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Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and
serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte
activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I-
IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such
as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to
be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells,
irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers,
atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this
review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four
PRMTs (CARMI, PRMTI1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the
transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs

should be considered one of the target molecule groups that modulate inflammatory responses.

1. Introduction

Inflammation, the body’s physiological protective response to
infection by pathogens, is an important component of innate
immunity. Inflammation can be categorized as either acute or
chronic. Recognition of pathogen-specific molecules, such as
lipopolysaccharides, by pattern recognition receptors (PRRs)
triggers acute inflammation; among PRRs, toll-like receptors
(TLRs) have been intensively studied [1]. In response to
stimulation of TLRs by an appropriate pathogen, many
molecular events, including activation of nuclear factor-
(NF-) kB and activator protein- (AP-) 1 signal pathways,
are instigated and, consequently, transcription of genes that
code proinflammatory enzymes, such as inducible nitric
oxide (NO) synthase (iNOS) and cyclooxygenase- (COX-
) 2, is increased [2, 3]. iNOS-induced NO and COX-2-
derived prostaglandin E, (PGE,) act as key mediators of
active inflammation, affecting essentially all stages of the

inflammation process [4, 5]. Because acute inflammation, a
generic response that attempts to remove the initial cause of
infection, requires constant stimulation to be maintained, it
begins to attenuate as stimuli decline [6, 7]. A serious compli-
cation comes up during long-lasting inflammation condition,
known as chronic inflammation. Chronic inflammation can
cause inflammatory-related or autoimmune diseases, includ-
ing rheumatoid arthritis, Alzheimer’s disease, systemic lupus
erythematosus, asthma, atherosclerosis, cancer, and ischemic
heart disease [8, 9].

Biologically, methylation is a reaction that adds a methyl
group to substrates, including DNA, RNA, and proteins, via
various methyltransferases. DNA methylation mainly occurs
at cytosine-phosphate-guanine (CpG) sites, where a cytosine
follows a guanine in the DNA sequence. The cytosine in CpG
sites is methylated by DNA methyltransferases to form 5-
methylcytosine. In mammals, 70 to 80% of CpG cytosines
exist as methylated form, and CpG methylation is a key
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TaBLE 1: The biological function of methylated arginine.

Postulated or proven function Proteins involved

Motor neuron proteins

A solici
mRNA splicing Small nuclear ribonucleoprotein

Signal transduction Interferon receptor

Cellular proliferation Transcription factor

Chromatin remodeling Histones

Transcriptional coactivator Nuclear receptor, p53

Protein-protein interaction Inter- and intramolecules
hnRNP

Myelin basic protein

Translocation

Myelogenesis

reaction in epigenetics because it acts as a switch that turns
a gene on or off. Additionally, protein methylation, a post-
translational modification, is a reaction that covalently adds a
methyl group to specific amino acid residues; these reactions
can be divided into two main categories: N-methylation
and O-methylation (carboxymethylation). The methylation
of lysine, arginine, histidine, alanine, proline, glutamine,
phenylalanine, asparagine, and methionine is a type of N-
methylation, while O-methylation involves the methylation
of glutamic acid and aspartic acid. The creation of these
methylated amino acids is catalyzed by methyltransferases
that utilize S-adenosyl-L-methionine (AdoMet) as the methyl
donor. Three types of AdoMet-dependent methyltransferases
are defined, based on their structural features. The largest
class (class I) has a seven-strand twisted f-sheet structure
[10]. Class II encompasses SET lysine methyltransferases
[11]. Finally, class III contains membrane-associated enzymes
[12].

Arginine methylation is catalyzed by the protein arginine-
N-methyltransferase (PRMT) family and is observed in both
cytoplasmic and nuclear proteins. Methylation of arginine
residues is involved in many cellular responses, includ-
ing RNA splicing, signaling transduction, DNA damage
repair, and protein-protein interactions. The functions of
arginine-methylated proteins are listed in Table 1. Arginine is
methylated in three different ways: monomethylated arginine
(MMA), symmetrically dimethylated arginine (sDMA), and
asymmetrically dimethylated arginine (aDMA). MMA is
considered an intermediate form of DMA. Each type of
methylarginine is produced by one of nine PRMTs (Figure 1).

