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Abstract: The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this
study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS
coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper
airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN
gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs,
conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the
lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+

or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs
in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It
provides insights into the profound modulation of DC function in severe COVID-19.

Keywords: COVID-19; dendritic cells; ACE2; DC-SIGN; L-SIGN

1. Introduction

In 2020, a novel coronavirus SARS-CoV-2 has been spreading as a pandemic infection.
SARS-CoV-2 is highly infectious and pathogenic through human-to-human transmission
and causes severe Coronavirus Disease 2019 (COVID-19) [1]. COVID-19 critical cases are
often characterized by a pro-inflammatory “cytokine storm” with a release of excessive
cytokines (including IL-6, IL-1, IL-2, IL-10, TNF-α and IFN-γ and others) and a hyperactive
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immune response which causes damage to target organs. Despite extensive research in the
past year, the exact immune pathophysiology of SARS-CoV-2 has remained elusive.

Studies have showed that SARS-CoV-2 is closely related to SARS-CoV, with around
80% homology of genome [2]. They belong to the same β-genus of coronavirus with
similar receptor-binding domain (RBD) structures [3] and cause similar clinical symptoms
such as acute respiratory response [4]. Many viruses use alternative receptors to enter
host cells. For SARS-CoV, three receptors including ACE2, DC-SIGN and L-SIGN (gene
symbols ACE2, CD209 and CLEC4M, respectively) have been found to be involved in the
pathogenicity [5–7], among which ACE2 has been quickly confirmed to be the receptor for
SARS-CoV-2 [2]. DC-SIGN and L-SIGN have also been considered as potential receptors
for SARS-CoV-2 [8,9]. However, the associations between DC-SIGN/L-SIGN expression
and SARS-CoV-2 infection and its phenotypes were not evaluated yet.

In vivo, L-SIGN is largely expressed on endothelial cells in liver sinusoids and lymph
nodes, whereas DC-SIGN is mainly expressed on dendritic cells (DCs) [10]. DC-SIGN
and L-SIGN provide gateways for SARS coronavirus to attack immune cells. Indeed,
aside from epithelial cells, SARS-CoV infection was also found in T cells, macrophages
(Mø) and monocyte-derived dendritic cells and this viral attack is probably responsible
for the lymphopenia which was commonly observed in SARS-CoV infected patients [11].
On the other hand, DC-SIGN and L-SIGN play important anti-viral roles that they both
capture, transmit and disseminate virus within the host [12,13]. With the dual roles of
DC-SIGN as a potential SARS-CoV-2 gateway and an innate immune initiator, DCs may
play important and complicated roles in SARS-CoV-2 infection and clinical outcomes of
COVID-19 patients. Studies have indicated a decrease of conventional DCs (cDCs) and
plasmacytoid DCs (pDCs) in the lung and blood of severe COVID-19 cases [14,15]. Yet, the
modulation of DCs and its DC-SIGN gene expression across airway and peripheral blood
tissues with COVID-19 infection have not been characterized.

To investigate the variation of DC status and DC-SIGN expression in COVID-19
cases, in this study, we systematically studied the transcriptome in single cells in the
upper airway (nasopharynx/pharynx samples), lower airway (bronchoalveolar lavage
fluid (BALF) samples) and peripheral blood (peripheral blood mononuclear cell (PMBC)
samples) of COVID-19 patients with different severity levels. The findings of this study
were illustrated in Figure 1.

Figure 1. Graphical abstract. The findings from this study in lung and blood DCs were summarized for mild cases
vs. healthy control (A) and severe cases vs. mild cases (B). Highlighted points are (1) SARS-CoV-2 modulates the DCs
proportion and CD209 expression differently in lung and blood; (2) severe infection is characterized by DCs less capable of
maturation, antigen presentation and MHCII expression; (3) the proportion of cDCs was decreased while that of pDC was
increased in lung with SARS-CoV-2 infection but immature subsets (CD22+/ANXA1+) were accumulated in severe cases.

Compared to healthy controls, the expression of DC-SIGN was found to be increased in
blood while decreased in lung of COVID-19 patients. In severe cases, we found significantly
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decreased DCs and its augmented immature subsets, which was not observed in mild
patients. These results illustrate the pathogenicity and virulence of SARS-CoV-2 infection
from the aspect of DCs which is a critical player in the immune response to viral infection.

2. Results
2.1. DC-SIGN Is Associated with SARS-CoV-2 Infection and Immune Cell Activation

In the metagenomic next generation sequencing (mNGS) data from nasopharynx/pharynx
samples of 197 patients with acute respiratory illnesses (ARIs), we found gene expression
of ACE2 (p = 3.9 × 10−10) and DC-SIGN (p = 0.048) were significantly higher with the
SARS-CoV-2 infection (Supplementary Figure S1). No data was available for CLEC4M.
Notably, the gene expression of essential factors of antigen-presenting cells (APC) for
antigen presentation including CD40, CD80 and CD86, HLA genes, IgG immunoglobulin
receptor (FcR) III and interferon-gamma (IFN-γ) were upregulated in SARS-CoV-2 ARIs
compared to non-viral ARIs, whereas gene expression of IgA and IgE FcRs (FCER1A,
FCER2), interferon-kappa (IFN-κ), and cyclooxygenase (COX) (PTGS1 and ALOX5) were
downregulated. In SARS-CoV-2 ARIs, the gene expression of ACE2, CD80, CD86, CD83,
IFN-γ, FCER1G and IgG FcRs were positively associated with the viral load of SARS-CoV-2
(Figure 2A, Supplementary Figure S1), while no significant associations were observed
in HLA genes. In addition, we infer the composition of 22 immune cells (see Methods:
Upper airway samples from COVID-19 patients and controls) in samples and found the
proportions of activated CD4+ memory T cells (CD4m T) and M1 Mø were increased in
SARS-CoV-2 ARIs compared to non-viral ARIs and significantly associated with increased
viral load (Figure 2A, Supplementary Figure S1), while the proportions of activated mast
cells and neutrophils were decreased in SARS2-CoV-2 ARIs (Supplementary Figure S1).
The proportions of these four types of immune cells and the active DCs well predicted the
SARS-CoV-2 load (r = 0.55, p = 1.3 × 10−7, Figure 2A) and discriminated SARS-CoV-2
ARIs from non-viral and ARIs (p = 1.2 × 10−5, Supplementary Figure S1).

