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ABSTRACT: A topological pharmacophore (TP) is a chemical graph-based pharmaco-
phore representation, where nodes are pharmacophoric features (PF) and edges are
topological distances between PFs. Previously proposed sparse pharmacophore graphs
(SPhGs) for TPs were shown to be effective in identifying structurally different active
compounds while maintaining the interpretability of the graphs. However, one limitation of
using SPhGs as queries is that many structurally similar SPhGs can be identified from a set
of active compounds, requiring the classification and visualization of SPhGs, followed by an
understanding of the pharmacophore hypotheses. In this study, we propose a scheme for
SPhG analysis based on dimensionality reduction techniques with the graph edit distance
(GED) metric. This metric enables measuring similarities among SPhGs in a quantitative
manner. The visualization of SPhGs, which themselves are the graphs shared by active
compounds, can help us understand the pharmacophore hypotheses as well as the data set.
As a proof-of-concept study, we generated two-dimensional SPhG-maps using three
dimensionality reduction techniques for six biological targets. A comparison with other pharmacophore representations was also
conducted. We demonstrated knowledge extraction (interpretation of the data set) from the generated maps. Our findings include a
suitable mapping algorithm as well as a pharmacophore hypothesis analysis procedure using an SPhG-map.

■ INTRODUCTION
A ligand-based pharmacophore is the geometrical arrangement
of chemical features in a ligand molecule responsible for
molecular interactions against the target macromolecule.1

Pharmacophoric features (PFs) consist of single atoms or
sets of atoms based on interaction types, such as hydrogen
bonding and lipophilic interactions. Because a pharmacophore
can be regarded as an interaction hypothesis, it can be used as
a query for screening chemical libraries.2−7

Topological pharmacophore models, coined by Schneider et
al., employ chemical graph paths as the distance function
among PFs.8,9 On a chemical graph, nodes and edges
correspond to atoms and covalent bonds, respectively.8,9 The
distance between PFs is simply the number of covalent bonds
on the path, ignoring bond lengths and types. The distances
were proposed as “separation” by Smith et al.10 In contrast to
geometry-based pharmacophores, for which plausible con-
formations are necessary,11−13 topological pharmacophores are
rigorous and at the same time provide less information on
three-dimensional molecular coordinates. They are also less
computationally demanding and can be applied to large-scale
data sets. Sophisticated multidimensional molecular descrip-
tors embodying this representation have been successfully
utilized for identifying novel hit compounds in prospective
virtual screening campaigns.9,14

Graph representations of the topological pharmacophores,
termed pharmacophore graphs (PhGs),8,9 have been demon-
strated to classify a large-scale data set of BCR-ABL tyrosine

kinase.15 A PhG is a complete graph with PFs as nodes and
their topological distances on edges. Sharing of PhGs with a
number of active compounds becomes the interaction
hypothesis against the target macromolecule. In a series of
retrospective validation studies, we found that the PhGs
extracted from a compound set containing many unique
scaffolds became useful queries for identifying structurally
different active compounds from the training compounds.16 In
other words, the PhGs shared by diverse active compounds can
be useful for scaffold hopping (SH).8,9,17−19 SH requires a
method to capture the functional similarity with a focus on the
interaction and freedom from scaffold-based or structural
similarity.8,9

One drawback of PhGs is the lack of interpretability.
Complete graphs are hard to interpret because all of the nodes
(PFs) are connected to the rest of the nodes. Translating PhGs
to the corresponding chemical graphs is not straightforward. In
this respect, reduced-graph forms with a small number of edges
are preferable. In our previous study, a sparse form of PhGs,
termed sparse PhGs (SPhGs), was proposed. We also showed
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that SPhGs had much fewer edges (close to tree structure)
than PhGs, while they were slightly inferior to the PhGs in
terms of screening performances.20 One major difference
between SPhGs and other reduced graphs21−23 in addition to
extraction algorithms is that SPhGs are shared graphs found in
multiple active compounds, meaning each SPhG manifests a
pharmacophore hypothesis. However, one limitation of a set of
SPhGs as pharmacophore hypotheses is that there exist a large
number of similar SPhGs for a set of active compounds. The
classification and visualization of SPhGs are necessary for
understating the data set.
A set of PhGs can be visualized as a network where nodes

