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ABSTRACT Burkholderia cenocepacia J2315 is a member of the B. cepacia complex.
It has a large genome with three replicons and one plasmid; 7,261 genes code for
annotated proteins, while 113 code for functional RNAs. Small regulatory RNAs of
B. cenocepacia have not yet been functionally characterized. We investigated a small
regulatory RNA, designated ncS35, that was discovered by differential RNA sequenc-
ing. Its expression under various conditions was quantified, and a deletion mutant,
AncS35, was constructed. Compared to planktonic growth in a rich medium, the ex-
pression of ncS35 was elevated when B. cenocepacia J2315 was grown in biofilms
and in minimal medium. Cells of the deletion mutant showed increased aggrega-
tion, higher metabolic activity, a higher growth rate, and an increased susceptibility
to tobramycin. A transcriptomic analysis revealed upregulation of the phenylacetic
acid and tryptophan degradation pathways in AncS35. Computational target predic-
tion indicated that ncS35 likely interacts with the first gene of the tryptophan degra-
dation pathway. Overall, we demonstrated that small RNA ncS35 is a noncoding
RNA with an attenuating effect on the metabolic rate and growth. It is possible that
slower growth protects B. cenocepacia J2315 against stressors acting on fast-dividing
cells and enhances survival under unfavorable conditions.

IMPORTANCE Small RNAs play an important role in the survival of bacteria in di-
verse environments. We explored the physiological role of ncS35, a small RNA ex-
pressed in B. cenocepacia J2315, an opportunistic pathogen in cystic fibrosis pa-
tients. In cystic fibrosis patients, infections can lead to “cepacia syndrome,” a rapidly
progressing and often fatal pneumonia. Infections with Burkholderia spp. are difficult
to threat with antibiotics because of their high intrinsic resistance and ability to
form biofilms. We show that ncS35 attenuates the growth and reduces the meta-
bolic rate of B. cenocepacia and influences biofilm structure. This demonstrates that
as-yet-uncharacterized small RNAs with regulatory function can influence physiologi-
cal traits of B. cenocepacia that are relevant for infection.
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urkholderia cenocepacia is a member of the B. cepacia complex (Bcc). This group of

bacteria consists of 20 closely related bacterial species found in different environ-
ments (1). Bcc bacteria can be isolated from soil or are associated with plants; they can
be used as biocontrol or bioremediation agent or show plant growth-promoting
activity (2). On the other hand, Bcc bacteria can also act as opportunistic pathogens,
causing severe infections in immunocompromised patients (2). Especially individuals
with cystic fibrosis (CF) or chronic granulomatous disease are sensitive to infections
with Bcc bacteria. In CF patients, infections with B. cenocepacia can lead to “cepacia
syndrome,” a rapidly progressing pneumonia, ultimately leading to death (3). Because
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of the high innate resistance to most antibiotics and because of their ability to form
biofilms, eradication of Bcc bacteria is difficult (4, 5). B. cenocepacia isolate J2315 is a
member of the highly transmissible ET12 lineage (3). It harbors two large replicons of
3.87 and 3.22 Mb, one smaller replicon of 0.88 Mb, and one plasmid of 0.09 Mb, in total
encoding 7,261 annotated proteins (6). Genes on the largest replicon mainly encode
core cellular functions, whereas the two other chromosomes mainly harbor genes that
encode accessory functions (6). Besides protein coding genes, 113 RNA coding genes
were annotated, including genes for 74 tRNAs and 10 riboswitches (6). Several studies
have identified novel short transcripts in B. cenocepacia (7-10), but little is currently
known about their function.

sRNAs are small noncoding RNA molecules in bacteria that possess regulatory
functions on the posttranscriptional level (11). They are typically relatively short (40 to
500 nucleotides [nt]) and act mostly by base pairing with mRNA. cis-encoded sRNAs are
located on the strand opposite their mRNA targets and are therefore fully complemen-
tary to their targets. trans-encoded sRNAs, the most abundant type of sRNAs, act by
imperfect antisense base pairing on mRNA targets located elsewhere on the chromo-
some. Because of the limited complementarity to their targets, many trans-encoded
sRNAs require the RNA chaperone protein Hfg to fulfill their function (12). By base
pairing, the translation initiation frequency or stability of the mRNA target can be
modulated. Binding of the sRNA within the 5’ untranslated region (UTR) can occlude
the ribosome-binding site (RBS) and inhibit ribosome binding, leading to attenuation of
translation. Untranslated mRNA can then be degraded by RNases. The translation
initiation frequency can also be increased, as SRNAs can bind to hairpin structures of
mRNA targets, open them, and reveal the RBS. Finally, mRNA stability can be directly
affected by sRNAs, as binding within the coding sequence (CDS) of the mRNA target
can result in increased degradation of the sSRNA-mRNA duplex (13, 14).

sRNAs are typically only conserved between closely related species. They are in-
volved in fast fine-tuning of gene expression, which is essential when bacteria have to
survive stress, e.g. carbon or iron starvation, unfavorable pH or temperature, or
oxidative and membrane stress. They are known to play a role in pathogenicity, by
regulating the production of virulence factors, and in biofilm formation (14).

In a previous study, the transcriptome structure of B. cenocepacia J2315 was
analyzed by differential RNA sequencing (dRNA-seq; 8, 15), which allows global map-
ping of transcription start sites (TSS) and discovery of novel transcripts. In the present
study, the function of one short transcript discovered by dRNA-seq (8), designated
ncS35, not associated with a coding sequence, and resulting in a short transcript, was
further characterized.

RESULTS

Genome location and conservation of ncS35. We previously identified an orphan
TSS in an intergenic region on the second largest chromosome of B. cenocepacia J2315
(7, 8). This TSS is located on the opposite strand of its adjacent genes, BCAM2068 and
BCAM2069 (Fig. 1), indicating an independently transcribed sRNA, which was desig-
nated ncS35. dRNA-seq data further indicated a processing site 29 nt downstream of
the TSS, revealed by a coverage peak depleted in the Terminator RNA exonuclease
(TEX)-treated subsample (Fig. 1A). 5’ rapid amplification of cDNA ends (RACE) con-
firmed the TSS as the beginning of the transcript (position 2304378), as well as the
processing site (position 2304350). dRNA-seq data also showed an abrupt decrease in
coverage at a distinct location (position 2304213), and 3’ RACE confirmed this as the
end of the transcript.