Interestingly in ARIs with relatively high SARS-CoV-2 viral load (log10 CPM > 1), we
observed distinct subtypes associated with the activation of DCs and T/Mø cells, with spe-
cific immune cell compositions and specific expression of APC antigen reorientation factors
and SARS-CoV-2 receptors (Figure 2B). According to the proportion of the five associated
immune cell types (i.e., DCs, CD4m T, M1 Mø, active mast cells and neutrophils), we
therefore further classified ARIs into four subtypes, including the DCs-enriched subtype
(DC+) and the T cells or Mø-enriched subtype (T/Mø+), the neutrophils-enriched subtype
(Neu+) and the triple negative subtype which was without enrichment of any of these cells
(DC−T/Mø−Neu−) (Figure 2B). The DC+ subtype was characterized with activated DCs,
downregulated FcRs and HLA genes; the T/Mø+ subtype was characterized with activated
T or Mø, upregulated viral gateway ACE2 and CD209 as well as immune factors including
INFG, CD86, FCGR3A, FCGR1G and HLA genes; the Neu+ subtype was characterized with
enriched neutrophils, upregulated FcRs genes and Cox genes (PTGS2 and ALOX5), and
downregulated HLA genes and ACE2; the DC−T/Mø−Neu− subtype was characterized
with downregulated FcRs genes, ACE2 and CD209. These results provide new clues for the
variation of immune response in COVID-19 patients by its potential link to the differential
activation of specific immune cell types. Not like the T/Mø+ subtype with activated im-
mune factors and high expression of ACE2 and CD209, DC+, Neu+ and DC−T/Mø−Neu−

subtypes may produce the high virus load by immunodeficiency.
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Figure 2. Correlation and variation of SARS-CoV-2 receptors and immune factors in nasopharynx/pharynx samples of
SARS-CoV-2 ARIs. (A) Scatter plots of SARS-Cov-2 viral load against gene expression profiles of SARS-CoV-2 receptor
ACE2, immune response activators (CD80, CD83 and CD86), FCER1G, the proportion of active CD4 memory T cells and M1
macrophages in 22 immune cell types, as well as scores from a linear model of 5 immune cell types (active CD4 memory T
cells, M1 Mø, mast cells, neutrophils and active DCs). The black and red lines are fits of linear model and LOESS, respectively.
(B) Hierarchical clustering and heatmap of SARS-CoV-2 receptors, immune factors and proportions of 5 immune cell types
in ARI samples. Five subsets of ARI samples were identified, including 1 subset with low SARS-CoV-2 load (LowLoad) and
4 subsets with high SARS-CoV-2 load and activated DCs (DC+), activated T cells or M1 Mø (T/Mø+), activated neutrophiles
(Neu+) and no activation of any of those cell types (DC−T/Mø−Neu−). For each feature, red indicates relatively higher
value and blue indicates relatively lower value across samples. The scale corresponds to the relative value across samples.
(C) The fold changes of each feature comparing each subset to others. 95% confidence intervals are shown as bars. The size
of the squares is proportional to the standard deviation.
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2.2. DC-SIGN Is Associated with COVID-19 Severity, Immune- and Neural-Related Phenotypes
and Respiratory Diseases

We investigated the association of the expression of ACE2, DC-SIGN and L-SIGN
with COVID-19 risk by large-scale (n = 459, 250) population genetic association analyses
(see Methods: Mendelian Randomization analysis). Using Mendelian Randomization (MR)
with the inverse variance weighted method, we found that higher expression of DC-SIGN
plasma protein was associated with increased COVID-19 risk (β = 0.14, p = 3.39 × 10−3) and
severity (β = 0.30, p = 5.41 × 10−5; Supplementary Table S1). No significant associations
were found in ACE2 or L-SIGN.

The important role of DC-SIGN in phagocytosis and immune activation was also
reflected in associations with phenotypes. Genome wide association study (GWAS)
(see Methods: Transcriptome-based phenome-wide association study) found that the
genetic variants of CD209 were associated with multiple diseases, including asthma (the
top among detected associations, p = 1.0 × 10−13), cancers and neurological disorders
(Supplementary Table S2), showing their possible underlying links involving DCs and/or
Mø (which also express CD209 on surface).

We furthermore investigated the influence of CD209 gene expression on the immune
cell composition in the lung tissue. The transcriptome-based PheWAS analysis found
the significant association of CD209 gene expression with the depletion of neutrophils
(count: β = −0.10, p = 4.0 × 10−5; percentage: β = −0.60, p = 3.2 × 10−5) and overall
white blood cells (WBC) (count: z = −3.34, p = 8.3 × 10−4), as well as the augmentation
of lymphocytes (percentage: β = 0.14, p = 3.00 × 10−4) and monocytes (percentage:
β = 0.15, P = 1.24 × 10−3) (Supplementary Table S3). These associations were further
confirmed by MR analysis on DC-SIGN plasma protein expression (neutrophil count:
β = −0.03, p = 1.38 × 10−16; neutrophil percentage: β = −0.02, p = 0.02; WBC count:
β = −0.03, p = 5.40 × 10−27; lymphocyte percentage: β = 0.02, p = 5.29 × 10−5;
monocyte percentage: β = 0.03, p = 8.52 × 10−3; Supplementary Table S4). Moreover,
we also observed such significant associations of CD209 expression with immune cell
composition in blood samples of 160 Acute Respiratory Distress Syndrome (ARDS) cases
and 142 non-ARDS controls, regardless of the disease status (Supplementary Figure S2,
see Methods: Blood samples from ARDS cases and controls). In addition, we found that
CD209 expression in lung was associated with immune related symptoms such as tiredness
or low energy, depression and duration of fitness (Supplementary Table S3). In lung
adenocarcinoma tumors from The Cancer Genome Atlas (TCGA, https://www.cancer.
gov/tcga, accessed on 19 January 2020), we only observed a slight downregulation of
CD209 (β = −0.26, p = 0.07) compared to normal tissues. No significant association was
observed with survival (p = 0.33) or tumor stage (p = 0.80).