are PhGs and edges are the parent−child relation of PhGs.15 A
child PhG is created by adding a PF to the parent PhG. This
type of connection is effective for visualizing a course of PhG
development. However, no connection is detected between
PhGs with the same number of PFs and slightly different edge
distances. Like compound visualization in the field of
chemography,24 a proper similarity measurement (metric) is
necessary for understanding a set of PhGs by visual inspection.
In this study, we propose to visualize SPhGs using the graph

edit distance (GED) to understand topological pharmacophore
relations in a set of active compounds by clustering analysis.
GED was previously employed to quantitatively compare
reduced graphs for similarity searching.25 In the previous study,
reduced graphs were generated to compare the corresponding
compounds: each reduced graph corresponds to a single
compound. However, we focus on the visualization of SPhGs,
which themselves are common features among active
compounds, and visualizing them leads to understanding the
relations of the pharmacophore hypotheses. Active compounds
against six target macromolecules were analyzed with the
proposed methods and the extracted features, and interpret-
ability is discussed.
Python scripts for creating SPhGs from a set of compounds

and clustering, including outputs for the six targets in this
study, are available in the open access repository: github.com/
n-hiroshi/sphg2.

■ MATERIALS AND METHODS

Compound Data Sets. Active compounds for six
biological targets were extracted from the ChEMBL database
(version 24).26 The number of highly potent compounds for
each data set is listed in Table 1, along with the abbreviation
and the CHEMBL ID. The selected targets were Thrombin
(Thr.), Tyrosine kinase ABL1 (ABL1), κ-opioid receptor
(Kop.), PI3-kinase p100-α subunit (PI3), G protein-coupled

receptor 44 (GPCR44), and transmembrane protease serine 6
(TPS6) on the basis of protein family types. Active compounds
with more than or equal to 6.0 in terms of pKi were regarded as
highly potent, except for TPS6, whose potency threshold was
lowered to 5.0 due to the limited number of eligible
compounds (only three if 6.0 was employed). ChEMBL
records with a confidence score of 9 were only processed.
When multiple pKi values were available for a single
compound, the arithmetic mean was calculated to yield its
final potency value as long as all of the values fell into the same
order of magnitude; otherwise, the compound was discarded.
Compounds with molecular weights between 200 and 600
were used for subsequent analyses to reduce computational
burden and to remove compounds with extreme properties. All
of the highly potent compounds for the six targets are provided
as SMILES with curated pKi values in the open access
repository github.com/n-hiroshi/sphg2. For TPS6, highly
potent active compounds with pKi values are visualized in
Figure 1.

TP Representations. Three representations for topological
pharmacophores were tested: conventional pharmacophore
fingerprints (PhFP),27 molecular sparse pharmacophore graphs
(Mol-SPhGs), and sparse pharmacophore graphs (SPhGs).20

PhFP is a bit vector, and the other representations are graphs.
The three representations are illustrated in Figure 2.

PFs. A PF is a chemical feature of a ligand molecule that
characterizes an interaction between the ligand and the target
macromolecule. Such interactions include hydrogen bonding
and electrostatic interactions. Consequently, hydrogen bond
donor (HBD), hydrogen bond acceptor (HBA), aromatic
rings, and positive/negative ionizable groups are frequently
used as PFs. In this study, we employed the RDKit
implementation described under the file name of “Base-
Features.fdef” to identify atoms or groups of atoms matching
PFs.27,28

