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Abstract Viruses generally are defined as lacking the fundamental properties of living organisms 
in that they do not harbor an energy metabolism system or protein synthesis machinery. However, 
the discovery of giant viruses of amoeba has fundamentally challenged this view because of their 
exceptional genome properties, particle sizes and encoding of the enzyme machinery for some 
steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still 
require a host for their multiplication, numerous metabolic genes involved in energy production have 
been recently detected in giant virus genomes from many environments. These findings have further 
blurred the boundaries that separate viruses and living organisms. Herein, we summarize informa-
tion concerning genes and proteins involved in cellular metabolic pathways and their orthologues 
that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes 
described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, 
tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have 
been acquired from diverse biological sources through lateral gene transfer early in the evolution of 
Nucleo- Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses 
are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also 
may represent another form of host metabolism manipulation, by expanding the catalytic capabili-
ties of the host cells especially in harsh environments, providing the infected host cells with a selec-
tive evolutionary advantage compared to non- infected cells and hence favoring the viral replication. 
However, the mechanism of these genes' functionality remains unclear to date.

Introduction
Viruses are the most abundant biological entities in the biosphere (Baltimore, 1971; Suttle, 2005; 
Suttle, 2007) and have been the subject of persistent debates as to their place in the domains of 
life. Active energy metabolism pathways and the autonomous ability to reproduce independently are 
the most fundamental criteria associated with living cells and therefore distinguish the three domains 
of life – archaea, bacteria, and eukarya – from viral entities. Specifically, the fundamental hallmark 
of all living organisms is the self- maintenance of their own functional and structural integrity via the 
biochemical transformations of environmental resources. (Dupré and O’Malley, 2009).

Viruses originally were defined as filterable agents capable of passing through membrane filters 
with pore sizes of 0.22 µm. Most viruses possess small genomes that carry only a handful of genes 
supporting their replication and capsid production in a host cell. Viruses have thus been characterized 
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as ‘molecular genetic parasites’ that take advantage of cellular functions to replicate (Luria, 1959). 
Generally, once viruses find their replication site they hijack the host cellular metabolic pathways 
to their own advantage with the ultimate goal to replicate (Villarreal, 2005). However, ambiguity 
regarding the definition of viruses appears in the concept of a ‘virocell’, defined by Forterre, 2013 
as a ‘living form’ of the virus, consisting of a living cell transformed to produce more virions (Fort-
erre, 2013). At the blurred boundaries between viruses and cellular organisms, intracellular bacteria 
such as Rickettsia and Chlamydia also are known to hijack host energy metabolism enabling their 
persistence and proliferation (Driscoll et al., 2017; Gehre, 2015), a characteristic shared with viruses. 
Ultimately, however, viruses lack many of the essential attributes of living organisms, such as the ability 
to capture and store free energy, as well as autonomous replication and self- repairing capacity (Dupré 
and O’Malley, 2009; Regenmortel, 2010).

In 2003, the discovery of the giant viruses of amoeba revolutionized the view of viruses (La Scola 
et al., 2003). Specifically, the size of the giant virus particles (reaching up to 2.5 μm) and of their 
genome sizes (up to 2.5  Mb), encoding almost a thousand proteins, fundamentally changed the 
landscape of virus research (Philippe et  al., 2013). Notably, Acanthamoeba polyphaga Mimivirus, 
the first giant virus of amoeba discovered, has a 1.2- Mbp genome, and possesses several genes 
encoding proteins involved in transcription and translation (Raoult et al., 2004; Raoult and Forterre, 
2008b). Phylogenetic analyses have demonstrated that some bacterial and eukaryotic genes found 
in the Mimivirus genome, and other giant virus genomes, were acquired by horizontal gene transfer 
from amoebal hosts, and from amoebal bacteria parasites (Moreira and Brochier- Armanet, 2008), 
although most giant virus genes still have enigmatic origins.

Giant viruses represent a group of ancient viruses that are termed the Nucleo–Cytoplasmic Large 
DNA Viruses (NCLDVs). While some are found in amoebae, other of these viruses infect hosts ranging 
from algae to animals and form an apparently monophyletic group in the phylum Nucleocytoviricota 
(Colson et al., 2013). The giant viruses are classified into several families: Mimiviridae, Pithoviridae, 
Pandoraviridae, Phycodnaviridae, Poxviridae, Iridoviridae, Asfarviridae, and others. Many, including 
newly discovered viruses in the Mollivirus genus are not yet classified (Abergel et al., 2015; Legendre 
et al., 2014; Rolland et al., 2019).