2.3. CD209 Expression in DCs and Mø Is Associated with COVID-19 Severity

To investigate the association of CD209 expression and DCs with COVID-19 risk, we
next systematically investigated the cell type-specific expression of CD209 in upper airway,
lower airway and peripheral blood. scRNA-seq datasets from one nasopharynx/pharynx,
one BALF and two PBMC (Lee et al. [16], Wilk et al. [15]) studies from COVID-19 pa-
tients and healthy controls were analyzed. With identified cell types in each dataset
(Supplementary Figure S3), the detection rates and average expression of ACE2, CD209 and
CLEC4M were compared between healthy controls, mild cases and severe cases (Figure 3A).
Compared to healthy controls, patients with mild and severe COVID-19 showed higher
detection rates of ACE2 in the nasopharynx/pharynx secretory, ciliated, and pulmonary
epithelial cells. No notable expression of CLEC4M was observed in any cell type in any of
the four datasets.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Figure 3. Gene expression differences of three SARS-Cov-2 receptors in upper airway, lung and blood of healthy and COVID-
19 cases. (A) Variations of expression profiles of ACE2, CD209 and CLEC4M in cell types identified from four scRNA-seq
datasets of nasopharynx/pharynx, BALF and PBMC samples from COVID-19 patients and healthy controls. For each
dataset, the detection rate and the average expression level of each receptor in identified cell types are illustrated. The
detection rate was showed by dot size and a larger size indicates a higher detection rate. The average expression level is
showed by the color scale of dot, from grey to blue (for healthy control), green (for asymptomatic cases), yellow (for mild
cases) and red (for severe cases). A darker color indicates a higher expression level. The gd T cell in healthy BALF samples
was shown in grey because only a limited number of cells was detected (n = 20). (B) Variations of the proportions of DCs,
macrophages or monocytes in WBC in samples from COVID-19 patients and healthy controls. For each group of disease
status, cell proportions were shown in boxes and data from a particular participant was shown by a dot. In DCs, monocytes
and monocytes, differences in (A) gene expression and (B) cell proportions were tested in severe cases compared to mild
cases, in severe cases compared to healthy controls, in mild cases compared to healthy controls, in severe cases compared
to asymptomatic cases, in mild cases compared to asymptomatic cases, and in asymptomatic cases compared to healthy
controls. Significance was shown by red * for higher mean value and blue * for lower mean value, with * p < 0.05; ** p < 0.01;
*** p < 0.001.
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Notable expression of CD209 was found in DCs, airway Mø and blood monocytes
(Figure 3A). Significantly, we found that CD209 expression in lung monocyte-derived
macrophages (MoD Mø) and blood classical (CD16− or CD14+) monocytes was severity-
dependently decreased in samples from COVID-19 patients, while blood CD16+ monocytes
showed a severity-dependent increase of CD209 expression in the dataset of Wilk et al. [15].
In DCs, we found CD209 expression was decreased in lungs but increased in blood of
COVID-19 cases, as compared to healthy controls. With a small number of detected DCs
(N = 12), the Lee PBMC dataset did not detect such increase in blood of severe COVID-19
cases. The discrepancy among anatomical sites were also found in the alteration of the
DC proportion within WBC (Figure 3B). In airway samples, the proportion of DCs was
increased in mild cases and decreased in severe cases. A decrease was also found in severe
cases in blood, but no notable change was found in mild cases. Inversely to DCs, the
proportions of MoD Mø and monocytes were increased in severe cases in all three tissues.
These may indicate a site-specific impact of COVID-19 on the differentiation of monocytes
to DCs and Mø, and further studies are warranted.

2.4. Maturation and Antigen Presentation Ability of DCs Are Inhibited in Both Lung and Blood of
Severe COVID-19

We further studied transcriptome-wide differently expressed genes (DEGs) and sig-
naling pathways in DCs in COVID-19 lungs and blood (Figure 4). Compared to healthy
controls, an extensive transcriptomic change was found in lung tissue that 184 DEGs (93 for
mild; 91 for severe, Figure 4A) showed expression changed more than 2-fold. Differently,
such alterations were detected on only 15 genes (eight for mild; 11 for severe, Figure 4B) in
blood. Relatedly, we also found a broad COVID-19 severity-associated activation of viral
detection and immune stimulation (cytokine-cytokine receptor interaction, cytosolic DNA
sensing, TLR, Nod-like receptor (NLR), chemokine signaling, B cell receptor signaling
and Mark signaling) in lung, whereas only mild immune stimulation (cytokine-cytokine
receptor interaction and cytosolic DNA sensing) was found in blood. In both lung and
blood, immune response related pathways (graft versus host disease, viral myocarditis,
Leishmania infection and others) were activated in mild cases as compared to healthy
control but interestingly were inhibited in severe cases as compared to mild cases. Such
pattern was also observed on antigen processing and presentation, host metabolism as
well as DNA replication in lung but not in blood. Correspondingly, immune initiation
related genes (including CD1A, CD1C, CD1E, CCL17, FCER1A, FCGR2B and others) and
ribosome genes were significantly downregulated in the lungs of severe COVID-19 cases as
compared to healthy controls, whereas inflammatory signals (including interferon genes,
CCL2, CCL4, CCL8 and others) were upregulated (Figure 4C). Compared to mild cases,
chemokines (including CCL2, CCL4, CCL8) and MAPK substrates (including JUN, USF1,
FOS) were upregulated in the lungs of severe cases, whereas antigen presentation related
genes (HLA-DQA2, C1QC and C1QA) were downregulated. Interestingly in blood, we also
found neural disease related pathways were severity-dependently activated and cancer re-
lated pathways were inhibited in severe cases (Figure 4B), which may link to the neurologic
and other clinical manifestations of COVID-19.