PhFPs. A PhFP is a set of combinations of PFs with the
topological distances among them.27 Each combination
represents the pharmacophore pattern containing a fixed
number of PFs and the distances among them, forming a bit in
the fingerprint vector (Figure 2b). In a bin, a range of distance
instead of an exact distance takes bond length ambiguity into
account. For avoiding combinatorial explosion and too sparse
bit vectors, the number of PFs is usually limited to 3 and the
maximum distance to 8.27 Similar atom-pair-based fingerprints
are proposed by Capecchi et al.29 In this study, the RDKit
function of topological pharmacophore with the default
parameter values was used.27

Mol-SPhGs. A Mol-SPhG is a reduced graph of a chemical
graph. Nodes of Mol-SPhG are PF-assigned atoms (termed PF
nodes) or junction atoms.20 The junction atoms are nodes
without PFs, which are introduced to keep the original
distances among PF nodes. Because Mol-SPhG holds the
topological distance between every pair of PF nodes, no
information is lost in terms of TPs (Figure 2c). Details of the
construction algorithm of Mol-SPhG from a chemical graph
have been reported by our group.20

SPhGs. An SPhG is a sparse representation of a TP in terms
of the number of edges and nodes (Figure 2d).20 This form of
pharmacophore has a good balance of trade-off between
intuitive understanding of the TP and keeping topological
distances among PF nodes. The previous study using an active
compound data set for thrombin showed that more than 90%

Table 1. Compound Data Sets

ChEMBL ID target code
#Highly

potent CPDsa

CHEMBL204 thrombin Thr. 514
CHEMBL1862 tyrosine kinase ABL1 ABL1 515
CHEMBL237 κ-opioid receptor Kop. 1425
CHEMBL2498 PI3-kinase p110-α

subunit
PI3 812

CHEMBL5701 G protein-coupled
receptor 44

GPCR44 686

CHEMBL1795139 transmembrane
protease serine 6

TPS6 21

aHighly potent CPDs: compounds exhibiting pKi values greater than
or equal to 6.0 except for TPS6 (5.0).
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of SPhGs kept the topological distances, while a sparse index of
1.02 was achieved on average. The sparse index is defined as

N
N

sparse index(SPhG)
1

E

N
=

−

where NE is the number of edges and NN is the number of
nodes. The average value of 1.02 implied that most SPhGs are
tree structures.
For obtaining SPhGs, candidate graphs for SPhGs

(candidate SPhGs) are generated from Mol-SPhG by selecting
a predefined number of PF nodes and applying a node
reduction algorithm. Our proposed algorithm is to remove
unnecessary nodes and convert aromatic ring features to
aromatic bonds. The candidate SPhGs are further filtered
based on the number of active compounds or scaffolds
containing the candidate SPhGs. The SPhGs passing the filter
represent shared TPs among active compounds.
In this study, six PF nodes were selected to form candidate

SPhGs. For each target, the top 300 SPhGs were selected in
terms of the number of the Bemis−Murcko scaffolds of the
compounds matching the candidate SPhGs (the NScaf folds

criterion), identical to the conditions in the previous
studies.15,16,20,30

Distance Metrics for TP Representations. A similarity
of pharmacophore graphs is quantitatively measured by the
GED. Jaccard distances measured how (dis)similar a pair of
PhFP bit vectors is.

GED. The GED of graphs A and B is the minimum cost of
converting graph A to graph B by editing nodes and edges of
graph A.31 In other words, the graph similarity is measured by
how easily graph A is transformed to graph B. For calculating
the GED, editing operations and associated cost definition are
necessary. We used six edit operations: node substitution, node
insertion, node deletion, edge substitution, edge insertion, and
edge deletion. Based on the work by Garcia-Hernandez et al.,25

costs of all node and edge operations were newly defined,
which are reported in Tables 2 and 3, respectively. According
to these tables, the cost of node insertion and deletion is 1, and
the cost of changing a node from one PF type to another is 2,
which equals the sum of the node deletion of the old PF and
the insertion of the new PF. Also, the cost of removing one PF
(e.g., removing only D) from a node with two PFs (e.g., DP) is
the same as the general node deletion cost of 1. The cost of