The sequence of full-length ncS35 is conserved only within the Bcc, while the
sequence corresponding to the processed form is also present in the Burkholderia
pseudomallei group. Other bacterial lineages do not harbor ncS35. In Bcc species, the
relative orientation of ncS35 is conserved but genes directly adjacent to ncS35 are not
always homologous. In most of the strains investigated, ncS35 is flanked by a major
facilitator superfamily protein and a conserved hypothetical protein (Fig. 1B). In B. ceno-
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FIG 1 Genomic location of ncS35. (A) Coverage for ncS35 in dRNA-seq data. Blue line, TEX-treated
subsample; red line, untreated subsample; blue arrow, location of TSS; red arrow, processing site. (B)
Synteny of adjacent genes. The red arrow represents ncS35, located on the strand opposite its flanking
genes, which encode a terpene cyclase (BCAM2068, green) and a conserved hypothetical protein
(BCAM2069, purple). BCAM2067 (orange, a putative undecaprenyl pyrophosphate synthetase-encoding
gene, uppS) and BCAM2068 are adjacent to ncS35 in B. cenocepacia strains J2315, K56-2, and H111 and
in B. dolosa AU0158. In all of the other strains surveyed, the major facilitator protein (blue) is directly
adjacent to ncS35 (B. multivorans ATCC 17616 is shown as a representative). Homologous genes have the
same color code.

cepacia strains J2315, K56-2, and H111 and in Burkholderia dolosa AU0158, two genes
are inserted between ncS35 and the major facilitator superfamily protein (Fig. 1B).

Full-length ncS35 has a size of 166 nt and a computationally predicted secondary
structure with four hairpins (see Fig. STA in the supplemental material), a minimum free
energy (MFE) of —77.80 kcal/mol, and a negative Z score for MFE of —3.97 (Fig. S1B).
The processed form has a size of 138 nt, and its computationally predicted secondary
structure, with an MFE of —67.10 kcal/mol and a Z score of —4.66, consists of three
hairpins. The last hairpin, the rho-independent terminator, is followed by a stretch of
five U residues.

Expression of ncS35. A search of the Rfam database did not result in any hits, so
no indication of the function of ncS35 could be obtained by sequence comparison. To
address that, ncS35 expression was tested under various growth and stress conditions.
Northern blot assays showed that the expression of ncS35 was significantly higher in
biofilms than in planktonic cultures (Fig. 2A). This was confirmed by quantitative
reverse transcription-PCR (qPCR) with two different primer pairs detecting the full-
length form or both forms, respectively (Fig. 2B; Fig. STA). The presence of a dominant
fragment with a size of approximately 140 nt and several less abundant fragments
indicated that processed ncS35 is the most abundant form. Expression of ncS35
appeared to be increased in the presence of SDS and in minimal medium M9.

Construction of AncS35. To further investigate the function of ncS35, a deletion
mutant, designated AncS35 was constructed. Whole-genome sequencing confirmed
the deletion of ncS35 from the genome, as 165 nt (positions 2304238 to 2304402 on
chromosome AM747721, spanning the entire locus of ncS35) were absent. Additionally,
15 nucleotide variants were detected in the deletion mutant (Data Set S1). Eight of
these were associated with a transposase missing from a pseudogene within a genomic
island, two were synonymous mutations, and three were nonsynonymous mutations:
Thr708Ala in BCAL1675 (amrB), which encodes a multidrug efflux system transporter
protein; Leu37Pro in BCAL3010 (spoT), which encodes a guanosine polyphosphate
pyrophosphohydrolase; and Thr40lle in BCAL3297, which encodes a ferritin-like DNA-
binding protein. The mutation in BCAL3297 is located within the catalytic domain; the
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FIG 2 Expression of ncS35. (A) Northern blot assays. At the upper left is a Northern blot assay of ncS35 in wild-type (WT) B. cenocepacia J2315. Expression was
evaluated in biofilms, stationary phase, and exponential phase. Responses to stress were evaluated in various media: LBB with 0.2% H,O, added 15 min prior
to harvesting, LBB supplemented with 0.005% (wt/vol) SDS (membrane stress), and M9 supplemented with either 10 mM glucose (M9gl) or 0.2% (wt/vol)
Casamino Acids (M9ca; lower nutrient availability). 55 RNA was used as a loading control. At the upper right is a Northern blot assay of the wild type and AncS35
(A) that confirms the deletion of ncS35 and the specificity of probe hybridization. The lower parts of panel A are 55 rRNA loading controls. Full-size images of
Northern blot assays are depicted in Fig. S6. (B) gPCR. Expression of ncS35 in B. cenocepacia J2315 was evaluated in exponential phase (Exp), stationary phase
(Stat), and biofilms (BF) for full-length ncS35 (blue bars) and for both species combined (red bars). The locations of the primer pairs used are depicted in Fig. S1A.
Fold changes were calculated relative to a cDNA standard (mixture of cDNA from all of the samples used in the experiment). Error bars represent standard
deviations. ncS35 expression was significantly higher in biofilms than under all other conditions (*, P < 0.05; n = 3).

mutation in BCAL3010 is not within the catalytic domain. The two remaining nucleotide
variants, located in intergenic regions, did not affect UTRs or promoter regions.

Phenotype of AncS35. The phenotype of the deletion mutant was investigated by
using planktonic cultures and biofilms. Complementation experiments were performed
with the wild type and AncS35 transformed with pM2 (vector control) and AncS35
transformed with pM2+ncS35, overexpressing full-size ncS35 from a rhamnose-
inducible promoter (complemented AncS35).

Confocal laser scanning microscopy revealed that AncS35 biofilm cells form larger
aggregates than wild-type biofilm cells (Fig. 3A). However, no significant differences in
biomass, metabolic activity, or the number of cultivable cells were observed (data not
shown). When grown planktonically, AncS35 cells precipitated faster than wild-type
cells (Fig. S2A). The wild-type phenotype was partially restored in the complemented
mutant (Fig. S2B).

Flow cytometry showed that AncS35 formed larger cellular aggregates with greater
granularity in both planktonic cultures and biofilm (Fig. 3B; Fig. S2C). Aggregate
formation of the complemented mutant was very similar to that of the wild type
(Fig. 3B).

AncS35 grew to a higher optical density (OD) than the wild type (Fig. 4A; Fig. S3A);
this phenotype could be complemented (Fig. 4A). The higher OD corresponded to a
higher number of cultivable cells (Fig. S3D). During exponential growth, the slopes of
the growth curves indicate that the AncS35 vector control and complemented AncS35
have a shorter doubling time (approximately 180 min) than the wild-type vector control
(approximately 270 min). In later growth stages, the growth rate of the complemented
mutant decreases to a greater extent than that of the mutant vector control. AncS35
colonies on agar plates appeared larger than wild-type colonies; also this phenotype
could be complemented (Fig. S3B).