The genomes of giant viruses encode proteins that had never before been identified in viruses. 
These proteins have sequence identity with closely related eukaryotic homologs (Chelkha et  al., 
2020; Sun et al., 2020). For example, Cafeteria roenbergensis virus, Klosneuviruses and Tupanviruses 
encode several gene products that are involved in protein translation (Abrahão et al., 2018; Schulz 
et al., 2017); the presence of such translation machinery had not been previously described in viruses. 
This finding suggested that those viruses may have relative independence from their hosts (and hence 
are ‘quasi- autonomous’ viruses) (Claverie and Abergel, 2010). This has led to a reconsidering of the 
historical parasitic hallmark of viruses (Abrahão et al., 2017; Raoult and Forterre, 2008a). In addi-
tion to the translation components, giant virus gene products have been implicated in RNA matura-
tion, DNA maintenance, and proteostasis (Fischer et al., 2010; Yutin et al., 2013). Recently, defined 
metabolic genes involved in specialized cellular biochemical pathways have also been discovered in 
some giant viruses (Aherfi et al., 2022; Moniruzzaman et al., 2020; Schulz et al., 2020; Schvarcz 
and Steward, 2018). Herein, we analyze and describe giant virus genes encoding enzymes that are 
potentially involved in traditional biochemical pathways, findings that challenge the last distinguishing 
barriers separating the traditional domains of life and the giant viruses.

Carbohydrate metabolism
Carbohydrates are key enzymatic substrates for many essential metabolic pathways in cells (Maughan, 
2009). Generally, autotrophic organisms biosynthesize carbohydrates from carbon dioxide and water, 
via photosynthesis (Butterworth, 2005; Lehninger et al., 2004; Nelson and Cox, 2017). All organ-
isms then break down stored or consumed carbohydrates in order to produce energy for cell func-
tioning (Nelson and Cox, 2017). Both autotrophic and heterotrophic organisms temporarily store 
their generated energy in the form of high- energy molecules, for example adenosine triphosphate 
(ATP) and reduced nicotinamide adenine dinucleotide (NADH), for use in the various metabolic 
processes (Sanders, 2016).

Although some viruses in the Nucleocytoviricota phylum infect known hosts such as amoeba, it is 
not clear if these are actually the specific hosts. In any case, auxiliary metabolic genes (AMG) encoded 
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by giant viruses appear to exercise control and modulation of host cellular energetic metabolism, 
especially during viral genome replication, gene expression, and virion assembly (Sun et al., 2020). 
Such control mechanisms can be based on transcriptional regulation of nuclear and mitochondrion- 
encoded genes that are involved in energy metabolism, as observed with coccolithoviruses (Ku et al., 
2020). Single cell transcriptomics of the microalga Emiliania huxleyi during infection by its specific 
giant virus showed that either host or viral transcriptome dominated the generated mRNA pool, and 
that only very few cells were observed in intermediate states. The rapid shutdown of host transcript 
generation indicates that the E. huxleyi coccolithovirus massively takes over controlling synthesis of 
almost the entire mRNA pool.

Many giant viral genes and gene products related to energy production and metabolic path-
ways have been identified recently (Aherfi et  al., 2022; Ha et  al., 2021; Moniruzzaman et  al., 
2020; Figure 1). In a detailed study examining a database of 2436 annotated Nucleocytoviricota, 
including metatranscriptomic data from California’s surface waters, hundreds of viruses, mainly from 
the Mimiviridae and Phycodnaviridae families, were identified. Many expressed viral transcripts in 
this dataset are genes involved in glycolysis (e.g. phosphofructokinase [EC 2.7.1.11], glyceraldehyde 
3- phosphate dehydrogenase [EC 1.2. 1.12], phosphoglycerate mutase [EC 5.4.2.11]), gluconeogen-
esis (e.g. phosphoenolpyruvate carboxykinase [EC 4.1.1.32] and fructose- 1,6- bisphosphatase [EC 
3.1.3.11]), the tricarboxylic acid (TCA) cycle (e.g. succinate dehydrogenase [EC 1.3.5.1]), and the 
pentose phosphate pathway (e.g. 6- phosphogluconate dehydrogenase EC 1.1.1.1; Ha et al., 2021; 
Ha et al., 2021).