Figure 1. Highly potent compounds for TPS6.
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changing a node with two PFs to a new PF(s) is set to 2. In
addition to the original definition, our modification of the cost
tables for SPhGs or Mol-SPhGs includes three major points.
First, the definition for junction nodes, represented as J, is
added to the node operation table (Table 2). Every cost of this
node modification is defined as 2 because type J is equally
(dis)similar to other node types. Second, the cost of edge
distance operations is newly defined as shown in Table 3. The
cost of the replacement of two nonaromatic edges with lengths
n and m (n > m) is defined as

k
1

k m

n

1

∑
= + (1)

This monotonical decreasing cost with the edge length
matches our intuition about molecules. For example, changing
an edge with a length of one to an edge with a length of two
has a higher impact than changing an edge with six to seven.
The cost of substitutions of a nonaromatic edge for an
aromatic edge with the same length is defined as 3 times their
edge length based on ref 25. In a similar way, the substitution
of two aromatic edges with different lengths costs 10 times
more than the corresponding nonaromatic edges, as a 10 times
cost was given for the insertion and deletion of a single, double,
or triple bond in ref 25. The robustness of GEDs on edge cost
functions was confirmed by testing other forms of functions.
High distance correlation coefficients of GEDs were observed

Figure 2. Overview of the three TP representations. (a) Sample molecule with PFs. Blue circles represent HBDs, red circles HBAs, and green
circles ARs. (b) Example of PhFP. Each box has a value of 0 or 1. The value of 1 in a box means that the corresponding pharmacophoric pattern(s)
exist. Distances between PFs are binned into three categories as mentioned in the parenthesis (lower, upper) in (b). (c) Mol-SPhG converted from
the molecule depicted in (a). The letters representing each PF are written on the nodes (D: hydrogen bond donor, A: hydrogen bond acceptor, R:
aromatic ring, P: positively ionizable). A node with multiple PFs has the corresponding multiple letters. (d) SPhG generated from Mol-SPhG (c).

Table 2. Node Edit Costs in GED Calculation

D A P N R J DA DP DN AP AN PN DAP DAN

Da 0 2 2 2 2 2 1 1 1 2 2 2 1 1
Ab 2 0 2 2 2 2 1 2 2 1 1 2 1 1
Pc 2 2 0 2 2 2 2 1 2 1 2 1 1 2
Nd 2 2 2 0 2 2 2 2 1 2 1 1 2 1
Re 2 2 2 2 0 2 2 2 2 2 2 2 2 2
Jf 2 2 2 2 2 0 2 2 2 2 2 2 2 2
DAg 1 1 2 2 2 2 0 2 2 2 2 2 2 2
DPg 1 2 1 2 2 2 2 0 2 2 2 2 2 2
DNg 1 2 2 1 2 2 2 2 0 2 2 2 2 2
APg 2 1 1 2 2 2 2 2 2 0 2 2 2 2
ANg 2 1 2 1 2 2 2 2 2 2 0 2 2 2
PNg 2 2 1 1 2 2 2 2 2 2 2 0 2 2
DAPg 1 1 1 2 2 2 2 2 2 2 2 2 0 2
DANg 1 1 2 1 2 2 2 2 2 2 2 2 2 0
insertion 1 1 1 1 1 0.5 1 1 1 1 1 1 1 1
deletion 1 1 1 1 1 0.5 1 1 1 1 1 1 1 1

aD: hydrogen bond donor. bA: hydrogen bond acceptor. cP: positively ionizable. dN: negatively ionizable. eR: aromatic ring. fJ: junction. gDouble
and triple symbols mean the node to which two or three PFs are assigned.
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when using a square root of k or a square k function instead of
k in eq 1 (Table S1).
While calculating GEDs of Mol-SPhGs, a time limitation was

introduced, which was implemented in the networkx library.32

Mol-SPhGs have more PF nodes than SPhGs, which
sometimes results in too much time taken for GED
calculation.18 The time-limitation option causes the minimum
graph edit path search to be terminated after a predefined time
and the current minimum distance to be given as output. In
this study, a value of ten seconds was set, resulting in the
consumption of 283 h of CPU time for calculating GEDs for
the Kop. data set, which contained 1425 compounds
(1 016 025 comparisons). For SPhGs, the calculation time
was reduced to around 1.5 h of CPU time for 300 SPhGs
(45 300 comparisons) due to the sparseness of SPhGs. It