Significantly higher metabolic activity (P < 0.05) was observed in planktonically
grown AncS35 cells than in wild-type cells or cells of the complemented mutant
(Fig. 4B; Fig. $30).
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FIG 3 Cell aggregation in biofilms and planktonic culture. (A) Confocal laser scanning images. Shown are z-stack
images of 24-h-old biofilms of the wild type (WT) and AncS35 after LIVE/DEAD staining. Scale bars, 50 um. (B) Flow
cytometry size/granularity plots of wild-type vector control (WT + pM2), AncS35 vector control (AncS35 + pM2),
and complemented AncS35 (AncS35 + pM2 + ncS35) biofilm cells grown in LBB with 0.2% rhamnose and Tp at
600 ug/ml. The x axis represents forward scatter (FSC) and indicates cell size. The y axis represents side scatter (SSC)
and shows cell granularity. Gate R10 represents all cells, and dots outside this gate are background fluorescence.

AncS35 had the same tobramycin MIC (256 ug/ml) as the wild type. However, a
lower OD of AncS35 was observed at concentrations near the MIC and partial comple-
mentation of this effect was possible (Fig. S4).

Differential gene expression in AncS35. Gene expression in the wild type and
AncS35 was quantified at different growth stages. In exponential phase, 364 genes
were differentially regulated; in stationary phase, 386 were differentially regulated; and
in biofilms, 1,676 were differentially regulated (Fig. S5 and Data Set S2). Fourteen genes
were commonly upregulated in AncS35 compared to the wild type under all three
conditions, and four genes were commonly downregulated.

Selected gene expression changes are listed in Table 1. In exponential phase, genes
involved in metabolic activity are differentially expressed, including genes that encode
proteins for carbohydrate and amino acid uptake and metabolism, respiration, and
ornibactin biosynthesis. Most upregulated in AncS35 is BCAMO0166, which encodes a
non-proton-pumping type Il NADH dehydrogenase. Several genes for cable pilus
biogenesis (BCAM2759, BCAM2762) are downregulated in AncS35. In stationary phase,
as in exponential phase, genes involved in metabolic activity are differentially ex-
pressed. The most upregulated genes in stationary phase belong to the phenylacetic
acid (PAA) degradation and tryptophan degradation pathways; these genes are also
upregulated, but to a lesser extent, in exponential phase (Fig. 5). Genes involved in
flagellar assembly (several loci) are also upregulated in stationary phase. Downregu-
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FIG 4 Complementation of growth and metabolic activity of planktonic cells. (A) Growth curve determined in LBB with
Tp at 600 pwg/ml and 0.2% rhamnose. Green line, wild-type vector control (WT + pM2); purple line, AncS35 vector control
(AncS35 + pM2); orange line, complemented AncS35 (AncS35 + pM2 + ncS35). (B) Suspensions of wild-type vector
control (WT + pM2), AncS35 vector control (AncS35 + pM2), and complemented AncS35 (AncS35 + pM2 + ncS35) cells
were normalized to an OD of 1.0 and mixed with CellTiter-Blue, and fluorescence was measured after 1 h. Error bars
represent standard deviations. Statistically significant differences are indicated by asterisks (P < 0.05; n = 3).

lated genes include those coding for the quorum sensing-regulated genes for zinc
metalloprotease (zmpA, BCAS0409), adhesin protein (bapA, BCAM2143), and lectin
(BCAMO0184 to BCAMO0186).

Gene expression in AncS35 biofilms is characterized by downregulation of the
expression of genes related to cell division, transcription, translation, and cable pilus
biogenesis (BCAM2759 to BCAM2762). Genes with the highest upregulation include
those that encode a low-oxygen-responsive regulator (BCAM0049), an alternative
NADH dehydrogenase (BCAMO0166), isocitrate lyase (BCAL2118), low-iron-responsive
regulators Fecl and FecR (BCAL1369 and BCAL1370), and certain chaperones and heat
shock proteins.

Computationally predicted targets of ncS35. To predict putative direct targets of
ncS35, we used CopraRNA, an algorithm that implements the accessibility of interaction
sites and conservation of targets. Interactions were predicted for a stretch of 200 nt
upstream to 100 nt downstream of the start codons of annotated genes and ranked
according to combined P values, derived from all orthologous genes for which inter-
actions were found. Of the consistently highest-ranking genes, 54 interactions were
located within a UTR or a CDS and retained in full-length ncS35; 52 were found in the
processed form, and 20 were found in both forms (Data Sets S3 and S4).

The predicted target with the lowest energy score and highest statistical significance
for both full-length and processed ncS35 is a gene that encodes an outer membrane
protein (BCAM2255), with the predicted interaction site located inside the CDS, over a
stretch of 40 nt. Other high-ranking predicted targets included genes that encode
regulatory proteins, membrane transporters, lipoproteins, cytochrome ¢ and other
electron transport-related proteins, flagellar proteins, and ribosomal proteins. Most
predicted interaction sites with P values of =0.01 were located inside the CDS of mRNA
targets (Data Sets S3 and S4).

Only two genes on the list of highest-ranking predicted targets for the processed
sRNA have altered expression in AncS35 (Fig. 6). BCAL0193, which encodes an exported
protein with an unknown function is upregulated in the mutant under all three
conditions. The second gene (BCAL2790) encodes an arylformamidase and is the first
gene in an operon containing genes for tryptophan degradation; it is upregulated in
the mutant in the exponential and stationary phases. In both cases, the predicted
interaction is directly adjacent to the TSS of the genes (Fig. 6A); in the case of
BCAL2790, the interaction site includes the start codon (Fig. 6B). Upregulation of
BCAL0O193 could be complemented by ncS35 expression in trans (Fig. 6D), while
expression of BCAL2790 was not affected by complementation. The predicted target
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TABLE 1 Selected gene expression changes in AncS35 compared to the wild type

mSphere’