Figure 1. Schematic representation of the metabolic enzymes and pathways detected in NCLDVs. Schematic of the TCA cycle (dark blue) feeding 
into the Urea cycle (black); Carbon transfer (red); Gluconeogenesis (scarlet); Glycolysis (marine); Photosynthesis (green); Amino acid metabolism (blue); 
Fermentation (purple); and lipid β-oxidation (orange). Also shown in the Legend are the identified cellular enzymes and putative substrates which have 
been identified as being encoded in specific NCLDV genomes, here represented by Mimiviridae, Phycodnaviridae, and Pandoraviridae.
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Glycolysis and gluconeogenesis
Glycolysis is an ancient metabolic pathway that occurs in the cytoplasm of the cell and converts 
glucose into pyruvate, which is accompanied by transfer of electrons to NAD+ in order to generate 
NADH2 (Potter and Fothergill- Gilmore, 1993; Kumari, 2018). Inversely, gluconeogenesis is a process 
occurring in animals, fungi, plants, and bacteria, which results in the generation of glucose from non- 
carbohydrate carbon substrates such as lactate, amino acids, and glycerol (Rodwell et al., 2015).

A genomic study using environmental metagenome- assembled genomes (MAGs), identified genes 
encoding the glycolytic enzymes glyceraldehyde- 3- phosphate dehydrogenase, phosphoglycerate 
mutase, and phosphoglycerate kinase. These genes were considered to be particularly prevalent 
within the Mimiviridae (Figure  2A) and to a lesser extent in the Phycodnaviridae (Moniruzzaman 
et al., 2020). Studies of Mimivirus metagenomes identified a unique protein domain architecture, with 
a single fused gene encoding the enzymes glyceraldehyde- 3- phosphate dehydrogenase and phos-
phoglycerate kinase, which serve in two adjacent steps in glycolysis (Moniruzzaman et al., 2020). 
Such protein architecture is unique thus far and may reflect a more efficient process for enzymatic 
activity. Although this possibility requires experimental verification, it nevertheless highlights that 
giant viruses may drive evolutionary innovations of their metabolic genes.

This same study revealed that three genes associated with gluconeogenesis were present in 
Mimiviridae genomes (Moniruzzaman et  al., 2020): fructose 1,6- bisphosphatase, which catalyzes 
the biotransformation of fructose- 1,6- bisphosphate into fructose- 6- phosphate; phosphoenolpyruvate 
carboxykinase that converts oxaloacetate to phosphoenolpyruvate; and pyruvate carboxylase that 
catalyzes the carboxylation of pyruvate to form oxaloacetate (Figure 1, Table 1). The presence of 
such genes in infecting viruses also suggests there could be reprogramming of the host glycolysis 
pathways.

Fermentation
Fermentation is a heterotrophic anaerobic redox process that uses an organic compound as the 
terminal electron acceptor (Müller et al., 2012; Zhou et al., 2017). It is considered as an ancient 
metabolic pathway. Genes encoding for two key fermentation genes – pyruvate formate- lyase and 
pyruvate formate- lyase activating enzyme – have been found in Tetraselmis virus (TetV) (Chloroden-
drephycae) (Figure 1, Table 1), a mimivirus infecting the green algae Tetraselmis and land plants of 
the lineage Viridiplantae Müller et  al., 2012. This viral host utilizes anaerobic energy metabolism 
in low- oxygen conditions, suggesting horizontal gene transfer (Müller et  al., 2012; Schvarcz and 
Steward, 2018; T.-W. Sun et al., 2020, p. 1). Pyruvate formate- lyase catalyzes the reversible conver-
sion of pyruvate and coenzyme- A into formate and acetyl- CoA (Knappe et al., 1974). It is thought 

Figure 2. Transmission electron microscopy images of Mimivirus (A), Pandoravirus massiliensis (B) and Tupanvirus (C). (A) Mimivirus particle is 
composed of an external layer of dense fibers surrounding an icosahedral capsid and an internal membrane sac enveloping the virus genomic material. 
(B) Pandoravirus massiliensis virion is ovoid- shaped with an ostiole- like apex, measuring 1.0 μm in length and 0.5 μm in diameter. (C) Tupanvirus 
exhibits an icosahedral capsid similar to those of Mimivirus measuring ~450 nm. However, Tupanvirus virion harbors a large cylindrical tail (550 nm 
extension;~450 nm diameter, including fibrils) attached to the base of the capsid. Electron micrographs were acquired on a Tecnai G2 transmission 
electron microscope (Scale bar, 200 nm).
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Table 1. List of metabolic enzymes detected in NCLDVs.
The enzymes were grouped according to the metabolic pathway to which they belong and associated with the giant virus and/or the 
family in which they were identified.