Table 3. Edge Edit Costs in GED Calculation

nonaromatic edge with a
length of na

aromatic edge with a
length of na

nonaromatic edge
with a length of
ma k

1

k m

n

1

∑
= +

n n m

n
k

n m

3 ( )

3
1

( )
k m

n

1

∑

=

+ >
= +

aromatic edge with
a length of ma

m n m

m
k

n m

3 ( )

3
1

( )
k m

n

1

∑

=

+ >
= +

k
10

k m

n

1

∑
= +

insertion 0.1 1.0
deletion 0.1 1.0
aWithout the loss of generalizability, the inequality n ≥ m can be
assumed.

Figure 3. Maps for Thrombin (Thr.). (a) PhFP-map of Thr. Typical active compounds (CPD) are shown on the clustering map. Each point
represents each CPD, and its color is defined by its pKi. Six exemplified Mol-SPhGs selected by the k-means method are displayed. (b) Mol-SPhG-
map of Thr. Each dot corresponds to a compound. The Mol-SPhGs of compounds CPD1−6 are displayed along with their locations.
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should be noted that a pairwise comparison can be parallel,
leading to the further reduction of computation time. We used
the approximated GED implemented in the networkx library
(version 2.5).32

Visualization of the TP Space. Distance metrics enable
visualizing data sets in terms of pharmacophore representa-
tions by means of unsupervised learning techniques. Three-
dimensionality reduction methods were tested: t-distributed
stochastic neighbor embedding (t-SNE),33 isomap,34 and
multidimensional scaling (MDS),35 all of which are imple-
mented in the scikit-learn library (version 0.23.2).36

These three visualization methods were employed with the
three pharmacophore representations: PhFPs, Mol-SPhGs, and
SPhGs, generating nine maps for a single biological target. We

call these maps PhFP-map, Mol-SPhG-map, and SPhG-map,

respectively, while ignoring the mapping algorithms.
On a map using PhFP or Mol-SPhG representation (PhFP-

map or Mol-SPhG-map), each dot matches one Mol-SPhG or

one vector of PhFP, which also corresponds to each CPD for

which the representation is generated. Furthermore, dots are

colored according to pKi values. On an SPhG-map, dots

correspond only to pharmacophore graphs. The dots are

colored according to the coverage, which is defined as the ratio

of the compounds covered by the SPhG over the total number

of compounds in the data set.

Figure 4.Maps for tyrosine kinase ABL1 (ABL1). (a) PhFP-map of ABL1 typical active compounds (CPD) are shown on the clustering map. Each
dot represents each CPD, and its color is defined by its pKi. Six exemplified Mol-SPhGs selected by the k-means method are displayed. (b) Mol-
SPhG-map for ABL1. Each dot corresponds to a compound. The Mol-SPhGs of compounds CPD1−6 are displayed along with their locations.
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■ RESULTS AND DISCUSSION

TP Maps. Visualization of SPhGs gives us an intuitive
understanding of the SPhG relation, which cannot be achieved
by inspecting the chemical space spanned by molecular
descriptors including TP fingerprints. The main difference
between these two maps is that SPhGs are shared features
among active compounds, not compounds themselves.
We employed the three-dimensionality reduction algorithms