PRMT family members are a class I enzyme, having a
set of four signature motifs (I, post-I, II, and III) and a
conserved THW loop [13]. Motif I, post-1, and the THW loop
are important to the formation of the AdoMet-binding pocket
(Figure 2) [14]. Glycine- and arginine-rich patches (GAR
motifs) in substrates are mainly methylated by PRMTs, but
coactivator-associated arginine methyltransferase 1 (CARMI)
is an exception. PRMTs are divided into 4 types (types I-
IV) of enzymes (Figure 2). Type I arginine methyltransferase,
the most common type of PRMT, induces asymmetric
dimethylation, adding two methyl groups to the terminal
nitrogen atoms (w-N¢ N¢-dimethylarginine). Six enzymes
are categorized as type I PRMTs: PRMT1, PRMT2, PRMT3,
PRMT4, PRMT6, and PRMT8 [15]. Among them, PRMT1
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is the predominant type I enzyme. Type II PRMTs add one
methyl group to the terminal nitrogen atoms (w-N%N¢-
dimethylarginine) by catalyzing the symmetric dimethyla-
tion of arginine side chains. PRMT5 is associated with
this type, whereas PRMT?7 is thought to belong to type II,
although this is still controversial [16]. Recently, PRMT9
turned out to belong to the type II enzyme that methylates
RNA splicing factor SF3B2 [17, 18]. Type III enzymes generate
monomethyl arginine as their final product, even though
monomethylated arginine at terminal nitrogen atoms (w-N°-
methylarginine) is an essential intermediate of both types
I and II PRMT reactions [19]. Type IV methyltransferases
catalyze monomethylation of the internal nitrogen atom (N-
methylarginine), which is found only in fungi (Table 2) [20].

Most PRMTs are active when they are expressed as
purified recombinant proteins, which indicates that PRMTs
do not require additional processing or PTMs to maintain
their activity. However, there are mechanisms for fine-tuning
PRMT activity, such as PTMs, interacting with regula-
tory proteins, subcellular compartmentalization, and control
of RNA levels by micro-RNAs. Regulation of PRMTs is
explained in Table 3.

2. The Role of PRMTs in
Inflammatory Responses

According to a number of recent reports, four PRMTs
are currently thought to be correlated with inflammatory
responses: CARMI, PRMTI1, PRMTS5, and PRMTE6.

2.1. CARMI (PRMT4). CARM], also known as PRMT4 (pro-
tein arginine N-methyltransferase 4), regulates many proteins
involved in DNA packing, transcription regulation, pre-
mRNA splicing, and mRNA stability by inducing methylation
of the guanidine nitrogen of arginine residues of substrates.
There are two classes of CARMI substrates: chromatin
remodeling proteins (histone H3 and p300/CBP), which are
included in class 1 substrates, and proteins possessing RNA-
binding activity, such as PABP1, TARPP, HuR, HuD, and
splicing factors [46]. CARMI acts as a secondary coactivator
and is associated with the p160 family (SRC-1, GRIP1, and
AIB) of transcriptional coactivators, which are involved in
gene activation by steroid hormone receptors [47]. CARM1
also associates with CBP/p300 transcriptional coactivators
that activate steroid hormone receptors and C/EBP-mediated
gene expression; it functions as a coactivator or corepressor of
CBP/P300 molecules. As a coactivator, CARMI is recruited
to nuclear receptors by pl60 coactivator, which is activated
by hormone. Chromatin remodeling occurs through his-
tone acetylation and methylation proximate to the hormone
response element (HRE); as a consequence, transcription is
stimulated. In contrast, CARMI acts as a corepressor of cyclic
AMP-induced signaling when accompanied by CBP/p300.
CARMI-methylated CBP was found to inhibit transcriptional
activity of CREB by blocking the interaction between the
KIX domain (the CREB and MYB interaction domain in
CBP) and the kinase-inducible domain (KID) of CREB
[48].
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FIGURE 2: Structure of the PRMT family.