Pathway Enzyme Function KEGG* Detected in Family Reference(s)

Amino acid 
catabolism

Glutamate dehydrogenase

Reversible conversion 
of glutamate to 
α-ketoglutarate and 
ammonia R00243

Pandoravirus 
and others 
uncharacterized 
viruses†

Mimiviridae, 
Pandoraviridae and 
Phycodnaviridae

Moniruzzaman 
et al., 2020; 
Aherfi et al., 
2018

Glutamine synthetase

Condensation of 
glutamate and ammonia 
to form glutamine: R00253

Uncharacterized 
viruses† Mimiviridae Ha et al., 2021

Glutaminase
Hydrolysis of glutamine 
into glutamate R00256

Uncharacterized 
viruses† Mimiviridae

Moniruzzaman 
et al., 2020;
Ha et al., 2021

Lipide catabolism 
and β-Oxydation

Triacylglycerol lipase

Degrades triacylglycerol 
into glycerol and fatty 
acids R01369

Prymnesium kappa 
virus RF01 Mimiviridae

Blanc- Mathieu 
et al., 2021

Fatty- acyl- CoA Synthase

Conversion of a acetyl- 
CoA and seven malonyl- 
CoA molecules to produce 
a Palmitoyl- CoA R05190

Prymnesium kappa 
virus RF01 Mimiviridae

Blanc- Mathieu 
et al., 2021

CoA- transferase

Conversion acyl- CoA and 
acetate into fatty acid 
anion and acetyl- CoA. R00393

Prymnesium kappa 
virus RF01 Mimiviridae

Blanc- Mathieu 
et al., 2021

Acyl- CoA dehydrogenase Desaturation of the acyl- 
CoA esters

R00392 Prymnesium kappa 
virus RF01 and others 
uncharacterized 
viruses†

Mimiviridae Blanc- Mathieu 
et al., 2021

Table 1 continued on next page
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Pathway Enzyme Function KEGG* Detected in Family Reference(s)

Citric Acid Cycle

Succinate dehydrogenase
Conversion of succinate 
into fumarate R02164

Prymnesium 
kappa virus RF01, 
Pandoravirus 
massiliensis 
and others 
uncharacterized 
viruses†

Mimiviridae, 
Pandoraviridae and 
Phycodnaviridae

Moniruzzaman 
et al., 
2020; Aherfi 
et al., 
2022; Blanc- 
Mathieu et al., 
2021; Ha et al., 
2021;

Citrate synthase

Claisen condensation 
between acetyl CoA and 
oxaloacetate to yield, after 
hydrolysis of the thioester 
bond, citrate and CoA R00351

Pandoravirus 
massiliensis 
and others 
uncharacterized 
viruses†

Pandoraviridae and 
Mimiviridae

Aherfi 
et al., 2022; 
Moniruzzaman 
et al., 2020

Aconitase

Catalyzes the 
stereospecific 
isomerization of citrate to 
isocitrate via cis- aconitate 
in a non- redox reaction R01324

Pandoravirus 
massiliensis 
and others 
uncharacterized 
viruses†

Pandoraviridae and 
Mimiviridae

Moniruzzaman 
et al., 
2020; Rodrigues 
et al., 
2019; Aherfi 
et al., 2022

Isocitrate/isopropyl malate 
dehydrogenase

Oxidative decarboxylation 
of isocitrate, resulting in 
alpha- ketoglutarate and 
carbon dioxide.

R00267 /
R01652

Pandoravirus 
massiliensis 
and others 
uncharacterized 
viruses†

Pandoraviridae and 
Mimiviridae

Aherfi 
et al., 2022; 
Moniruzzaman 
et al., 2020

Malate synthase

Conversion of enzyme 
are acetyl- CoA, H2O, and 
glyoxylate into (S)- malate 
and CoA. R00472

Uncharacterized 
viruses† Mimiviridae Ha et al., 2021

Alpha- ketoglutarate 
decarboxylase

Conversion of 
α-ketoglutarate to 
succinyl- CoA and 
produces NADH directly 
providing electrons for the 
respiratory chain R00272