Isomap, MDS, and t-SNE to make two-dimensional maps for a
set of highly potent compounds represented by PhFP, Mol-
SPhG, and SPhG, resulting in nine maps for each target. All of
the maps for all of the six biological targets are reported in
Figures S1−S6 in the Supporting Information. t-SNE was
selected because it formed clusters and was suitable for the
later discussion of pharmacophore space. On most maps
created by MDS, clustered regions were not created at all, and
dots (compounds or SPhGs) were overlapped one another on
some maps by Isomap, although this algorithm could make
clustered regions. Furthermore, t-SNE mapping showed the
best ability to preserve distances in GEDs between SPhGs, in
particular for similar SPhGs. For six out of the seven targets,
when measuring the shortest 1% distances, t-SNE showed the
highest correlation coefficients between GEDs and Euclidian
distances on the maps ranging from 0.708 to 0.857. The
distance correlation coefficients using the thresholds of 1, 3,
and 10% are reported in Table S2. Thus, we decided to further
discuss using the maps by the t-SNE algorithm. In the
following section, first, the difference between Mol-SPhGs and
PhFP as a molecular representation is clarified. Then, using
SPhG-maps, the TP information, which could be extracted for
the highly potent CPDs, is discussed.
Comparison of Mol-SPhGs with PhFP. Two maps using

PhFP and Mol-SPhG representations for Thr. are reported in

Figure 3a,b, respectively. Example compounds in Figure 3a
were selected based on the k-means clustering. The number of
clusters was determined so that the sum of the squared errors
inside the clusters reached a 90% reduction for the first time as
the number of clusters increased. In each cluster, one
compound with the highest pKi value is displayed. Figure 3b
shows the Mol-SPhG-map, where each point corresponds to a
compound as in PhFP. The CPD1 to 6 in Figure 3a were
represented as Mol-SPhGs on the map.
On the PhFP-map, there were more clusters than on the

Mol-SPhG-map in Figure 3. For example, the cluster to which
CPD3 belonged consisted of CPDs with the same scaffold in
terms of the Bemis−Murcko scaffolds. However, these clusters
did not exist on the Mol-SPhG-map. On the Mol-SPhG-map,
CPD3 belonged to a single cluster with molecules containing
different scaffolds. Molecular scaffold-based clustering could
miss the actual (topological) pharmacophore. Actually, several
compounds belonging to different scaffolds were found to
interact with thrombin on the same binding site, supported by
X-ray co-crystallization complexes.37−41 Three of the example
CPDs, CPD2, CPD5, and CPD6, contained amidine
substructures. However, CPD1 and CPD3 had no sub-
structures similar to amidines.
The chemical structures of CPD2 and CPD5 shared no

common scaffolds. However, their Mol-SPhGs-based scaffolds
were relatively similar to each other (Figure 3b). These Mol-
SPhGs contained the two Ds (HBDs) connected with a two-
length bond and the aromatic bonds next to the junction node
between the two Ds. Furthermore, negatively ionizable
features, carboxy groups, were located on the opposite side
of the graphs to the two Ds. This indicated that the mapping
using Mol-SPhGs with GED clustered CPDs in a less
structurally dependent manner.

Figure 5. SPhG-map for Thr. Each point represents SPhG, and its color is defined by its coverage. Selected SPhGs are shown on the map. The
SPhGs with the first and second-highest coverages in each of the classes categorized by the k-means method are displayed.
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Similar characteristics were observed for the other targets.
For example, for ABL1 inhibitors, the substructure of dashed
circles on CPD1, CPD2, CPD3, and CPD5 in Figure 4a
became a core of these compounds, and they were relatively
dispersed. On the other hand, in the form of Mol-SPhG
(Figure 4b), these CPDs were located closer to each other.
Furthermore, Mol-SPhGs made interpretation easier because
they reflected how easy (difficult) one graph can be modified
to another. For example, CPD1 and CPD5 were distinct on the
PhFP-map but not on the Mol-SPhG-map. The Mol-SPhGs of
these two CPDs had the same heterocyclic structure consisting
of two fused pyridines, and the difference in substituents was
measured by GED, resulted in the relatively short distance
between these two CPDs on the map in Figure 4b.
SPhG-maps. Figures 3 and 4 show that the capturing TP