Exponential Stationary
Function and gene phase phase Biofilm Annotation
PAA degradation pathway
BCAL0212 338 19.9 -a PAA degradation NADH oxidoreductase PaaE
BCAL0213 53 15.8 - PAA degradation protein PaaD
BCAL0214 6.0 29.0 - PAA degradation protein PaaC
BCAL0215 5.0 28.7 - PAA degradation protein PaaB
BCALO216 4.5 16.3 - PAA degradation protein PaaA
BCAL0406 4.5 2.7 - Probable enoyl-CoA® hydratase PaaG
BCAL0407 5.1 5.1 - B-Ketoadipyl-CoA thiolase
BCAL0408 4.5 9.0 1.9 PAA degradation oxidoreductase PaaZ
BCAM1711 54 12.5 - Phenylacetate-coenzyme A ligase PaaK
BCAM1712 6.4 6.1 - 3-Hydroxybutyryl-CoA dehydrogenase
Tryptophan degradation pathway
BCAL2790 2.0 14.0 - Kynurenine formamidase
BCAL2791 1.9 10.6 - Kynureninase
BCAL2792 - 123 —-35 Tryptophan 2,3-dioxygenase
Amino acid transport and
metabolism
BCAL1055 2.6 2.1 1.7 Histidine transport system permease protein
BCAL1059 23 - - Succinylornithine transaminase
BCAL1060 2.6 - - Arginine N-succinyltransferase
BCAL1064 23 - - Succinylglutamate desuccinylase
BCAL2933 4.0 —4.0 —24 D-Amino acid dehydrogenase
Carbohydrate transport and
metabolism
BCAL1548 2.2 —33 —22 Sugar ABC transport system
BCAL1549 24 —-3.0 - Sugar ABC transport system
BCAL1550 2.3 - - Sugar ABC transport system
BCAL1661 2.0 - - Ribokinase
BCAL3038 2.0 - - ABC-type glycerol-3-phosphate transport
BCAL3039 2.0 - - ABC-type glycerol-3-phosphate transport
Ornibactin biosynthesis
BCAL1696 23 - - Ornibactin biosynthesis protein
BCAL1697 2.8 - - Ornibactin biosynthesis protein
BCAL1698 2.5 - - Ornibactin biosynthesis protein
Respiration
BCAL2141 - 13.4 35 Cytochrome o ubiquinol oxidase protein
BCAL2142 - 11.8 2.8 Cytochrome o ubiquinol oxidase subunit IlI
BCAL2143 - 13.2 2.5 Ubiquinol oxidase polypeptide |
BCAM2674 - - 26.0 Cytochrome oxidase subunit |
BCAMO166 20.6 - 583 NADH dehydrogenase
BCAL3094 4.4 - 10.4 Oxygen-independent coproporphyrinogen Il oxidase
BCAL2118 23 - 473 Isocitrate lyase
BCAM1588 - - 1.5 Isocitrate lyase
Motility
BCAL3506 - 5.1 - Flagellar motor switch protein FliM
BCAL0140 - 4.6 - Flagellar biosynthetic protein FIhB
BCALO524 - 33 - Flagellar motor switch protein FliG
BCALO561 - 2.2 - Flagellar synthesis protein FIgN
BCAL1677 - 34 - Putative type 1 fimbrial protein
Surface protein
BCAL3154 4.9 - - Glycine-rich surface protein
Pilus biogenesis
BCAM2759 -2.0 - -3.1 Putative minor pilin and initiator
BCAM2760 - - —6.5 Putative outer membrane usher
BCAM2761 - - —43 Giant cable pilus
BCAM2762 —2.8 - —4.9 Giant cable pilus chaperone protein
BCAM2143 - -3.0 —22 Cable pilus-associated adhesion protein
(Continued on next page)
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https://www.ncbi.nlm.nih.gov/protein/BCAL1549
https://www.ncbi.nlm.nih.gov/protein/BCAL1550
https://www.ncbi.nlm.nih.gov/protein/BCAL1661
https://www.ncbi.nlm.nih.gov/protein/BCAL3038
https://www.ncbi.nlm.nih.gov/protein/BCAL3039
https://www.ncbi.nlm.nih.gov/protein/BCAL1696
https://www.ncbi.nlm.nih.gov/protein/BCAL1697
https://www.ncbi.nlm.nih.gov/protein/BCAL1698
https://www.ncbi.nlm.nih.gov/protein/BCAL2141
https://www.ncbi.nlm.nih.gov/protein/BCAL2142
https://www.ncbi.nlm.nih.gov/protein/BCAL2143
https://www.ncbi.nlm.nih.gov/protein/BCAM2674
https://www.ncbi.nlm.nih.gov/protein/BCAM0166
https://www.ncbi.nlm.nih.gov/protein/BCAL3094
https://www.ncbi.nlm.nih.gov/protein/BCAL2118
https://www.ncbi.nlm.nih.gov/protein/BCAM1588
https://www.ncbi.nlm.nih.gov/protein/BCAL3506
https://www.ncbi.nlm.nih.gov/protein/BCAL0140
https://www.ncbi.nlm.nih.gov/protein/BCAL0524
https://www.ncbi.nlm.nih.gov/protein/BCAL0561
https://www.ncbi.nlm.nih.gov/protein/BCAL1677
https://www.ncbi.nlm.nih.gov/protein/BCAL3154
https://www.ncbi.nlm.nih.gov/protein/BCAM2759
https://www.ncbi.nlm.nih.gov/protein/BCAM2760
https://www.ncbi.nlm.nih.gov/protein/BCAM2761
https://www.ncbi.nlm.nih.gov/protein/BCAM2762
https://www.ncbi.nlm.nih.gov/protein/BCAM2143
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TABLE 1 (Continued)

Exponential Stationary
Function and gene phase phase Biofilm Annotation
BCAL1528 - -3.0 —32 Flp-type pilus assembly protein
BCAL1530 - -3.0 —5.1 Flp-type pilus assembly protein
BCAL1531 - - —-53 Flp-type pilus assembly protein
BCAL1532 - - —4.1 Flp-type pilus assembly protein
Quorum sensing-regulated genes
BCAS0409 - —54 -9.0 Zinc metalloprotease ZmpA
BCAM2143 - -3.0 —2.2 Cable pilus-associated adhesin protein
BCAMO184 - —6.4 —5.1 Lectin
BCAMO185 - —4.7 —3.6 Lectin
BCAMO186 - —6.1 —=5.1 Lectin
Stress response
BCAL1233 - - 10.8 Heat shock protein Hsp20-related protein
BCAL1919 - - 8.0 ClpB heat shock protein
BCAL2119 - - 9.8 Universal stress protein family member
BCAL1234 - 2.6 12.0 Heat shock protein
Other genes, regulated under all
three conditions
BCAL0193 1.9 24 2.0 Exported protein
BCAL2206 -2.0 —4.8 —6.2 Phasin-like protein
BCAM1775 23 2.0 2.5 Transglycosylase-associated protein
BCAM2390 -1.9 —4.9 —52 Sarcosine oxidase delta subunit

a—, no significant >1.5-fold changes.
bCoA, coenzyme A.

with the lowest energy score and the highest statistical significance (BCAM2255) did
not change expression significantly.