Pandoravirus 
massiliensis Pandoraviridae

Aherfi et al., 
2022

Fumarase
Conversion of fumarate to 
L- malate R01082

Pandoravirus 
massiliensis Pandoraviridae

Aherfi et al., 
2022

Fermentation Pyruvate formate- lyase

Catalyzes the reaction of 
pyruvate +CoA acetyl- 
CoA +formate R00212 Tetraselmis virus Phycodnaviridae

Müller et al., 
2012; Schvarcz 
and Steward, 
2018; Sun et al., 
2020

Formate- lyase activating 
enzyme

Converts pyruvate and 
CoA into acetyl CoA and 
formate R04710 Tetraselmis virus Phycodnaviridae

Müller et al., 
2012; Schvarcz 
and Steward, 
2018

Gluconeogenesis

Fructose bisphosphatase

Converts fructose- 1,6- 
bisphosphate to fructose 
6- phosphate R00762

Uncharacterized 
viruses† Mimiviridae

Moniruzzaman 
et al., 2020; Ha 
et al., 2021

Phosphoenolpyruvate 
carboxykinase

Converts oxaloacetate 
into phosphoenolpyruvate 
and carbon dioxide. R00341

Uncharacterized 
viruses† Mimiviridae

Moniruzzaman 
et al., 2020; Ha 
et al., 2021

Pyruvate carboxylase Catalyzes the conversion 
of pyruvate to 
oxaloacetate

R00344 Uncharacterized 
viruses†

Mimiviridae Moniruzzaman 
et al., 2020

Table 1 continued

Table 1 continued on next page
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that in low oxygen conditions the host may use these viral genes to generate the required energy via 
manipulation of anaerobic energy metabolism. In the absence of light, algae and bacteria deplete 
dissolved oxygen in the superficial water. In anoxic conditions, the fermentation process thus may 
favor viral spreading, with the metabolism of infected cells being potentially maintained by virally 
encoded fermentation genes, an advantage for the viral host (Schvarcz and Steward, 2018).

Other putative viral fermentation genes that have been identified include the mannitol metabo-
lism protein, mannitol 1- phosphate dehydrogenase and the saccharide degradation enzyme alpha- 
galactosidase in the Tetraselmis virus (Table 1). However, the role of these genes in the virus is less 
clear (Schvarcz and Steward, 2018).

Tricarboxylic acid cycle
The tricarboxylic acid (TCA) cycle – also known as the Krebs cycle – is a linked series of biochemical 
reactions used by all aerobic organisms to release stored energy via the oxidation of acetyl- CoA, 
derived from carbohydrates, fats, and proteins (Smith and Morowitz, 2004). It is the central meta-
bolic hub for many biochemical pathways. It begins from acetate (in the form of acetyl- CoA) and water, 
to reduce NAD +into NADH, with the concomitant release of carbon dioxide (Krebs and Johnson, 
1937; Meléndez- Hevia et al., 1996; Noor et al., 2010). The NADH generated by this cycle enters 
the oxidative phosphorylation (electron transport) pathway. As a result of these two closely linked 
metabolic pathways, several molecules of ATP are produced.

In the previously cited study based on MAGs, predicted TCA- related gene products were the 
most represented, especially aconitase and succinate dehydrogenase, encoded in Mimiviridae and 
Phycodnaviridae genomes (Moniruzzaman et al., 2020). Aconitase was previously reported in Tupan-
virus as well (Rodrigues et al., 2019; Figures 1 and 2.C Table 1). In cells, aconitase catalyzes the 
stereospecific isomerization of citrate to isocitrate via cis- aconitate in a non- redox reaction. Succi-
nate dehydrogenase is a complex enzyme that catalyzes the conversion of succinate into fumarate, 
which generates electrons used to reduce oxygen into water (Oyedotun and Lemire, 2004). The viral 

Pathway Enzyme Function KEGG* Detected in Family Reference(s)

Glycolysis

Glyceraldehyde- 3- 
phosphate dehydrogenase

Conversion of pyruvate to 
oxaloacetate R01061

Uncharacterized 
viruses†

Mimiviridae and 
Phycodnaviridae

Moniruzzaman 
et al., 2020

Phosphoglycerate mutase

Transfers the phosphate 
from 3- phosphoglyceric 
acid (3 PG) to the 
second carbon to form 
2- phosphoglyceric acid 
(2 PG) R01518

Uncharacterized 
viruses†

Mimiviridae and 
Phycodnaviridae

Moniruzzaman 
et al., 2020; Ha 
et al., 2021

Phosphoglycerate kinase

Catalyzes the formation 
of ATP from ADP and 
1,3- diphosphoglycerate R01512

Uncharacterized 
viruses†

Mimiviridae and 
Phycodnaviridae

Moniruzzaman 
et al., 2020

Photosynthesis

Rhodopsin

Generating a proton 
motive force across the 
cell membrane (light 
dependent) R02903