information by Mol-SPhG-maps was less dependent on the
structural scaffolds. In the following, we further discuss SPhGs-
maps. It should be noted again that SPhGs are the extracted
common subgraphs of Mol-SPhGs. The visualization of SPhGs
is conceptually different from visualizing CPDs on Mol-SPhG-
maps.
For each target, the number of Bemis−Mucko scaffolds

found in the compounds containing the selected 300 SPhGs
was counted. The average number was 35.9 for Thr., 12.9 for
ABL1, 29.2 for Kop, 68.7 for PI3, 29.7 for GPCR44, and 2.2
for TPS6. Although the number of scaffolds for TPS6 was
small due to a small data set size, selected SPhGs were indeed
common features of active molecules not dependent on
molecular scaffolds. For the SPhG examples found in the
following SPhGs-maps, the number of scaffolds is reported in
Table S3.
The number of clusters on the SPhG-maps was determined

using the same criteria used in Figures 3a and 4a. The SPhGs
examples shown in the figures exhibited the highest and the
second-highest coverages, as indicated in the figure captions.
Thrombin (Thr.). SPhGs were clustered into two distinct

regions in Figure 5. On the top left cluster, SPhG5 and SPhG6

contained the same subgraph with four positively ionizable
features (Ps) following by a long chain without any PFs. The
positively ionizable feature corresponded to the guanidium
substructure. On the other cluster on the right bottom, there
were no Ps in the SPhGs forming the cluster. SPhG1 and
SPhG2 had two hydrogen bond donors (Ds in Figure 5),
which commonly had a junction node with a distant one.
SPhG3 and SPhG4 did not have this subgraph.
The SPhG-map displayed graphs with six PFs and a few

additional junction nodes, commonly identified among active
CPDs. This led to pharmacophore hypotheses of the ligand−
target interaction. For example, in Figure 5, SPhG1-2 had a
common substructure of two HBDs (Ds) and a junction
between them at a distance of 1. Another donor was found at a
distance of 6 from the junction, and a pair of D and HBA (A)
at a distance of 2 on the opposite side of the two HBDs was
typical. These features here were also consistent with those
explained by the X-ray cocrystallized structures listed in the
Protein Data Bank (PDB).37

Tyrosine Kinase ABL1 (ABL1). The SPhG-map for ABL1
along with the selected SPhGs colored based on the coverage
for ABL1 are shown in Figure 6. The SPhG with the highest
coverage was SPhG1 (61.7%), meaning that over 60% of the
active compounds contained SPhG1. Overall, the SPhGs on
the maps resembled one another. SPhG1 contained one fused
aromatic ring consisting of two rings, with an HBA on one of
the rings. This substructure was commonly detected in SPhG2
and SPhG3, which were also included in a substructure of
isoquinoline in CPD1, CPD2, and CPD3 in Figure 4.
Furthermore, a pattern of HBA and HBD separated by a
distance of two followed by an aromatic bond was found in
SPhG1, 4, and 5. While these features might be detected from
the Mol-SPhG-map in Figure 4 by careful inspection, the
SPhG-map represented the relations. The design concept of
the ABL1 inhibitors could be interpreted with the help of the
SPhG-map.