2.1.1. The Role of CARM]I in Inflammation through the Reg-
ulation of NF-xB. Nuclear factor- (NF-) «B is one of the
most important transcriptional factors because it regulates
the transcription of many proteins involved in inflammatory
diseases, autoimmune diseases, septic shock, viral infection,
and immune development. Indeed, elevated NF-xB activity
has been detected in the airways of asthmatic patients [49].
Increased expression of NF-«B has been noted in Crohn’s
disease and ulcerative colitis patients [50]. Additionally,
upregulated NF-xB was observed in the synovial fluid of
patients with rheumatoid arthritis [51]. The transcription
factor, NF-«B, is composed of homo- or heterodimers of
subunits (members of the Rel family), including p50, p52
(p49), p65 (Rel A), c-Rel, and Rel B. All these proteins contain
a highly conserved domain known as the Rel homology
domain (RHD), which consists of about 300 amino acids
and plays a role in homologous or heterologous dimerization,
DNA binding, and nuclear translocation. Among the various
NF-xB subunit combinations, the p65/p50 and c-Rel/p50
heterodimers are the most commonly described forms.
There are two pathways leading to NF-xB activation:
the classic (canonical) pathway and the alternative (non-
canonical) pathway (Figure 3) [52]. The pathways are defined
based on different requests for IKK subunits that regulate
NF-«B activation at an upstream stage. The IKK complexes
are composed of three subunits, including IKK« (IKK1) and
IKKp (IKK2), which are kinase subunits, and a regulatory
subunit IKKy (NEMO). In the canonical pathway, IKKf and

IKKy, but not IKK«, regulate degradation of IxB through
phosphorylation of IxkB and, consequently, free NF-«B is
translocated into the nucleus [53]. The alternative pathway,
however, requires only IKK«, in which pl00, a precursor
of p52, is phosphorylated and matured by IKKe [54]. The
stimuli of each pathway are also different. The major triggers
for the canonical pathway are proinflammatory cytokines and
microbial products, such as tumor necrosis factor- (TNE-)
«, IL-1, and lipopolysaccharide (LPS), resulting in activation
of complexes comprised of Rel A or c-Rel [55], whereas the
alternative pathway is activated by the TNF family, leading to
activation of Rel B/p52 complexes [56].