Organic Lake 
Phycodnavirus 2 and 
Phaeocystis globosa 
virus Phycodnaviridae

Needham et al., 
2019; Yutin and 
Koonin, 2012; 
Schulz et al., 
2020

Mannitol metabolism
Mannitol 1- phosphate 
dehydrogenase

Converts D- mannitol 
1- phosphate and 
NAD +into fructose 
6- phosphate, NADH and 
H+. R00758 Tetraselmis virus Phycodnaviridae

Schvarcz and 
Steward, 2018

Saccharide 
degradation

Alpha- galactosidase

Catalyzes the removal 
of terminal α-galactose 
groups from substrates 
such as glycoproteins and 
glycolipids R01101 Tetraselmis virus Phycodnaviridae

Schvarcz and 
Steward, 2018

*KEGG codes for the biochemical reactions described (https://www.genome.jp/kegg/reaction/).
†Enzymes detected in NCLDVs from metagenome- assembled genome analysis.

Table 1 continued
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TCA enzymes may be utilized to boost host TCA cycle steps and hence energy production, possibly 
providing competitive advantages to the host.

The alga- infecting giant virus Prymnesium kappa virus RF01, which belongs to the Mimiviridae 
family, harbors six energy metabolism gene homologs (Blanc- Mathieu et al., 2021). Among them, 
there are the four succinate dehydrogenase subunits (A- D), an enzyme involved in oxidative phosphor-
ylation pathway and the TCA cycle (Figure 1, Table 1). The gene encoding subunit A of this complex 
protein is transcribed during infection, again intimating that host energy metabolism could be modu-
lated by the virus (Blanc- Mathieu et al., 2021). Putative succinate dehydrogenase genes detected 
by metatranscriptomic analysis were associated with Mimiviridae, suggesting the gene product to 
be highly expressed in the virosphere of surface oceanic waters of California (USA) (Ha et al., 2021), 
and may be widespread among marine Mimiviridae (Blanc- Mathieu et al., 2021). In the same study, 
malate synthase and isocitrate lyase, other key enzymes of the TCA cycle, were found expressed in 
different time points in viruses in the Mimiviridae (Ha et al., 2021; Figure 1, Table 1).

Several predicted proteins recently found in Pandoravirus massiliensis (Figure 2B) are homo-
logues of enzymes involved in the TCA cycle, albeit with low % identities: citrate synthase, aconi-
tase, isocitrate/isopropyl malate dehydrogenase, alpha- ketoglutarate decarboxylase, succinate 
dehydrogenase, and fumarase (Figure 1, Table 1). The predicted isocitrate dehydrogenase of P. 
massiliensis was functional both in crude viral particles and following in vitro reconstitution of the 
purified recombinant protein. In addition, it was also demonstrated experimentally that P. massil-
iensis can generate an electrochemical gradient, an essential component of all living cells (Aherfi 
et al., 2022). The membrane voltage in P. massiliensis may be involved in the amoeba infection 
process, notably in the early stages of infection (Aherfi et al., 2022), helping the virus to release 
its DNA into host cells. Besides, it has been shown previously that the inhibition of potassium 
ion channels of Chlorella viruses, proteins related to membrane voltage, causes the depolariza-
tion of host cells and consequently the inhibition of viral DNA release into the host cell (Frohns 
et al., 2006; Neupärtl et al., 2008). Whether similar mechanisms are involved in P. massiliensis is 
unknown.

These findings potentially suggest that these viruses use such genes either to produce energy 
autonomously, or to stimulate the host energy metabolism in the aim to confer a replicative advan-
tage to infected cells. Further investigations such as expression of these genes, followed by enzymatic 
activity assays are needed for a detailed comprehension of these enzymes.

Lipids
Lipid metabolism consists of the catabolism of fatty acids and steroids/sterols in order to generate 
energy, and anabolic processes used to synthesize new lipids from smaller constituent molecules. 
Generally, lipids classified as fatty acids, triacylglycerols, phospholipids, sterols and sphingolipids are 
utilized in energy generation. Lipidomic β-oxidation is the main metabolic pathway for the degrada-
tion of fatty acid molecules to generate acetyl- CoA, which then enters in the TCA cycle.