DISCUSSION

In the present study, ncS35, a novel sRNA of B. cenocepacia J2315, is described. Its
predicted secondary structure is thermodynamically favorable, with stable stem-loops
and a negative Z score for MFE. Known regulatory sSRNAs of other bacterial species tend
to have a low Z score, which serves as an indicator of their structural significance (16),
as it confirms that the actual RNA sequence has a significantly lower MFE than
sequences with the same length and nucleotide composition. The negative Z score of
ncS35 therefore indicates that ncS35 has a function in B. cenocepacia J2315. The
processed form of ncS35 is more abundant and conserved in more distantly related
Burkholderia species than full-length ncS35 is; this suggests that the processed form is
the functional RNA species.

Construction of an ncS35 deletion mutant was possible, and its viability was not
affected, showing that ncS35 is nonessential under laboratory conditions. However, the
mutant had additional mutations, notably, nonsilent point mutations in three genes.
The method used for mutant construction (17) includes repeated selection steps where
single colonies are further propagated after having grown for 3 days on agar containing
large amounts of antibiotics. Mutations could have arisen at random but could also
have been selected for by the growth conditions. The mutation in an efflux pump
points toward selection by antibiotics. The mutation in spoT could reduce its guanosine
pentaphosphate (ppGpp)-hydrolyzing activity, resulting in higher levels of ppGpp,
which is beneficial for survival in the presence of trimethoprim (Tp) (18). On the other
hand, a mutation in spoT could also represent a suppressor mutation, partially coun-
teracting the growth rate-increasing effect of ncS35 deletion.

Because of the additional mutations, complementation by overexpression of ncS35
in trans in the mutant was required to link phenotypic changes to the deletion of ncS35.
All major phenotypic changes could be complemented, i.e., the attenuating effect of
ncS35 on growth, metabolic activity, cell aggregation, and susceptibility to tobramycin.
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FIG 5 Volcano plot of gene expression data obtained by RNA sequencing. x axis: log, of the fold
difference between AncS35 and the wild type in the exponential and stationary phases. y axis: —log,, of
the P value. Green dots represent genes involved in PAA degradation, and orange dots represent genes
involved in tryptophan degradation. The black dot is BCAL0O193, and the yellow dot is BCAL2790, two
genes identified as putative targets of ncS35 by CopraRNA.

sRNAs that attenuate growth have been described in Escherichia coli (Spot 42) (19)
and Bacillus subtilis (RnaC) (20). Expression of Spot 42 is negatively regulated by cAMP
and increases in media containing glucose. Spot 42 has a role in central carbon
metabolism, and mutants overexpressing Spot 42 show a small-colony phenotype (21).
RnaC is involved in regulation of the growth rate and entry into stationary phase in
B. subtilis. The impact of ncS35 on the growth of B. cenocepacia could be similar to that
of Spot 42 and RnaC, despite the lack of sequence similarity. The increased expression
of ncS35 in minimal medium, particularly in the presence of glucose, suggests a
possible role for cAMP in its regulation. sSRNAs that affect aggregate formation also have
been described (22), albeit in most cases as positive regulators of aggregate formation,
in contrast to the negative regulation observed in the present study.

The lower OD of the mutant observed at tobramycin levels near the MIC could be
an indirect effect of the higher growth rate and higher metabolic activity of AncS35.
Faster growing cells could be more susceptible to antibiotics, in particular to those that
inhibit translation, such as tobramycin (23, 24). Moreover, uptake of aminoglycosides is
proton motive force dependent (25) and could therefore be stimulated by a higher
respiration rate.

To identify the mechanism by which ncS35 attenuates growth and causes cell
aggregation, RNA-seq and computational target prediction were performed with the
aim of finding differentially expressed genes that also have a high probability of being
directly targeted by ncS35. sRNA binding can directly affect mRNA stability, as SRNA-
mRNA duplexes can trigger cleaving by RNases or occlude a cleaving site (26). Binding
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FIG 6 Locations of interaction sites for computationally predicted targets upregulated in AncS35. In blue is the interaction site for BCAL0193. In yellow is the
interaction site for BCAL2790. (A) Locations of genes and TSS. Interaction sites of ncS35 on these targets are depicted as circles. (B) Interaction between ncS35
and mRNA. In pink is the start codon. (C) Secondary structure of processed ncS35 with computationally predicted interaction sites highlighted. (D) Fold change
in expression when ncS35 is expressed in trans in the AncS35 mutant in the exponential phase. BCAL0193 (left) is downregulated, and BCAL2790 (right)
expression does not change. A statistically significant difference is indicated by the asterisk (P < 0.05; n = 3).

to a 5" UTR can affect translation initiation, which can indirectly affect mRNA degra-
dation via changes in ribosome binding to mRNA. Ribosome binding provides protec-
tion against RNases, and hence, when binding is attenuated, the mRNA degradation
rate increases (26), and these changes can be detected by RNA-seq. Most experimen-
tally confirmed interactions between sRNAs and mRNA lead to repression of gene
expression (26), resulting in upregulation of target gene expression in a deletion
mutant.

Among the highest ranking computationally predicted interactions, only two genes
change expression on the mRNA level; both are upregulated. The predicted interaction
sites for BCAL0193 and BCAL2790 are located within the 5" UTR of the respective genes
and near their TSS, as determined by dRNA-seq (8). The interaction site for BCAL2790
overlaps the start codon, while the interaction site for BCAL0193 overlaps a potential
alternative start codon, GTG, that is in frame with the annotated gene. In both cases, it
is possible that sRNA binding affects translation. Changes in mRNA abundance would
therefore be caused indirectly by increased degradation of the untranslated mRNA.
Only upregulation of BCALO193 could be complemented when ncS35 was expressed in
trans. One reason for that could be that upregulation of BCAL2790 is not directly linked
to ncS35 and the presence of this gene among the highest ranking predicted targets
is due to a false-positive prediction. Another possible reason is that the conditions
under which ncS35 exerts its effect on BCAL2790 were not met in the complementation
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experiment. The effect of ncS35 is growth stage dependent, exemplified by the little
overlap in genes changing expression in the mutant under the three conditions. During
complementation, Tp and rhamnose were added to the medium, and BCAL2790 was
not expressed in stationary phase in the mutant, in contrast to the RNA-seq experiment.