There are coactivators of NF-xB, CREB-binding protein
(CBP), and its homolog, p300, including the p300/CBP-
associated factor (P/CAF) and members of the steroid
receptor coactivator (pl60/SRC) family. These coactivators
directly interact with NF-«B subunits, such as p50 and p60
[57]. Interestingly, CARMI is closely associated with the
transcriptional coactivator, CBP/p300, in p53-mediated and
nuclear receptor- (NR-) mediated transcriptional regulation.
This implies that CARM1 would be a coactivator of NF-«B,
because NF-«B utilizes a similar set of coactivator proteins
with p53 and NR [58]. Indeed, CARMI was found to be
a novel transcriptional coactivator of NF-«xB [59]. The NF-
kB-dependent genes, such as ICAM-1, G-CSE, MCP-1, IP-
10, and MIP-2, were impaired in Carml(—/-) fibroblasts
that underwent TNF-« and LPS stimulation. TNF-a- and
LPS-induced NF-«B reporter gene activities were also lower
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TaBLE 2: Classification of the PRMT family.
PRMTs Family Methylarginine formation by PRMTs
PRMT1 Typel
PRMT2 Type I
PRMT3 Type Substrate
PRMT4 Tyve I SDMA
(CARM1) P
PRMTS5 Type II
PRMT6 Type I Substrate w
Type II .. Timay
PRMT7 (controversial) and Arginine 14 enZYIne)
type III Substrate
PRMT8 Typel ADMA
PRMT9 Type IT
TABLE 3: Regulatory mechanisms of PRMTs.
(a) PTMs: PRMT activities are modulated by PTMs
PRMTs Types of PTM Enzyme;%rll\\/}olved n Biological role of PTM Reference
. . . . Activating by regulation to bind
21,22
Phosphorylation at S217 Unidentified kinase with AdoMet [ ]
CARMI1 . N-acetylglucosamine Activating by controlling the
23,24
Glycosylation transferase (OGT) phosphorylation of CARM1 : ]
Auto-arginine methylation Unidentified Unclear [25]
Inactivating via blocking the
Amino-terminal interaction between PRMT5 and
i 26
PRMT5 phosphorylation Janus kinase 2 (JAK2) methylosome protein 50 [26]
(MEP50)
PRMT6 and . . . .
PRMTS Auto-arginine methylation Unidentified Unclear (27, 28]
(b) Regulatory partner: interaction with regulatory proteins can control the activity of PRMTs
PRMTs Regulatory partner Biological role Reference
MEP50 Required for PRMTS5 activation [29]
. Elevates the activity of MEP50-PRMT5 toward
30
PRMTS5 SWI/SNF chromatin complex histone substrates [30]
Exon junction complex component and Enhances MEP50-PRMTS5 activity toward Sm
L . . [31]
RNA-binding protein Y14 proteins
Orphan nuclear receptor TR3 (NR4A1) Inhibits PRMTI enzyme activity (32]
BTGl-binding chroCrr:llzlln assembly factor 1 Negatively regulates PRMT1 activity [33]
PRMTI (CAFD)
BTGl Increases PRMTI activity [34]
PRMT2 Stimulates PRMT1 activation [35]
PRMT3 Tumor suppressor DALI Blocks PRMT3 methyltransferase ability [36]
PRMT7 CCCTC-binding factor like (CTCFL) Increases PRMT?7 activity [37]
(c) miRNA regulation
PRMTs Type of miRNA Reference
PRMT5 miR-19a, miR-25, miR-32, miR-92, miR-92b, and miR-96 [38]

in Carml(—/-) cells compared to controls. However, 1xB
degradation and p65/Rel A translocation were not affected

by the absence of CARMLI. Instead, it seems that CARMI specific manner [59].

regulates NF-xB-mediated gene expression through complex
formations with p65 and p300. Consequently, CARMI acts

as a primary coactivator by enhancing NF-«xB recruitment
to cognate sites and by controlling transcription in a gene-

However, CARMTI’s functional role in NF-xB-dependent
gene expression remains unclear and even controversial.
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FIGURE 3: Two pathways leading to NF-«B activation.

According to the recovery experiments using complemented
carml—/— mouse embryonic fibroblast cells by retroviral
transduction, either with wild-type CARMI or with an
enzymatic inactive E267Q mutant of CARMI, CARMI
enzymatic activity was not essential for NF-«xB-dependent
gene expression which was stimulated by TNF-a« or PMA.
Additionally, CARMI is not needed for recruitment of Rel
A/p65 to chromatin, indicating that CARMI contributes to
the stabilization of complex proteins. These observations
generate two hypotheses: (1) CARMI might recruit Brgl,
an enzymatic ATPase subunit of the SWI/SNF complex, to
promoters of specific genes, because CARMI interacts with
Brgl [60]; (2) a third interaction partner, whose enzymatic
activity is independent of CARM], might also be recruited by
CARMIL. Therefore, a more rigorous investigation of CARMI’s
role in transcriptional regulation is required to understand its
exact role in inflammatory responses.