The dysregulation of DC function in COVID-19 was also presented by the expression
of the maturation marker (CD83), T-cell stimulation molecules (CD40, CD80, CD86) and
antigen presentation molecules (HLA-DQA2 and FCER1A) (Figure 5A). In lung, CD40,
CD80, CD83 and HLA-DQA2 were upregulated while CD86 and FCER1A were decreased
in mild COVID-19 as compared to healthy controls. Similar patterns were observed on
CD40, CD86 and HLA-DQA2 in both blood datasets while inconsistent results of CD83 and
FCER1A were observed in Lee and Wilk PBMC datasets. Compared to mild cases, severe
COVID-19 showed upregulated CD40 together with downregulated CD83, HLA-DQA2 and
FCER1A in all three tissues. Interestingly, asymptomatic cases showed similar expression
of those markers with healthy controls in blood.
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Figure 4. Dysregulated gene expression networks in lung and blood with COVID-19. (A,B) show
pathways associated with SARS-CoV-2 infection and disease severity in lung and blood DCs separately.
Each node in network is a pie plot showing three comparisons, including mild vs healthy (top right), severe
vs healthy (bottom), and severe vs mild (top left). Node size corresponds to the number of genes in dataset
within the pathway. Color intensity inner the node corresponds to the significance of the pathway for this
dataset (red is for positive effect; blue is for negative effect, darker indicates larger effects). Orange outer
circles show the overlapping pathways found in lung and blood DCs, while blue outer circles show the
uniquely detected pathways. Edge weight corresponds to the number of genes found in both connected
pathways. Venn diagrams show the distribution of genes with more than 2 folds alterations which were
detected from above three comparisons in each dataset. (C) shows STRING networks of changed genes in
lung DCs in severe COVID-19 cases compared to healthy (left) and mild cases (right). The intensity of
filling color corresponds to the log2 fold-of-change of the gene expression (red is for positive effect; blue is
for negative effect).
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Figure 5. The expression profiles of functional markers in DCs at three sites. (A) The expression disparity of
markers of maturation (CD83), T-cell stimulation molecules (CD40, CD80, CD86) and antigen presentation
molecules (HLA-DQA2 and FCER1A) in DCs of COVID-19 cases and healthy controls. One upper airway
(nasopharynx/pharynx), one lung (BALF) and two blood (PBMC) scRNA-seq datasets were analyzed.
The expression of each gene is shown in violin plots. For some of genes which has low detection rate, the
violin plot displays a bar. Differential expression was tested in severe cases compared to mild cases, in
severe cases compared to healthy controls, in mild cases compared to healthy controls, in severe cases
compared to asymptomatic cases, in mild cases compared to asymptomatic cases, and in asymptomatic
cases compared to healthy controls. Significance was shown by red * for higher mean value and blue
* for lower mean value, with * p < 0.05; ** p < 0.01; *** p < 0.001. Despite interest, we did not compare
COVID-19 nasopharynx/pharynx samples to healthy controls due to the limited detection of DCs in
healthy samples (N = 1). (B) The dysregulation of gene expression of MHCII and FcRs in APCs at three
sites with COVID-19. For each gene, the alteration of gene expression in APCs of severe COVID-19 cases
compared to mild cases, and that in mild COVID-19 cases compared to healthy controls are visualized in
heatmaps. Red indicates upregulation and blue indicates downregulation. The scale corresponds to log2

fold-of-change.
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Further, we investigated the expression of MHC class II molecules (MHCII) and Fc
receptors (FcRs) and found that they were broadly upregulated in APCs in lungs of mild
COVID-19 patients, with a MHCII subset (HLA-DRA, HLA-DMB, HLA-DRB1, HLA-DPB1,
HLA-DQB1, HLA-DMA) were downregulated (Figure 5B). Compared to mild cases, severe
cases showed decreased MHCII expression in airway APCs but not significantly in blood.
The result was in agreement with above pathway analysis that antigen processing and
presentation were activated in mild cases but inhibited specifically in lungs of severe cases.
In both lung and blood, HLA-DQA2 expression in APCs was significantly increased in
mild cases as compared to healthy controls but downregulated in severe cases as compared
to mild cases. Interestingly, compared to healthy controls, the global change of MHCII and
FcRs gene expression in blood were associated with COVID-19 severity, with upregulation
in asymptomatic cases, no significant change in mild cases and downregulation in severe
cases (Supplementary Figure S4).

Together, these observations indicate the ability of DCs for T-cell stimulation is induced
but the maturation of DCs is inhibited in both lung and blood of severe COVID-19, and the
antigen presentation ability of APCs is significantly reduced in lung, which is the primary
site of infection.

2.5. Conventional DC Subsets Were Depleted and New Immature DC Subsets Were Accumulated
in Both Lung and Blood of Severe COVID-19

We further investigated the variation of DC subsets in nasopharynx/pharynx, BALF
and PBMC samples from COVID-19 patients and healthy controls. Based on known
markers (Supplementary Figure S5), four DC subsets were identified in the nasophar-
ynx/pharynx samples, including type I and II conventional dendritic cells (cDC1 and
cDC2), Mø-like DC which expressed Mø markers S100A8 and S100A9, Plasmacytoid den-
dritic cell (pDC) and a new subset of CD22+ITM2C+ DC; seven subsets were identified in
the BALF samples, including cDC1, cDC2, mature cDC2, Mø-like DC, pDC and new sub-
sets CD22+ DC and ANXA1+ DC; four subsets were identified in the PBMC samples from
the Lee dataset, including cDC1, cDC2, mature cDC2 and Mø-like DC; four subsets were
identified in the PBMC samples from the Wilk dataset, including cDC1, cDC2, mature cDC2
and Mø-like DC (Figure 6A). The integration of all datasets found that these subsets were
conservative among tissues (Supplementary Figure S6). CD22+ITM2C+ DC in nasophar-
ynx/pharynx samples were clustered together with CD22+ DC in BALF samples, which
were characterized by the activated immune response (q = 1.17 × 10−5) and interferon
gamma response (q = 1.17 × 10−5) based on KEGG pathway enrichment analysis [17].