Figure 6. SPhG-maps for tyrosine kinase ABL1 (ABL1). SPhG-map of ABL1. Each point represents SPhG, and its color is defined by its coverage.
Selected SPhGs are shown on the map. The SPhGs with the highest coverages in each of the clusters categorized by the k-means method are
displayed.
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κ-Opioid Receptors (Kop.). On the SPhG-map for Kop., as
shown in Figure 7, SPhG1 and SPhG2 belonged to the same
cluster, in which SPhGs contained an aromatic bond feature
with a length of two and a branch to an HBA starting at the
middle of the bond. SPhG3 in the cluster at the upper right
corner had an aromatic bond feature with a length of three
(not two). Although SPhG1 and SPhG3 seemed similar and
the GED distance between SPhG1 and SPhG3 was 3.25 (7.5
percentile of the whole pairwise distances for all of the SPhG
pairs in Figure 7), the encoded features (PFs with bonds) were
different (Figure 8a). SPhG1 and SPhG3 matched different
paths to the same PFs on the same compound. Out of the
three SPhGs, only SPhG1 was detected in the active
compounds with different scaffolds, similar to that of
pentazocine as shown in Figure 8b. SPhG4 also matched the
compound in Figure 8a without introducing aromatic bonds,
focusing only on the hydrogen bonds. SPhGs in the small
cluster including SPhG5 on the left side of the map only
matched the different chemotypes represented by the
compounds shown in Figure S7. Note, as shown in Figure 8,
an SPhG could contain a node with two PFs (e.g., DA). This
meant that a substructure matching both PFs, such as a
hydroxyl group, was necessary. If only one of them had been
required for activity, the mined SPhG would have contained a
node with only the PF.
Transmembrane Protease Serine 6 (TPS6). The number of

active compounds for TPS6 was 21 (Figure 1). For this small-
sized data set, the SPhG-map could categorize a number of
SPhGs into different clusters (Figure 9). Because each SPhG
represented a TP hypothesis, extracting common SPhGs
followed by the clustering analysis gave insights into the
hypotheses, as opposed to PhFP and Mol-SPhG-maps in
Figure S6. The top right cluster on the map in Figure 9 might
correspond to the hypothesis of the guanidium moiety and
other hydrogen bonding features on the opposite side as
exemplified in SPhG2. On the other hand, SPhG1, SPhG4, and
SPhG5 in other clusters corresponded to the arrangement of

hydrogen bonding. These three SPhGs had two HBDs (Ds in
Figure 9) and a junction node between them. From the
junction node, another HBD is placed at a distance of six,
followed by two HBAs (As in Figure 9) with a distance of
three. These SPhGs were similar to ones for Thr., and SPhG5
in Figure 9 was identical to SPhG2 in Figure 5. An
experimental study showed that the compounds containing
SPhG2 in Figure 5, which is identical to SPhG5 in Figure 9,

Figure 7. SPhG-map for κ-opioid receptors (Kop.). SPhG-map of Kop. Each point represents SPhG, and its color is defined by its coverage.
Selected SPhGs are shown on the map. The SPhGs with the highest coverages in each cluster categorized by the k-means method are displayed.

Figure 8. Three different SPhGs derived an active compound for Kop.
(a) Active compound analogous to morphine containing three
different SPhGs. (b) Active compound containing a different scaffold
but SPhG1 as a subgraph.
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were active for both Thr. and TPS6.42 The common SPhG was
successfully identified in this study. The SPhGs on the bottom
left cluster where SPhG3 were representatives were completely
different hypotheses and matched CPD5 and CPD16 in Figure
1. These types of SPhGs were not found in Thr. This implied
that the CPDs, which included SPhG3 and did not include
SPhG5 in Figure 9, were expected to be active for TPS6 and
not for Thr.

■ CONCLUSIONS

The visualization of topological pharmacophores (TPs) is
important for understanding the ligand−target binding
hypotheses. In this study, GED was introduced as a metric
to evaluate the similarity among SPhGs, which were sparse
representations of pharmacophore graphs. Among the three
tested dimensionality reduction algorithms, t-SNE was the best
based on the visual inspection and local-distance preservation
of GEDs. For evaluating the maps and demonstrating the use
case of the maps, we generated SPhG-maps using active
compounds against the six biological targets: Thr., ABL1, Kop.,
PI3, GPCR44, and TPS6. First, we compared the two TP
representations using the maps PhFP and Mol-SPhG and
found that Mol-SPhG was less structurally dependent than
PhFP. Then, for each target, the top 300 SPhGs identified
from a set of active compounds were visualized on an SPhGs-
map with the GED metric. The classification of SPhGs and TP
knowledge extraction were demonstrated using the maps.
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potent compounds for the six targets are also provided as
SMILES with curated pKi values in the repository.
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