2.2. PRMTL. PRMT1 is the most common form of PRMT
and is expressed in most tissues, constituting up to 85%
of all PRMT activity in cultured RAT1 cells and in mouse
liver tissue under experimental conditions [61]. PRMTI is
broadly thought to be the main enzyme on histone H4 for
monomethylation and asymmetric dimethylation of Arg-3,
which are required for transcriptional activation by nuclear
hormone receptors [62]. Nonhistone proteins have also been
reported to act as substrates of PRMT1. Through the methy-
lation of PIASI, PRMTI can control STATI transcriptional
activity in the late phase of interferon-y (IFN-y) signaling

[63]. PRMTI acts as an activator of estrogen receptor- (ER-)
mediated transactivation through TAF15 methylation [64].
Also, PRMT1 methylates FOXO1 and increases its transcrip-
tional activity by retaining it in the nucleus [65].

2.2.1. The Role of PRMTI in Antigen-Induced Pulmonary
Inflammation (AIPI) in Rats. An antigen-induced pul-
monary inflammation (AIPI) model is the in vivo rat asthma
model that shares many pathological features with human
asthma. Interestingly, there are remarkable differences in the
gene expression of PRMTs in rats with AIPI comparing to
normal rats [66]. In particular, the expression of PRMT1
was significantly higher in the AIPI model, implying putative
involvement of PRMT1 in asthma.

During pulmonary inflammation, eosinophils, the most
critical immune cells in asthmatic conditions, are recruited
into the lungs through a process mediated by eotaxins.
Interleukin- (IL-) 4 boosts eosinophilic inflammation by
producing eotaxin-1 [67]. PRMTI has been shown to be
associated with the mechanisms underlying the recruitment
of eosinophils into airways by IL-4 [68]. The upregulation
of PRMT1 was induced by Th2 cytokine IL-4 in the AIPI
model. According to a transcription factor search program,
IL-4 seems to increase PRMT1 expression through activation
of STATs, CREB, NF-«B, and GATA3, which are all involved
in the promoter region of PRMT1. AMI, a PRMT1 inhibitor,
suppressed eotaxin-1 production and eosinophil infiltration
in the AIPI model, implying that PRMT1, when activated



by IL-4, functions as a pulmonary inflammation regulator
via the modulation of eotaxin-1 release [68]. It has also
been reported that PRMTI can methylate the STAT family,
which is responsible for IL-4 expression [69]. Therefore, it has
been suggested that IL-4 induces overexpression of PRMT1,
leading to increased transcription of eotaxin-1 by elevated
STAT signaling. Additionally, transforming growth factor-
(TGF-) B-induced PRMT1 also contributes to pulmonary
inflammation in chronic AIPI. TGF-f is produced by IL-
4 stimulated epithelial cell, and subsequently proliferation
of fibroblast and PRMTI1 expression are elevated. Then,
increased PRMTI is regarded to regulate pulmonary inflam-
mation through inducing COX-2 expression [70].

2.2.2. Regulation of CITED2 by PRMTI. CBP/p300-interact-
ing transactivator 2 (CITED2) is a coactivator of the
p300/CBP-mediated transcript complex. It also acts as a
transcriptional corepressor of HIF-dependent genes [71]. It
serves multiple functions in several biological processes; for
example, in knockout analyses, CITED2 was observed to
play important roles in mouse embryo development [72-
74]. Moreover, CITED2 is required for maintenance of adult
hemopoietic stem cell functions [75]. A recent study on
CITED?2 function in immunity and inflammation led to the
observation that CITED2 is induced by LPS and acts as a
novel repressor of NF-«B by preventing p65 from binding to
p300 [76].

Interestingly, PRTM1 and CARMI regulate CITED2
expression under IL-4 stimulation conditions. According
to Uta-Marias work, PRMT1 and CARMI were observed
to recruit CITED2 gene promoter sites when stimulated
with fetal calf serum (FCS)/IL-4 [77]. Additionally, both
PRMTs interact with STAT5 in an IL-4-dependent manner
[77]. The data indicate that PRMT1 and CARMI coopera-
tively increase the expression of CITED2 through STATS5-
dependent transcriptional activation when induced by IL-4
signaling. Interaction of the two PRMTs with STAT5 and their
recruitment to the promoter region are also enhanced by IL-
4 stimulation [77]. These findings imply that CARMI and
PRMT1 might participate in immune responses by regulating
CITED?2 transcription.

