMS

TPC_L (28–33) AH No

TPC_L (34–40) AH Yes

TPC_R (30) AH No

TPC_R (39) AH Yes

TC_L/R (41) AH No

TPJ_L (4, 12) AH Yes

TPJ_L (31) Negative No

STG_L (14) AH No

PFC_R (42) Total No

dlPFC_L (43–45) Positive No

dlPFC_L (43, 45–53) Negative Yes

dlPFC_L (42, 44, 46, 54–56) Negative No

dlPFC_R (47) Negative No

tDCS (Anode/Cathode)

dlPFC_L/TPJ_L (57–62) Negative No

dlPFC_L/TPJ_L (5, 59, 63, 64) AH Yes

dlPFC_L/TPJ_L (63–65) Negative Yes

dlPFC_L/TPJ_L (57, 58, 60–62) Positive No

dlPFC_B/TPJ_B (57) Negative Yes

dlPFC_L/ Fp2 (10) Negative No

dlPFC_L/Fp2 (66) Negative Yes

dlPFC_B/forearms (67) Negative Yes

dlPFC_L/dlPFC_R (68, 69) Negative Yes

L, left; R, right; B, bilateral; AH, auditory hallucinations; STG, superior temporal gyrus;

TC, temporal cortex; TPC, temporoparietal cortex; TPJ, temporoparietal junction; dlPFC,

dorsolateral prefrontal cortex; AH, auditory hallucinations; STG, superior temporal gyrus;

TC, temporal cortex; TPC, temporoparietal cortex; TPJ, temporoparietal junction; dlPFC,

dorsolateral prefrontal cortex.

In addition, the resting-state hyperperfusion of the SMA
was considered as a marker of current catatonia in SCZ (74).
Furthermore, the altered gray matter (74) and white matter
volume (75) in the SMA were associated with disturbed motor
behavior in SCZ. In our results, the SMA was identified in three
pipelines suggesting that the SMA could serve as a considerable
NIBS stimulation location for treating SCZ patients, especially
those with motor abnormalities. The SMA is easily accessible
using NIBS, while it is still virtually left to explore in SCZ.
After reviewing the literature and registered trials, we have
found just one published trial (76) and one ongoing trial — the
Overcoming Psychomotor Slowing in Psychosis trial (OCoPS-P,
NCT03921450) — for motor abnormalities in patients with SCZ
over the SMA. The published trial, conducted by the Sebastian
Walther group, has reported that inhibitory stimulation of the
SMA might ameliorate psychomotor slowing in psychosis and
major depression patients (76). Our data corroborated the ideas
of Sebastian Walther, who suggested that NIBS stimulation of
the cortical motor areas could be a practical methodology for
improving and restoring motor impairment in SCZ (77).

There are other brain regions identified in our study, involving
the bilateral IPL, the right temporal pole (TPO), and the

medial prefrontal cortex (mPFC). IPL is one of the structures
in the sense of agency and the dysconnectivity of the agency
network (78), considered as a center of multisensory integration
(79). The bilateral IPL, especially the angular gyrus (AG),
may be directly involved in the pathophysiology of SCZ and
extremely correlate with the SCZ network. A prior study has
implicated that the reduction of IPL might be specific for
long-term antipsychotic treatment (80). Our findings further
supported that IPL could be a possible target for medication
development in the future. Moreover, our results provided
functional image evidence for the alteration of mPFC and TPO.
The altered dopaminergic and GABAergic modulation in the
mPFC is involved in SCZ progression (81). Previous meta-
analysis including 4,474 individuals with SCZ has reported
that only TPO thickness was negatively correlated with age,
and cortical volumes at illness onset and progressive volume
were declined in the temporal pole in SCZ (82). The right
TPO and mPFC may strongly correlate with the SCZ network
and correlate with the largest number of SCZ-associated ROIs.
Despite the importance of mPFC and TPO, there remains a
paucity of evidence for NIBS techniques treating SCZ over mPFC
or TPO.

Interestingly, the dlPFC, SMA, and MTG are the components
of the task positive network (TPN), which associates with
externally oriented attention (83, 84). The mPFC, IPL, and
precuneus play an important role in the default mode network
(DMN) related to introspectively oriented cognitive processes,
such as self-referential and reflective activity. Consistent with
another study (85), we observed that TPN and DMN networks
were anti-correlated. Here, our study provided the evidence to
support that the anti-correlated networks were relevant to SCZ.
Balancing the TPN and DMN network may have a beneficious
effect in treating SCZ by NIBS to regulate neural circuits (3,
86).

Some limitations are needed to pay attention in
the present study. First, excitatory or inhibitory brain
regions in our study are not to be discriminated, which
is essential to some NIBS techniques such as TMS.
Second, the parameters used in each NIBS technique
have not been studied, which may affect the efficacy.
Finally, neurosynth-based meta-analysis is not flawless –
potential error could occur – although several supporting
analyses have been conducted to confirm the validity
and sensitivity.

CONCLUSION

Combining meta-analysis and FC analysis from three pipelines,
we identified several potential NIBS targets on the brain
surface (with dlPFC and SMA to be the most promising
regions) and locations on the scalp for treating SCZ patients.
Specifically, the location of dlPFC was suggested to be
posterior to F3 (F4) and not F3 (F4). Besides, we also
identified that balancing the TPN and DMN might be a
potential strategy to treat SCZ. These identified targets could
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contribute to improving the efficacy of NIBS in treating
SCZ patients.
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