Among the whole population of DCs, the proportion of cDC2 was severity-dependently
decreased in both lung and blood of COVID-19 (Figure 6B). Inversely, the mature cDC2
was increasingly correlated with disease severity in lung BALF samples. Such increase
was also found in PBMC with mild COVID-19 but not in severe cases which might be due
to its limited cell detection of DC cells (N = 12). pDC showed a notable augmentation in
BALF and depletion in PBMC in mild cases but not in severe cases, which may reflect the
different migration activeness of pDC from blood to lung in mild and severe COVID-19.
Interestingly, all tissues in severe cases showed augmentation of immature DC subsets
with relatively inactively expressed mature markers CD83, T-cell stimulation activators
(CD40, CD80, CD86) and HLA genes, including CD22+ITM2C+ DC and Mø-like DC in
nasopharynx/pharynx samples, ANXA1+ DC and CD22+ DC in BALF samples, Mø-like
DC in PBMC samples. This may explain the immunosuppression in severe patients of
COVID-19. Indeed, in nasopharynx/pharynx samples, the proportion of CD22+ITM2C+

DC was significantly positively correlated with that of inactive immune cells including
M0 Mø (p = 8.6 × 10−5), resting CD4 memory T cells (p = 0.028) and resting mast cells
(p = 0.024) (Supplementary Figure S7). In addition, we found the BALF specific ANXA1+

DC subset showed high expression of COX related genes PTGS1, PTGS2, HPGDS, ALOX5
and LTC4S, which may be responsible for the DC immunity suppression [18], together with
ANXA1 [19].
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Figure 6. The variation of distributions and transcriptome profiles of DC subsets in COVID-19 samples and healthy controls
at three sites. One upper airway (nasopharynx/pharynx), one lung (BALF) and two blood (PBMC) scRNA-seq datasets
were analyzed. (A) shows DC subsets identified in single-cell transcriptome profiles from COVID-19 mild and severe cases
and healthy controls. (B) shows the proportions (top) and expression of key players (bottom) of DC subsets in samples from
each participant. The differences of proportion of each DC subset were tested in groups. Significance: * p < 0.05; ** p < 0.01.
The average gene expression of the T-cell stimulation activators (CD83, CD40, CD80, CD86), MHCII and FcRs in subsets in
samples with different disease status were shown in the bottom heatmap. Red indicates relative higher expression and
blue indicates relative lower expression. The scale corresponds to the log2 (normalized scRNA-seq read count) which was
centered and scaled by row. (C) Single-cell trajectory of DCs inferred by Monocle from scRNA-seq data of BALF and PBMC
samples. For each dataset, the left shows ordered cells labeled with cell types, while the right shows ordered cells from
COVID-19 mild and severe cases, and healthy controls.
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We observed a clear shift of the proportion of DC subsets of conventional DCs and
pDC on single cell trajectory in COVID-19 BALF and PBMC, in response to viral infection
(Figure 6C and Supplementary Figure S8). Interestingly, such shift in BALF samples was
not observed in severe cases but was “trapped” in immature subsets (CD22+ and ANXA+

DCs) between conventional DCs and pDC on trajectory. The “blockade” was also observed
in nasopharynx/pharynx with severe COVID-19 (Supplementary Figure S9). Further
we found that both transcriptional bursting frequency and size of MCHII genes were
inhibited in the lung specific immature subset ANXA1+ DC as compared to cDC2 and
pDC (Supplementary Figure S10). Increased frequency and size of Cox genes were also
observed. These indicate that the SARS-CoV-2 infection may inhibit the DC maturation by
regulating the expression kinetics parameters (i.e., bursting frequency and bursting size) of
related genes.

3. Discussion

ACE2, DC-SIGN and L-SIGN are three potential receptors of both SARS-CoV and
SARS-CoV-2. No available data indicate they are dependent viral entry portals, and
we did not find significant correlations of the gene expression between ACE2 and that
of DC-SIGN and L-SIGN (Supplementary Figure S11). Given that DC-SIGN is mainly
expressed on the surface of DCs and Mø, the viral infection to immune cells may directly
link to the immunopathogenesis and disease severity of COVD-19. Indeed, we found
higher gene expression of ACE2 and CD209 in upper airway cells of COVID-19 ARIs
compared to non-viral ARIs, and CD209 plasma protein expression was correlated COVID-
19 risk and severity. We also observed their association with the variation of immune
cell activation in upper airway cells of COVID-19 ARIs that high expression of ACE2 and
CD209 was only found in the T/Mø activated cells. This might be a result from the immune
stimulation by intensive viral attack to ACE2 and DC-SIGN expressing cells. This may also
reflect the positive correlation of CD209 with T cell percentage and negative correlation
with neutrophils, which were detected by our large-scale population genetic association
study. Indeed, CD209 mediates the activation of T cells [20]; the activated neutrophils
produce TNF-alpha and induce DC maturation which lower the CD209 expression [21].
The neutrophil-to-lymphocyte ratio has been studied as a severity marker in COVID-19 [22]
and as a valid prognostic factor in various solid tumors and other chronic diseases [23].
Therefore, the interaction of CD209 and DCs with neutrophils and T cells may play an
important role in mediating cytokine storm coupled with limited anti-viral capability, which
are keys in COVID-19 pathogenesis [24]. Further investigation is required to elucidate this
interaction and the causal effect of ACE2 or CD209 to the COVID-19 risk.