2.2.3. Modulation of NF-kB by PRMT1. PRMTI is considered
an inflammation regulator because of its NF-xB regulation
capacity. PRMT1 controls NF-xB-dependent gene expression
in collaboration with other coactivators. Hassa et al. found
that, under TNF-« stimulation, PRMT1 forms a nuclear com-
plex with p65 and poly[ADP-ribose] polymerase 1 (PARP1),
and PRTMI is recruited to p65-containing complexes that
are associated with promoters [78]. Moreover, PRMT1 was
required for PARPI1 and p300-dependent NF-«B gene tran-
scription, based on luciferase reporter gene assays, suggesting
that PRMTI1 synergistically coactivates NF-«xB-dependent
transcription in cooperation with PARPI and p300.

How these coactivators (PRMT1, PARPI, and p300) cross-
talk as part of their associated activity is still unclear. One
possible explanation is that histone acetylation by CBP/p300
might be succeeded by PRMT1-mediated methylation of Arg-
3 on histone H4, because it has been revealed that Arg-3
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methylation on H4 by PRMT1 is essential to maintain “active”
chromatin modification [79]. Another possibility is that
PRMT1 may methylate other NF-«B transcriptional coactiva-
tors; for example, CARMI catalyzes p300/CBP methylation,
which is linked to the alteration of transcription states
[48]. Similar to CARMI, PRMTI1 might directly methylate
promoter-associated coactivators, such as PARP1 or pl60
family members. This explanation is consistent with Stall-
cup et al’s findings regarding the functional regulation of
nonhistone proteins by PRMTI1 [80]. Further studies are
needed to fully understand how PRMT1 regulates NF-xB-
dependent gene expression through its collaboration with
other cofactors.

2.3. PRMTS6. Protein arginine methyltransferase 6 (PRMT6)
mainly catalyzes asymmetric dimethylation of histone H3
Arg-2 (H3R2me2a). Histone methylation by this enzyme
has been confirmed in vivo [81]. Thus, alteration of PRMT6
expression could affect universal gene expression. In addi-
tion to methylation on histone proteins, PRMT6 has been
observed to control gene expression by direct interaction
with transcription factors, including NF-«B and G-protein
pathway suppressor 2 (GPS2). Because those two molecules
are directly involved in inflammatory responses, it is possible
that PRMT6 also plays a role in inflammation responses.

2.3.1. Regulation of NF-xB via PRMT6. In total, 4 PRMTs
(PRMTI1, CARMI, PRMT5, and PRMT6) are known to
be regulators of NF-«B, despite having different regulatory
mechanisms. The role of PRMT6 in NF-xB was first described
by Di Lorenzo et al., using a gain-of-function mouse model
[82]. This group established a transgenic mouse model that
overexpressed PRMT6 and explored the role of PRMT6 in
inflammatory responses in these mice. They observed that
PRMT6 elevated IL-6 expression levels by regulating NF-
«B. Detailed experiments led to the conclusion that PRMT6
directly binds to the NF-«B subunit, Rel A, allowing shuttling
of Rel A into the nucleus. Consistent with this, colocalization
of Rel A and PRMT6 at NF-xB binding promoters was
observed to be elevated and, subsequently, NF-«B target gene
expression, including IL-6, was elevated when stimulated by
TNF-a.

However, the role of arginine methylation by PRMT6
during activation of NF-«xB-related gene expression has not
been thoroughly explored. According to in vitro methylation
assay results, PRMT6-mediated Rel A methylation was not
directly observed, indicating that NF-«B activation is indi-
rectly regulated by methylation of NF-«B coactivators, such
as pl60/steroid receptor coactivator (SRC) proteins. Indeed,
PRMTS6 interacts with activation domain 2 (AD2) of SRC-1,
increasing the possibility that p160/SRC could be methylated
by PRMT6 [83].