Either computationally predicted targets not changing expression in our analysis are
false positives, or the conditions and method of analysis selected were not suitable to
detect any interaction. Targeted genes could change expression solely on the post-
transcriptional level, or proteins could be targeted directly without a requirement for
interaction with mRNA (27). On the other hand, the strategy selected for computational
prediction could be unsuitable to point out direct targets of ncS35, if true interactions
were not among the highest ranking ones.

Several gene expression changes observed for the deletion mutant in planktonic
exponential- and stationary-phase cultures point toward greater metabolic flux, which
can account for the higher growth rate, as well as for the higher metabolic activity. The
uptake and metabolism of numerous organic compounds are upregulated. The in-
creased expression of tryptophan degradation could indirectly cause the upregulation
of the PAA degradation (PAA) pathway in the exponential and stationary phases. These
genes are among those with the highest fold upregulation in the mutant. An aromatic
compound that is assumed to induce the PAA degradation pathway is hydroxyanthra-
nilic acid, an intermediate in the degradation of tryptophan in Burkholderia spp. (28, 29).
Tryptophan degradation and PAA degradation could therefore be linked. Upregulation
of PAA degradation can also occur by a decrease in PaaR expression, a decrease in the
intracellular glucose concentration, or an increase in the levels of aromatic precursors
(29, 30), but no indication was found that ncS35 directly regulates PaaR or glucose
metabolism. Interestingly, in E. coli, a confirmed target for Spot 42 is paaK (19), which
is involved in PAA degradation. However, direct targeting of these pathways by ncS35
could not be confirmed.

The higher metabolic flux can, in turn, indirectly cause the upregulation of non-
proton-translocating type Il NADH dehydrogenase and the glyoxylate shunt. The use of
the alternative NADH dehydrogenase can contribute to the maintenance of NAD*/
NADH balance at high metabolic rates (31). Additionally, the use of a non-proton-
translocating NADH dehydrogenase and the glyoxylate shunt can reduce the produc-
tion of reactive oxygen species during aerobic growth and thus protect the cell from
damage (31, 32).

Higher values for AncS35 in the CellTiter-Blue assay indicate that levels of NADH are
increased in the mutant. This assay measures the reduction of resazurin to fluorescent
resofurin by NADH inside the cytoplasm. It is usually used as a proxy test to determine
the number of viable cells in, e.g., a biofilm (33). However, in this case, the cell numbers
at the point of measurement were normalized to a fixed OD. The increased reduction
of resazurin in the mutant cell suspension is therefore more likely to be due to the
increased availability of NADH for resazurin reduction than to higher cell numbers.
Reduction of the NADH levels in the cell by using type Il NADH dehydrogenase and the
glyoxylate shunt could be beneficial for the maintenance of metabolic flux.

The increased aggregation of AncS35 observed could be linked to several changes
in gene expression, i.e., upregulation of flagellar genes (several loci), a fimbrial protein
gene (BCAL1677), and/or a glycine-rich surface protein gene (BCAL3154). Changes in
the expression of genes involved in cable pilus biogenesis (downregulated in expo-
nential phase and in biofilms) could also be responsible for this increased aggregation,
as in a study on B. cenocepacia J2315 mutants disrupted in cable pilus biogenesis, more
autoaggregation and a higher precipitation rate than for wild-type cells were observed
(34).

MATERIALS AND METHODS

Bacterial strains, plasmids, and culture conditions. The bacterial strains and plasmids used in this
study are listed in Table 2. Bacteria were maintained on Luria-Bertani agar (LBA; Oxoid) at 37°C, and liquid
overnight (O/N) cultures were grown in Luria-Bertani broth (LBB; Oxoid) at 37°C with orbital agitation
(150 rpm). Where appropriate, the following antibiotics were added for plasmid selection: ampicillin
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TABLE 2 Bacterial strains and plasmids used in this study

Strain or plasmid Description Reference or source
B. cenocepacia
J2315 (LMG 16656) CF sputum isolate BCCM/LMG collection
AncS35 SRNA ncS35 deletion mutant This study
E. coli
DH5« Maintenance of replicative plasmids Lab stock
DH5a Apir Maintenance of suicide plasmids with origex Biomedal, Seville, Spain
JM109 Cloning of PCR products Promega, Leiden, The Netherlands
Plasmids
pGEM Parental vector for cloning of PCR products, oriyc, orig;, Amp* Promega
pRK2013 Helper plasmid, ori_.g, Km* 46
pGPI-Scel-XCm Suicide plasmid, orige, I-Scel restriction site, Tp™ Cm” 38
pDAI-Scel-SacB Broad-host-range replicative plasmid, ori,gg;, I-Scel nuclease, 38
counterselectable marker SacB, Tet"
pSCrhaB2 Expression vector containing a rhamnose-inducible promoter, 39
Ofinggrys rhaR, rhaS-P,,.q, Tp"
pM2 pSCrhaB2 lacking Shine-Dalgarno sequence and start codon This study
pM2+ncS35 pSCrhaM2 overexpressing sSRNA ncS35 This study

(Sigma-Aldrich), chloramphenicol (Sigma-Aldrich), gentamicin (Sigma-Aldrich), kanamycin (Sigma-
Aldrich), Tp (Ludeco), and tetracycline (Sigma-Aldrich). Overexpression mutants were grown in LBB
supplemented with Tp at 600 ng/ml and 0.2% (wt/vol) rhamnose. M9 medium was used as a minimal
medium. B. cenocepacia J2315 is auxotrophic for phenylalanine; therefore, in the absence of a source of
amino acids, 0.5 mM phenylalanine was added.

Planktonic cultures were grown at 37°C with orbital agitation (150 rpm). For the exponential phase,
cells were harvested at an OD of 0.5 (5 X 108 CFU/ml); for the stationary phase, cells were harvested at
an OD of 2.0 (2 X 10° CFU/ml). Biofilms were cultivated in microtiter plates (35). To harvest biofilm cells,
biofilms grown for 24 h were rinsed with physiological saline (PS). To detach the cells, 100 ul of PS was
added to each well and the plate was sonicated at 40 kHz and shaken at 900 rpm for 5 min. Cells from
two cycles of shaking and sonication were pooled and collected in one tube.

Biofilm analysis. Biomass was quantified by using a crystal violet assay, CFU counts were determined
by plating, and cell viability was determined by a resazurin-based assay as described by Peeters et al. (33).
For confocal laser scanning microscopy, biofilms were grown in a 96-well plate with a glass bottom
(Greiner Bio-One), stained with a LIVE/DEAD solution (0.3% SYTO 9 and propidium iodide in PS; Life
Technologies) for 15 min, and visualized with a motorized Nikon TE2000-E inverted microscope (Nikon
Benelux) (36).