For the first time, we performed a systematic investigation of the expression of SARS-
CoV-2 receptors in single cells of upper airway, lower airway and blood of COVID-19
patients. We found CD209 expression and the percentage of DCs and MoD Mø or mono-
cytes were associated with COVID-19 severity. Interestingly, the associations were site
specific. In the lung and upper airway with mild infection, DCs were induced and aug-
mented for an active immune response. In the cases of severe infection, the decrease of DCs
proportion and maturation could be a sign of the exhaustion of DCs. Also, the decreased
expression of CD209 in DCs of COVID-19 lungs may be a result of cell death caused by
direct viral infection to DC-SIGN expressed DCs. Differently, blood showed induced DC
activation and increased CD209 expression, which may indicate that DCs are stimulated
in blood but not primarily attacked by virus. Indeed, no SARS-CoV-2 sequencing reads
were detected from COVID-19 PMBC [15]. Interestingly, DCs in lungs of severe COVID-19
showed upregulation of genes for T cell stimulation but downregulation of genes for
antigen presentation and maturation, indicating that DCs may stimulate innate immune
system but fail to present SARS-CoV-2. This may lead to the cytokine storm but the failure
of anti-viral response in severe COVID-19 patients. SARS-CoV-2 might use an escape
mechanism similar to HIV-1 which hides in DCs and uses DC-SIGN as a trans-receptor for
efficient transmission to T cells, and also similar to Mycobacteria tuberculosis (M. tb) which
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subverts DCs by targeting DC-SIGN and inhibiting maturation [25]. The stimulated and
“blinded” immune systems could be responsible for the cytokine storm as well as severe
ARDS suffering COVID-19 critical cases. MHCII genes especially HLA-DQA2 might be
involved in this pathogenesis, which were found to be significantly decreased in lung
of severe cases compared to mild cases. This may also link to the olfactory impairment
which is often seen in patients with COVID-19, given that MHC are essential in individual
olfactory perception [26].

A broad downregulation of MHCII genes in APCs was observed and aligned with
findings that dysfunctional monocytes [27,28] and B cells [29] in severe COVID-19. Here,
we report a shift of the proportion of cDCs and pDCs within DCs in COVID-19 cases, which
leads to the marked disease severity-dependent depletion of cDC2 in all studied tissues.
Strikingly, such shift was not found in severe cases, in which immature subsets including
CD22+ DC and ANXA1+ DC with suppressed activation markers were accumulated. This
may cause the immunosuppression of DCs and contribute to the variation of disease
severity through the interactions between DCs and T cells and other immune cells. Indeed,
we found the immature CD22+ITM2C+ DCs was significantly positively correlated with the
resting Mø, CD4mT and mast cells in upper airway. Further studies are needed to elucidate
if the accumulation of immature subsets in severe cases directly blocks the activation of
mature DCs and pDC.

Collectively, this study provides important pieces of puzzle of COVID-19 about
dysfunctional DC cells from the expression of receptors of SARS coronavirus, remodeling
of DC activation and redistribution of DC subsets. Although further studies with a larger
sample size of single cell or single cell type studies will be needed to properly assess this
matter, this study provide important hints for vaccine development, as well as the variation
of COVID-19 severity and pathogenesis.

4. Materials and Methods
4.1. Bulk Transcriptomics
4.1.1. Upper Airway Samples from COVID-19 Patients and Controls

We studied the metagenomic next generation sequencing (mNGS) data of nasophar-
ynx/pharynx samples from 197 patients with acute respiratory illnesses, including 94 patients
confirmed with SARS-CoV-2 infection by clinical PCR and 103 with no virus detected [30].
The host gene expression read counts and the CPM (read counts for million) of SARS-CoV-2
virus were analyzed. We normalized the read counts of ACE2 and CD209 using the TMM
method and calculated CPM using edgeR [31]. The data for CLEC4M was not available.

We deconvoluted the immune cell composition from these bulk RNA-seq data using
CIBERSORT [32] with its signature matrix, LM22. In each sample, the proportions of
22 human hematopoietic cell types were inferred, including naïve and memory B cells,
plasma cells, seven T cell types (CD8, CD4 native, memory resting CD4, memory activated
CD4, follicular helper, regulatory (Tregs) and gamma delta), NK cells (resting and activated),
monocytes, macrophages (M0, M1 and M2), dendritic cells (resting and activated), mast
cells (resting and activated), eosinophils and neutrophils. Using transcriptome profiles of
DC subsets identified in below scRNA-seq datasets of nasopharynx/pharynx samples, we
also estimated the composition of DC subsets in these bulk RNA-seq data using MuSiC [33].

Linear regression was used to test the difference of gene expression or immune cell
proportions between sample groups as well as their association with SARS-CoV-2 viral
load in samples.

Within samples of the 94 COVID-19 patients, we further identified one subtype of
low SARS-CoV-2 load (LowLoad) with SARS-CoV-2 viral load log10 CPM ≤ 1, as well as
four subtypes based on the proportion of these associated immune cells. Specific cutoffs
of cell proportions were applied for each immune cell type, that 0.1 is for DCs, 0.15 for
neutrophils, 0.05 for T cells and macrophages. As shown in Supplementary Figure S12,
samples that were relatively enriched by each type of immune cells were identified based
on these cutoffs.
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4.1.2. Blood Samples from ARDS Cases and Controls

From the Molecular Epidemiology of ARDS (MEARDS) prospective cohort study [34,35],
160 Acute Respiratory Distress Syndrome (ARDS) cases and 142 controls were recruited
for RNA-Seq analysis of blood samples. RNA was extracted by PAXgene Blood RNA Kit
(QIAGEN LLC—USA, Germantown, MD, USA) and selected by using oligo(dT) beads.
Sequencing libraries were built using MGIEasy RNA Library Prep Kit (MGI Tech Co.,
Ltd., Shenzhen, China) and subsequently sequenced on the MGISEQ-2000 platform. The
100 bp pair-end sequencing reads were filtered to remove low-quality, adaptor-polluted
and high content of unknown base (N) reads. Further, sequencing reads were mapped to
reference genome GRCh38 using STAR [36] and counts of reads aligning to known genes
were generated by featureCounts [37]. Quality controls were performed for evenness of
coverage, rRNA content, genomic context of alignments, as described in Du et al. [35].
Then, limma-voom [38] was used to perform whole-transcriptome differential expression
analysis from raw counts.

4.1.3. TCGA Lung Adenocarcinoma Tumors

The data retrieval and processing followed our previous study [39]. Reads per kilobase
per million mapped reads (RPKM) values were calculated for association analysis.