2.3.2. Regulation of G-Protein Pathway Suppressor 2 (GPS2)
by PRMT6. GPS2 is a multifunctional protein belonging
to a transcriptional cofactor. GPS2 serves a function in G-
protein mitogen-activated protein kinase (MAPK) signaling
pathways, appearing to have a negative effect on RAS-,
MAPK-, and JAK-mediated signaling cascades. Because
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these enzymes are major signaling regulators associated with
inflammatory responses, the modulation of GPS2 by PRMT6
implies involvement of PRMT6 in controlling inflammation
[84].

Recently, Huang et al. observed that PRMT6 modulates
GPS2 by arginine methylation at Arg-323 and Arg-312 [85].
Of these, Arg-323 methylation was found to be an essential
reaction that prevented proteasomal degradation of GPS2,
resulting in its increased stability. Huang et al’s findings indi-
cate that methylation of Arg-323 is needed for recognition by
transducer beta-like protein 1 (TBLI), which prevents degra-
dation of polyubiquitinated GPS2. TBLI subsequently binds
to the ubiquitinated GPS2 by recognizing the methylated
Arg-323, which was catalyzed by PRMT6. Consequently,
proteasomal degradation is diminished. Although the direct
relationship between inflammation and PRMT6 and GPS2 is
still unclear, accumulated reports indicate a strong likelihood
that PRMT6 is an inflammation regulator.

2.4. PRMT5. Protein arginine methyltransferase 5 (PRMT5)
catalyzes the production of a symmetrically dimethylated
(SDMA) guanidine group and belongs to a type II PRMT.
Similar to other PRMTs, PRMTS5 also controls gene expres-
sion, mainly by modulating histone methylation. PRMT5
represses gene transcription by inducing dimethylation of
Arg-8 on histone H3 (H3R8) and Arg-3 on histone H4
(H4R3) [86]. Contrary to this, PRMT5 can also upregulate
gene transcription under particular conditions [87].

2.4.1. The Role of PRMT5 in HOXA9-Mediated Endothelial
Cell (EC) Inflammation. EC inflammatory responses are
mediated by proinflammatory endothelial-leukocyte adhe-
sion molecules (ELAM), such as E-selectin and vascular
cell adhesion molecule 1 (VCAM-1) [88]. When ECs receive
inflammation signals, transcription factors that induce adhe-
sion molecules are activated [89]; a key transcriptional factor
involved in this reaction is HOXA9 [90]. HOXA9 belongs to
the homeobox family, and its posttranslational modifications,
including phosphorylation and ubiquitination, play a criti-
cal role in hematopoietic differentiation [91]. Interestingly,
HOXAY is methylated at Arg-140 by PRMT5 and this reaction
is activated by TNF-«. Methylation of HOXA9 plays a critical
role in the upregulation of ELAM (E-selectin and VCAM-1),
indicating that PRMT5 could play an important role in EC
inflammation [92]. In contrast, PRMT5 has an inhibitory role
in the induction of E-selectin by mediating histone H4R3,
which leads to gene silencing [93]. Therefore, it seems that
PRMTS5 could contribute to EC inflammation as an on-off
switch.

2.4.2. The Function of PRMT5 in Immune Responses through
NF-«B Regulation. There are several reports indicating that
PRMTS5 regulates NF-xB activity. At first, PRMT5 was
reported to be a NF-«B regulator during TRAIL-induced
apoptosis [94]. According to Hiroshi et al., PRMT5 binds
to the TRAIL receptor and, consequently, TRAIL-induced
apoptosis is activated via IKK activation and IxkB degrada-
tion. Because TRAIL may stimulate inflammatory cytokine
expression, such as CCL20, and because NF-xB is a key

regulator of inflammation in immune cells, PRMTS5 involve-
ment in inflammatory responses was also explored. In prac-
tice, PRMT5 appears to be associated with DR4-dependent
immune regulation by controlling the NF-xB pathway [95].
DR4 binds to TRAIL, leading to recruitment of RIP1 and
TRAF2 in DISC, as well as activation of NF-«xB. In these
reactions, PRMT5 acts as a competitor of TRAIL to bind
to DR4, resulting in suppression of NF-«xB activation and
CCL20 expression.