Growth and metabolic activity. Growth curves were measured in LBB medium. A 5 X 105-CFU/ml
inoculum was added at 200 ul/well to a round-bottom 96-well plate, and the absorbance at 590 nm was
measured for 60 h in a microplate reader (Envision; PerkinElmer). CFU counts were determined by
plating. Cells were grown as described for growth curves, and triplicate samples were taken after 40 h
of incubation. For every sample, the content of six wells was pooled in a microcentrifuge tube and
subjected to two rounds of sonication for 5 min, followed by vortexing for 1 min. Duplicate dilution series
of each sample were prepared. To assess the sedimentation rate, planktonic cultures normalized to an
OD of 1.0 were left undisturbed and representative pictures were taken. To measure metabolic activity,
planktonic cultures normalized to an OD of 1.0 were centrifuged and resuspended in 100 ul of PS with
20 pl of CellTiter-Blue (Promega) solution. After incubation for 1 h at 37°C, fluorescence was determined
(excitation wavelength, 560 nm; emission wavelength, 590 nm).

Determination of susceptibility to tobramycin. The MIC of tobramycin (TCl Europe) was deter-
mined in accordance with EUCAST guidelines by using flat-bottom 96-well plates. Growth was evaluated
after 24 and 48 h of incubation at 37°C by measuring absorbance at 590 nm. The MIC was the lowest
concentration at which no difference in absorbance from that of uninoculated medium was measured.

Flow cytometry. Cell size and granularity of planktonic cultures and biofilms were measured with an
Attune Nxt flow cytometer and autosampler from Invitrogen with the Attune Nxt software, version 5.2
(Thermo Fisher). Planktonic cultures were investigated by using a suspension with an OD of 0.1 (1 X
107 CFU/ml). For biofilms, cells were grown and detached as described before. All media and solutions
were filter sterilized before use (Puradisc FP30; Whatman). Cells were collected in a round-bottom 96-well
plate and quantified with excitation at 488 nm with a blue laser and appropriate filters.

DNA extraction. Genomic DNA was isolated after mechanical disruption with glass beads by a
modified bead-beater protocol (37).

Construction of mutants. A deletion mutant, AncS35, was constructed by allelic recombination (17,
38). The primers used for amplification of flanking regions are listed in Table 3. Correct insertions were
confirmed by Sanger sequencing.

For complementation experiments, an RNA expression plasmid, pSCrhaM2, was constructed from
pSCrhaB2 (39) by removing its Shine-Dalgarno sequence and start codon by inverse PCR with M2 primers
(Table 3). DNA was amplified with the LongRange PCR kit (Qiagen) with plasmid pSCrhaB2 as the
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TABLE 3 Primers and probes used in this study

Purpose and primer or probe Oligonucleotide sequence (5'-3')@

Construction of deletion mutant
Upstream flanking sequence

UM2068-F TATGAATTCTGATCGCCGACCCGAC

UM2068-R AAAGCTAGCCCGTGTGGATGTTCGC
Downstream flanking sequence

DM2069-F TAAGCTAGCCGAAACGCATCTGTCAACC

DM2069-R TATAGATCTCCAGTCGTCGATCTGCACC

Confirmation of deletion

ncS35join-F CACATACATTCGCGGCAACT

ncS35join-R CGAGCATCTTGTAGCGCATC
Construction of modified plasmid pSCrhaM2

M2-F TTACTAGTAAGGTACCCGGGGATCCTCTAGAGT

M2-R ATTACGACCAGTCTAAAAAGCGCCTG
Construction of overexpression mutant

ncS35ov-F ATACTAGTATGGCGCGACGACAAGTG

ncS350v-R TTTAAGCTTGCCGCGACATGACCTGT
Northern blotting probes

ncS35-DIG DIG-TTGAGAGTCCCGGATTC

5S RNA-DIG DIG-AGAGTCGTTTCACGGTC

RACE and gPCR

ncS35-FA GACAAGTGCGCGCAACGA
ncS35-FB ACATATGTCCATGGCACGCAG
ncS35-RB CTGCGTGCCATGGACATATGT
ncS35-RC TGGATGTTCGCTCAGGGCTC
LO193F GAAGACGCTCGCTTCGATCA
LO193R TCGGCTTGCTGTGATCCTTC
L2790F CGACTCACGCTTCGTCATGC
L2790R GGCCTCCATCCGCCATACG
Control genes
BCAMO0918F RpoD GAGATGAGCACCGATCACAC
BCAM0918R CCTTCGAGGAACGACTTCAG
BCALO026F ParA TATGAAGTGCTGGTCGATGG
BCAL0026R TCAGCACGAAATCGTAGTCG
BCALO813F RpoN AGCTCAATCCGGAAGTCGTG
BCALO813R AGCTGCTGTTTCAGCGATCC
BCAL2367F ACCATTTCCGCAACAAGGAC
BCAL2367R TGAAATCGGCCATGTACTGC
BCAL0972F TCTCGAAGGTCTGGCACGAG
BCAL0972R CGTGATGTCGTGCTTCATCG
BCAL1895F SurE CAGCGGGTACGGGTTTCTTC
BCAL1895R GTTCTGGCCGTTGTTGATGC
BCAL2553F TGATCTGGGTGGTCAAGCTG
BCAL2553R TGCAGGTCAAAATCGTCGTC
BCAS0059F TraD ATGCGGAATTCCAACAGGAG
BCAS0059R GCCCTTGCTCGAATAGTTGG

aDIG, digoxigenin. Restriction sites are in bold type.

template. The PCR product was blunted with T4 DNA polymerase and self-ligated. The absence of the
Shine-Dalgarno sequence and start codon, as well as the integrity of the multiple cloning site, was
confirmed by Sanger sequencing. SRNA ncS35 was cloned into pSCrhaM2 with ncS350v primers (Table 3).
Plasmids were transformed into AncS35 by triparental mating. The wild-type and AncS35 strains
transformed with empty pSCrhaM2 were used as a vector control. All of the media used for mutant
propagation and experiments contained Tp at 600 wg/ml. Rhamnose was added, when required, to a
final concentration of 0.2% (wt/vol).

DNA sequencing. Both the wild type and AncS35 were sequenced. An lllumina paired-end library
was generated from 1 ug of genomic DNA. The DNA was fragmented to 200 bp by Covaris S2 sonication
(duty cycle, 10%; intensity, 5; number of cycles per burst, 200; treatment time, 180 s), and a sequence
library was made for each sample with the TruSeq DNA PCR free library preparation kit (Illumina). The
library was sequenced on an Illumina NextSeq 500, generating 75-bp single reads.