4.2. Single-Cell Transcriptomics

We analyzed scRNA-seq datasets of nasopharynx/pharynx, BALF and PBMC sam-
ples from COVID-19 patients and healthy controls. The nasopharynx/pharynx data were
available in the study of Chua et al. [40] with the count matrix and cell type identification
derived from 11 moderate and eight critical COVID-19 patients and five healthy controls.
The count data of BALF samples from six severe and three mild COVID-19 patients as well
as three healthy controls were downloaded from GEO GSE145926 [14]. Also, the count data
from PBMC samples of six severe, four mild, and one asymptomatic COVID-19 patients
and four healthy controls were downloaded from GEO GSE149689 of Lee et al. [16]. In
addition, we analyzed a second PBMC scRNA-seq dataset from the study of Wilk et al. [15],
which was from six healthy controls and seven COVID-19 patients. Four of eight COVID-19
samples were collected from patients who were diagnosed with ARDS and were venti-
lated. Two samples were collected from one patient in the non-severe condition without
ventilation and in the severe condition with ventilation.

For each dataset, sequencing read counts in single cells were processed and analyzed
using the Seurat 3.0 package [41]. According to “nFeature_RNA” (the total number of genes
detected in each cell) and “percent.mt” (the proportion of transcripts that are of mitochondrial
origin in each cell), data were filtered to remove doublets, dead cells and empty droplets. We
applied “nFeature_RNA > 350 & nFeature_RNA < 11000 & percent.mt < 10” for the nasophar-
ynx/pharynx dataset, “nFeature_RNA > 350 & nFeature_RNA < 6500 & percent.mt < 10” for
the BALF dataset, “nFeature_RNA > 350 & nFeature_RNA < 6000 & percent.mt < 20” for the
Lee PBMC dataset, and “nFeature_RNA > 350 & nFeature_RNA < 3500 & percent.mt < 15”
for the the Wilk PBMC dataset. After filtering, 110,145 cells including 9326 DCs were left for
further analysis in the nasopharynx/pharynx dataset, 71,415 cells including 1484 DCs were
left in the BALF dataset, 58,187 cells including 526 DCs were left in the Lee et al. [16] PBMC
dataset, and 36,925 cells including 514 DCs were left in the Wilk PBMC dataset. Sequentially,
data were normalized using the “LogNormalize” method, 2000 highly variable feature
were selected, data were centered and scaled by their root mean square, and PCA analysis
were performed for dimension reduction. Further, the Louvain optimization-based cluster-
ing method was used on the top 20 principal components to identify clusters, which were
visualized in reduced dimensions of t-distributed stochastic neighbor embedding (tSNE)
and Uniform Manifold Approximation and Projection (UMAP). Cell types in the nasophar-
ynx/pharynx dataset and the Wilk et al. PBMC dataset were identified by their original
studies. Following the approaches used in the study of Wilk et al. [15], we used SingleR [42]
to identify cell types for cell clusters detected in the BALF and Lee et al. [16] PBMC datasets
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and validated them by markers used in their original studies respectively (Supplementary
Figure S13). In the nasopharynx/pharynx samples, 22 cell types were identified includ-
ing squamous cells, non-resident macrophages (NR macrophages), monocyte-derived
macrophages (MoD macrophages), resident macrophages (R macrophages), neutrophils,
CD4+ T cells, CD8+ T cells, B cells, ciliated cells, NK cells, NKT cells, differentiating ciliated
cells (Diff ciliated), DCs, IFNG-responsive cells (IRC), basal cells, secretory cells, differen-
tiating secretory cells (Diff secretory), outliers epithelial cells (Out epithelial), ionocytes,
Unknown epithelial cells, mast cells and FOXN4+ cells. In the BALF samples, we identi-
fied CD8+ T cells, CD4+ memory T cells (CD4m T), gamma delta T cells (gd T), alveolar
macrophages (A macrophages), MoD macrophages, epithelial cells, DCs, NK cells, plasma
B cells (PB), neutrophils and monocytes. In the Lee PBMC dataset, we identified immature
B cells, naive B cells, CD4m T cells, CD8+ T cells, CD4+ T cells, erythroblasts, gd T cells,
CD16+ monocytes, CD16− monocytes, platelets, NK cells, DCs and intermediate mono-
cytes (Int monocytes). In the Wilk PBMC dataset, 20 cell types were identified, including
activated granulocytes (Act granulocytes), B cells, CD14+ monocytes, CD16+ monocytes,
CD4+ T cells, CD4m T cells, naive CD4+ T cells (CD4n T), effector CD8+ T cells (CD8eff
T), CD8m T cells, class-switched B cells (Switched B), DCs, gd T cells, IgA-producing PB
cells (IgA PB), IgG-producing PB cells (IgG PB), neutrophils, NK cells, DCs, platelets, red
blood cells (RBC), as well as stem cells and eosinophils (SC & Eosinophil). To compare
gene expression between cell types, Wilcoxon rank sum test was used.

Within identified DC cells in each dataset, we re-clustered cells to identify DC subsets
following the same protocol as above. We used well evidenced markers for cDC1 (CLEC9A,
C1orf54, HLA-DPA1, CADM1, CAMK2D, XCR1), cDC2 (CD1C, FCER1A, CLEC10A), pDC
(DAB2, GZMB, JCHAIN, SERPINF1, ITM2C, CLEC4C, LILRA4), mature DC (LAMP3, CD86,
CD83, CD40, ICAM1, ITGA4, CCL8, CCL22, CCL17, CXCL8, CXCL9, CXCL10, CXCL11,
CCR7), macrophage-like DC (S100A9, S100A9, S100A8, VCAN, LYZ, CD14), AXL+ DC
(ANXA1, AXL, PPP1R14A, SIGLEC6, CD22) and non-classical DC (FCGR3A, CX3CR1).
To evaluate the similarity of DC subtypes identified in above scRNA-seq datasets, we
integrated these datasets using Seurat and visualized the integrated matrix with UMAP.
Monocle [43] and TSCAN [44] were used to infer the single cell trajectory.