A recent metatranscriptomic time- series study from the California Current surface waters has iden-
tified many novel transcripts putatively for lipid metabolism enzymes in viruses in the Nucleocytovir-
icota. Identified viral genes included those predicted to be involved in lipid β-oxidation (Ha et al., 
2021). Genes encoding acyl- CoA dehydrogenases (EC 1.3.8.7), which catalyze the first committed 
enzymatic step of lipid β-oxidation, were consistently expressed across sampled timepoints, especially 
in the Mimiviridae. This finding again suggests that virus- mediated reprogramming of host central 
carbon metabolism is functional and occurs in oceanic surface waters (Ha et al., 2021).

In Prymnesium kappa virus RF01 (PCV RF01), numerous genes were found that are predicted to 
encode enzymes known to be involved in cellular lipid metabolism, such as a triacylglycerol lipase, 
which degrades triacylglycerol into glycerol and fatty acids (Figure 1, Table 1). These metabolites 
are used as precursors for ATP production via glycolysis and β-oxidation, respectively. In addition, 
it has been found that PCV RF01 encodes the key β-oxidation enzymes fatty acyl- CoA synthetase 
(EC 6.2.1.1), CoA- transferase (EC 2.8.3.8), and acyl- CoA dehydrogenase (EC 1.3.8.7) (Blanc- Mathieu 
et al., 2021). However, enzymes involved in the two intermediate steps immediately following each 
oxidation, enoyl- CoA hydratase (EC 4.2.1.17) or a β-ketothiolase (EC2.3.1.16), have not been detected 
in any giant virus to- date.

https://doi.org/10.7554/eLife.78674
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Amino-acids / proteins
In cells, protein and/or amino acid utilization as a source of energy release mainly occurs when the 
intake of carbohydrates or lipids is insufficient to supply the required energy demand (Hothersall and 
Ahmed, 2013). In prokaryotes, and in mitochondria, glutamate dehydrogenase (EC 1.4.1.2) catalyzes 
the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)+to 
NAD(P)H. The α-ketoglutarate is consumed by the TCA cycle to produce ATP (Glevarec et al., 2004; 
Miller and Magasanik, 1990; Plaitakis et al., 2017). MAGs studies of members of multiple NCLDV 
families report the presence of putative glutamate dehydrogenase, glutamine synthase (EC 6.3.1.2), 
and glutaminase (EC 3.5.1.2) enzymes (Moniruzzaman et al., 2020). Other analyses confirmed the 
presence of glutamate dehydrogenase in members of the Pandoraviridae family (Figure 1, Table 1; 
Aherfi et al., 2018; Hosokawa et al., 2021; Legendre et al., 2018; Philippe et al., 2013).

Glutaminase and glutamine synthase, two cellular enzymes that regulate primary energy metabo-
lism, found in Mimiviridae were expressed upon infection (Ha et al., 2021). The glutaminase catalyzes 
the hydrolysis of glutamine into glutamate, regulating cellular energy metabolism via the increase of 
glutamate and α-ketoglutarate. This results in enhanced mitochondrial respiration and ATP genera-
tion (Campos- Sandoval et al., 2007; Hu et al., 2010). Glutamine synthetase plays a key role in the 
cellular utilization of carbon and nitrogen sources, helps modulate the energy budget in bacteria and 
mediates the release of energy stored in glutamine, that increases especially in stressed cells (Aldarini 
et al., 2017). Thus, the presence of such glutaminolysis enzymes in giant viruses may help reprogram 
metabolism by maximizing glutamine catabolism and thus increase available energy to promote virus 
replication and virion production (Ha et al., 2021).

Energy from inorganic compounds including photosynthesis
Energy from inorganic compounds
Chemolithotrophy is a metabolic process whereby energy is derived from the oxidation of inorganic 
compounds such as hydrogen (Friedrich and Schwartz, 1993), reduced sulfur compounds (Friedrich, 
1997), hydrogen sulfide, thiosulfate, ferrous iron, and ammonia (Jetten et al., 1998). Microbial oxida-
tion of inorganic compounds is governed by chemical and enzymatic reactions to generate energy 
(ATP) and reducing power (NADH).

The most common chemotrophic organisms that oxidize inorganic compounds are prokaryotic. 
Nonetheless, diverse deep- sea viruses including members of the Podoviridae, Siphoviridae, and 
Myoviridae, have been reported to contain genes putatively encoding the α and γ subunits of the 
reverse- acting dissimilatory sulfite reductase (Rdsr), an enzyme that oxidizes the element sulfur. It is 
assumed that this gene is used to maintain or augment host cellular processes during infection and to 
redirect energy and resources towards viral production (Anantharaman et al., 2014).