Sequencing reads from the wild type and AncS35 were mapped to the B. cenocepacia J2315
reference sequence (6) with CLC Genomics Workbench by using a 50% length fraction cutoff and an 80%
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similarity cutoff. The CLC Genomics Workbench Basic Variant Detection tool was used to detect single
nucleotide polymorphisms, and the Indels and Structural Variants tool was used to detect genome
insertions and deletions. Variations of the reference sequence that were present in more than half of the
reads in AncS35 but not in the wild type were reported.

RNA extraction. RNA was extracted as described by Sass et al. (7).

RACE. 5’ RACE and 3' RACE with biofilm RNA were performed as described by Sass et al. (7). The
gene-specific primers used are listed in Table 3.

qPCR analysis. Total RNA was treated with DNase a second time for 60 min, purified with
phenol-chloroform (Roti-Aqua-P/C/I; Carl Roth), and precipitated O/N at —20°C with ethanol-sodium
acetate (30:1 ratio of ethanol to 3 M sodium acetate, pH 6.5). After centrifugation and washing with 70%
ethanol, the RNA pellet was air dried and redissolved in water.

gPCR of three biological replicates was performed as described by Sass et al. (7). The primer pairs
used were ncS35-FA with ncS35-RC (detecting full-length ncS35) and ncS35-FB with ncS35-RC (detecting
both forms) (Table 3; Fig. S1A). Data were normalized to eight control genes, moderately expressed
genes that did not change expression in a microarray reference data set (Table 3) (40). The final fold
changes were calculated relative to a cDNA standard, a mixture of cDNA of all of the samples under all
of the conditions tested. Normality of distribution was tested with a Kolmogorov-Smirnov test, and
changes in expression were analyzed by one-way analysis of variance (ANOVA) with a Tukey post hoc test
by using SPSS, Inc., Statistics v. 24 (IBM) on log-transformed fold changes.

Northern blot assays. Northern blotting was performed as described by Sass et al. (7). Three
biological replicates were blotted, and representative images are shown.

RNA sequencing and data analysis. For each condition, three biological replicates were sequenced.
RNA concentrations were measured with the Quant-iT RiboGreen RNA assay (Life Technologies, Inc.), and
RNA quality was assessed by capillary electrophoresis with the RNA 6000 Pico Chip (Agilent Technolo-
gies). A 2-ug sample of RNA was depleted of rRNA with the Ribo-Zero rRNA Removal kit for Gram-
negative bacteria (Illumina). Library preparation was performed in accordance with the TruSeq Stranded
Total RNA Library Preparation protocol (lllumina). Libraries were quantified by qPCR in accordance with
the lllumina Sequencing Library gPCR Quantification protocol guide, version February 2011. Library size
distribution and quality were checked on a DNA 1000 chip (Agilent Technologies). Sequencing was
performed with a high-throughput Illumina NextSeq 500 flow cell generating 75-bp single reads.

Reads were mapped to the B. cenocepacia LMG 16656 reference genome (6) with a 95% similarity
cutoff by using CLC Genomics Workbench version 8.5.1 (Qiagen). Statistical analyses were performed
with EDGE (Estimated Degree of Gene Expression). Genes were reported as significantly differentially
expressed when the P value was <0.05 and there was a change of =1.5-fold.

Computational sequence analyses. BLASTn (41) was used to search for sSRNA homologues with the
following input parameters: a word size of 7, match/mismatch scores of 1/—1, a gap existence cost of —0,
and a gap extension cost of 2. The cutoff was 65% for query coverage and 60% for sequence similarity.
Thirteen Bcc strains whose genomes have been sequenced and nine non-Bcc strains were included in the
BLASTn search. ncS35 was compared to the Rfam database (42) to find homologues with known
functions. The Mfold web server was used to predict secondary structure by using standard parameters
(43). Z scores for MFE were calculated by using 500 randomly mononucleotide-shuffled sequences (CLC
Genomics Workbench v. 8.5.1). The Z score is the number of standard deviations (o) by which the MFE
of the actual sequence (x) deviates from the mean MFE (u) of shuffled sequences, i.e., (x — w)/o.

Computational target prediction. Putative targets of ncS35 were predicted with CopraRNA (Com-
parative Prediction Algorithm for sRNA Targets) (44). The underlying IntaRNA parameters for implemen-
tation of the CopraRNA algorithm are a seed length of 7, a target folding window size of 150, and a
maximum base pair distance of 100 (45). Interactions were predicted for a window of 200 nt upstream
to 100 nt downstream of the start codon because most experimentally verified sSRNA-target interactions
are found in this region (44). Eight Bcc strains whose genomes have been sequenced were used as the
input (B. cenocepacia 12315, AU1054, MCO-3, and HI2424; B. lata 383; B. vietnamiensis G4; B. multivorans
ATCC 17616; and B. ambifaria AMMD). Using rather closely related strains has the advantage of including
all of the essential and otherwise widely occurring genes while at the same time eliminating genes
located in regions of difference and in genomic islands, which make up 21% of the B. cenocepacia J2315
genome (6). The output was a comprehensive list of 5,702 possible interactions present in at least 50%
of the input strains, ranked by interaction P value. Only the 100 highest ranking interactions with the
smallest P values were further analyzed because benchmark data sets showed that true interactions can
usually be found among the top 100 ranked ones (44). Limited accessibility within the ncS35 secondary
structure meant that the predicted interactions are generally rather short, on average, only 10 nt long.
Moreover, the accessible sequences have a high GC content that is equal to the background. Because of
these properties, most interactions of ncS35 with putative target genes are assigned a high P value and
therefore a uniformly high false-discovery rate because of the high likelihood that the interaction
sequence is present in the putative target by pure chance. The ranking of a certain interaction, therefore,
depended rather heavily on the calculated phylogenetic tree because the P values used for ranking of
results are combined from all conserved interactions, weighted on the basis of phylogenetic distance.
Phylogenetic trees can vary; therefore, the analysis was repeated five times and only interactions
occurring among the 100 highest ranking ones on all five lists of results were retained. Predicted
interactions that fell outside the 5" UTRs of putative targets were discarded.

Statistics. Each experiment included at least three biological replicates, and representative images
were taken. Results were checked for normality. For normally distributed data, an independent-sample
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t test or ANOVA was performed; data not normally distributed were analyzed with a Mann-Whitney or
a Kruskal-Wallis test. Differences were considered significant when the P value was <0.05.

Accession number(s). The raw RNA-seq data obtained in this study were submitted to ArrayExpress
under accession number E-MTAB-5526.
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