Additionally, PRMT5 was directly revealed to regulate
NF-«B activity by inducing methylation of the p65 subunit.
Wei et al. demonstrated that PRMT5 methylates Arg-30
(R30) residues of the p65 subunit and regulates NF-«xB-
dependent gene expression, such as interleukin-lee (IL-1cx)
and TNF receptor-associated factor 1 (TRAF1). According to
microarray analyses, about 85% of NF-«xB-dependent gene
expression seems to be required for R30 and p65 methylation
[96]. With that, it has also been reported that R35, as well as
R30, is methylated by PRMT5. Methylated R30 and R35 at p65
participate in elevating p65 and in transcription of a subset of
TNF-a-induced proinflammatory genes, especially CXCLI10,
in endothelial cells [97].

3. Conclusions

Based on our review, there is evidence for a correlation
between PRMTs and inflammatory responses. In particular,
transcription regulation by NF-«B, a key molecule of inflam-
mation, appears to be a main function of PRMTs in the
regulation of inflammation system. However, studies linking
PRMTs to inflammation are in a very nascent stage, and the
current evidence is circumstantial. Therefore, an introduction
of key model systems is needed in order to understand the
biological role of PRMTs in inflammation. Mouse knockout
models could be useful in this process (Table 4). In fact,
mouse models can be a powerful tool for investigating
the in vivo inflammation-regulatory roles of PRMTs and
understanding their molecular mechanisms. The relevance of
the association between PRMTs and inflammatory diseases
can also be estimated using in vivo inflammatory knockout
models, such as hepatitis, gastritis, colitis, peritonitis, and
dermatitis. Additionally, phenomenological access is likely to
be required to understand the connection between PRMTs
and inflammatory disease. For that, a good approach would
be to examine the expression pattern of PRMT activity in
immune cells obtained from in vivo inflammatory disease
models or chronic inflammatory disease patients. Moreover,
testing the inhibitory efficacy of PRMT inhibitors against
inflammatory diseases will contribute to the development of
a new anti-inflammatory drug.

Lastly, the possibility of functional involvement of
arginine demethylase in arginine methylation cannot be
excluded. Many studies have indicated the existence of
arginine demethylases, even though arginine methylation is
a stable modification [98]. For example, H3R17me2A exhibits
cyclic expression with 20-minute fluctuation intervals [99],
and PRMTI-induced transient methylation of ERa with
estrogen treatment reaches peak levels within 5 minutes and
then disappears within 10 minutes [100]. In practice, Jumonji
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TaBLE 4: PRMTs of knockout mice.

PRMT Knockout mouse phenotype Reference
Embryonic lethality [39]

Prmtl Loss of PRMTI in mouse embryonic ﬁbroblast§ (MEFs) leads to spontaneous DNA damage, cell cycle [40]
progression delay, checkpoint defects, aneuploidy, and polyploidy
Neonatal lethality [41]

Carml Mutant embryos have defects in many systems, inclqding adipose tissue, hematopoietic system, (42]
immune system (T-cell differentiation), and the respiratory system

Prmts Early embryonic lethality (dies by E6.5) [43]
PRMTS5 is required for NPC homeostasis [44]
No lethality [45]

Prmt6

MEFs from PRMT6(—/—) mice show growth defects and undergo cellular senescence

C domain-containing protein 6 (JMJD6), also known as a
lysine hydroxylase, was identified as a first putative arginine
demethylase [101]. Therefore, recent reports on PRMTs and
their counterpart arginine demethylase propose that these
enzymes are a functionally important unit in the regulation of
inflammatory responses. Further verification of involvement
of these enzymes in each inflammatory disease will be of
considerable interest.
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