4.3. Group Comparison and Association Testing

Linear regression was used to evaluate the association between variables and perform
two-group comparison. To evaluate the association of CD209 expression with tumor stage
and survival of lung adenocarcinoma tumors, ordinal regression and Cox proportional
hazard model were used respectively. Tumor vs. normal paired differential expression
analysis were performed using paired t-test.

4.4. Pathway and Network Analyses

Pathway and network analyses were performed to systematically investigate biologi-
cal processes involved in COVID-19. We calculated transcriptome-wide fold changes (FC)
of expression and ranked the differential expression according to log2FC. Based on these
ranks, pre-ranked Gene Set Enrichment Analysis (GSEA) [17] was applied to evaluate the
enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) [45] pathways. Further,
the summary statistics of GSEA analysis were used to build connection networks of de-
tected pathways by the Enrichment Map implemented in Cytoscape [46]. Pathways with
q-value < 0.2 were included into networks and the connectivity strength was determined
by an edge cutoff as 0.25. In addition, networks of genes with absolute value of the average
of log2FC >1 were constructed using the Cytoscape StringAPP [47].

4.5. Inference and Comparison of Transcriptional Bursting Kinetics between DC Subsets

To infer the bursting kinetics from single cell transcriptomic data, we developed a
Bayesian hierarchical framework to estimate the bursting kinetic parameters (i.e., transcribe
rate s, activation rate kon and deactivation rate ko f f ). In the spirit of the conventional
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Poisson-Beta model [48], our method considered the transcriptional bursting process
characterized by burst size s/ko f f and burst frequency kon. A major limitation of Poisson-
Beta model is that it neglects the remarkable noisy nature of sequencing technology [49–51],
which usually leads to overestimation of the dispersion and consequently jeopardize the
validity to infer bursting kinetics. To address this issue, we reconstructed the mean-variance
relationship by utilizing the Generalized additive model (GAM) that can resist and down-
weight the effect of a small number of atypically high dispersion estimates especially for
genes with few counts. The re-estimated dispersion parameter φ based on the re-fitted
mean-variance function was then incorporated into the framework, assuming that the
sampling distribution of the underlying mean λ is gamma. Specifically, let y ∼ Poisson(λ)
denotes the observed number of mRNA molecules:

λ ∼ gamma
(

1/φ2, spφ2
)

(1)

p
∣∣∣kon, ko f f ∼ Beta

(
kon, ko f f

)
(2)

where p denotes the fraction of time that a gene spends in the active state. With the
proper choices of the priors and hyperpriors, the posterior parameters were estimated via
the Markov Chain Monte Carlo (MCMC) algorithm implemented in the R package BISC
(https://github.com/thecailab/BISC, accessed on 5 October 2020).

We also formulated a differential bursting analysis framework that can further ex-
plored the change in bursting kinetics between different study conditions. After applying
the MCMC method, the MCMC samples provided various representative combinations of
bursting frequency and size values, while the credible differences of bursting frequency and
size could be examined by computing and summarizing the changes at each combination
of parameters values. Those credible differences could then be used to assess the credibility
of “null value” [52].

We applied the proposed method to investigate the differences of bursting kinetics
in ANXA1+ DCs in COVID-19 lung compared to pDCs and cDC2s separately. With the
processed scRNA-seq count data, changes in bursting frequency and size estimates (in log2
scale) were computed.

4.6. Transcriptome-Based Phenome-Wide Association Study

We utilized public resources to search for CD209 related traits/disease candidate.
PhenoScanncer [53] was used to obtain associated phenotypes from genome-wide as-
sociation study (GWAS) studies. Also, PhenomeXcan [54] underlying phenome-wide
association study (PheWAS) analytic framework was used to infer associations of CD209
lung expression and multiple traits, by integrating GWAS summary statistics of 4091 traits
and Genotype-Tissue Expression data from GTEx [55] lung tissue version 8.

4.7. Mendelian Randomization Analysis

Mendelian Randomization (MR) analysis provides evidence for a causal relationship
between exposure and outcome. To infer the causal effect of plasma expression of ACE2 and
DC-SIGN on COVID-19 risk and severity, we applied the TwoSampleMR R package [56] for
MR analysis. For exposures of protein expression of SARS-CoV-2 receptors, we obtained
publicly available plasma protein QTL summary statistics from the study of Sun et al. [57].
For outcomes of COVID-19 risk and severity, we separately required GWAS summary
statistics from GRASP (https://grasp.nhlbi.nih.gov/downloads/COVID19GWAS/060520
20/UKBB_covid19_ALLwhites_060520.SAIGE.bgen.txt.gz, accessed on 31 July 2020) for
COVID-19 risk, and that from the study of Ellinghaus et al. [58] for COVID-19 severity.
Independent genetic instruments of exposures were selected for MR analysis based on strict
criteria of minor allele frequency (MAF) > 0.05, linkage disequilibrium (LD) r2 < 0.01 within
a clumping window of 10,000 kb, and beyond genome-wide significance (p < 5 × 10−8). As
there were no genetic instruments of plasma ACE2, the significance threshold for selecting
instruments was set as p < 10−4. Ultimately, we found 3, 60, and 1 single nucleotide
polymorphisms (SNPs) as independent genetic instruments for plasma CD209, ACE2,

https://github.com/thecailab/BISC
https://grasp.nhlbi.nih.gov/downloads/COVID19GWAS/06052020/UKBB_covid19_ALLwhites_060520.SAIGE.bgen.txt.gz
https://grasp.nhlbi.nih.gov/downloads/COVID19GWAS/06052020/UKBB_covid19_ALLwhites_060520.SAIGE.bgen.txt.gz


Int. J. Mol. Sci. 2021, 22, 9228 17 of 20

and CLEC4M, respectively. Inverse-variance-weighted (IVW), weighted median, and MR-
Egger regression methods were used to calculate effect size (β) and corresponding standard
error (SE). The Wald ratio method was used if only one genetic instrument remained.
Heterogeneity was estimated using MR-Egger and IVW methods. Directional pleiotropy
was estimated via MR-Egger intercept test.

4.8. Software

All data management, statistical analyses and visualizations were accomplished using
R software version 4.0.2 (R Core Team, 2020).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179228/s1.
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