A recent metagenomic study found that predicted ferric reductase enzymes were encoded in 
several NCLDV genomes (Schulz et  al., 2020). In cellular organisms, ferric reductases function as 
a terminal reductase in an electron transport chain, by reducing ferric ion Fe3+ into ferrous ion Fe2+. 
Ferric reductase enzymes are also critical for the assimilatory iron pathway in organisms (Lovley, 2002; 
Lovley and Coates, 2000; Lovley et al., 1998). The reduction of ferric iron combined with a proton 
gradient through the cell membrane, is used by membrane- bound ATP synthase to generate the ATP 
(Schröder et al., 2003). This proton gradient can also be used to reduce NAD(P)+ in chemolitho-
trophs for several biosynthetic reactions (Lovley, 2002; Lovley and Coates, 2000). The presence of 
these enzymes in giant viruses and their functioning biochemistry may support infected host cell(s) 
metabolism and confer on them a competitive advantage in suboxic environments (Márquez et al., 
2007). Moreover, these enzymes may also play a significant role in modifying the composition of the 
surrounding chemical environment, which can impact other microorganisms, most notably those that 
use iron respiration (Schulz et al., 2020).

Photosynthesis
Photosynthesis is arguably the most important biological process functioning in nature, and is respon-
sible for the existence of most life on Earth. It is essential for producing and maintaining the oxygen 
content of the atmosphere and supplies most of the energy necessary for life on the planet (Bryant 
and Frigaard, 2006). Photosynthesis is a pivotal process used by many autotrophic organisms, 
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enabling them to convert light energy into chemical energy which is stored in the form of carbohy-
drates synthesized from carbon dioxide and water (Blankenship, 2010; Olson, 2006). Subsequently, 
the carbohydrates can be released to fuel the organism’s cellular metabolic activities. However, viral 
infections can potentially affect and/or redirect metabolic pathways in photosynthetic host organisms. 
For example, infection with a mimivirus has been shown to suppress transcripts related to photosyn-
thesis as well as cytoskeleton formation in brown- tide forming pelagophyte Aureococcus anophagef-
ferens (Moniruzzaman et al., 2018; see below).

In marine environments, viruses are the most abundant biological entities and drive organism 
population control by consistently impacting nutrient and biogeochemical cycling in these ecosys-
tems (Hurwitz et al., 2013; Juneau et al., 2003; Suttle, 2016; Villarreal and Witzany, 2010). Marine 
viruses also affect algal blooms and their diversity as well as species distribution (Juneau et al., 2003). 
Marine viral genes that encode for numerous proteins involved in photosynthetic biology have already 
been found and characterized, especially in cyanophages (Alperovitch- Lavy et al., 2011; Coutinho 
et al., 2017; Lindell et al., 2005; Sharon et al., 2009; Sullivan et al., 2006). These proteins include 
photosystems I and II that drive the complete photosynthetic process during phage infection, with the 
overall effect of promoting maximal phage replication (Fridman et al., 2017).

Most NCLDV groups appear to be present ubiquitously in marine environments, based on metag-
enomics (Endo et al., 2020). The majority of these are closely related to the families Mimiviridae and 
Phycodnaviridae: of the more than 6,700 polymerase B genes (PolB; a conserved marker of NCLDVs) 
assembled from the Tara Oceans dataset, 5091 were related to Mimiviridae and 981 to Phycodnavir-
idae (Endo et al., 2020). However, other studies suggest that certain NCLDVs may be endemic to the 
regions in which they were identified (Needham et al., 2019), and there is considerable undiscovered 
diversity in marine giant viruses.

Many genes detected in these reassembled NCLDV genomes were predicted to encode for 
proteins with putative roles in photosynthesis, suggesting that reprogramming host metabolism may 
be a common phenomenon employed by NCLDVs (Schulz et al., 2020). Giant viruses thus may funda-
mentally impact photosynthetic processes in marine and freshwater protists (Needham et al., 2019; 
Endo et  al., 2020; Moniruzzaman et  al., 2017; Short, 2012). However, that NCLDV apparently 
endogenize into various green algae, so the metagenome assemblies may not be accurate in this case 
(Moniruzzaman et al., 2020).

Another example of the biochemical consequences of viral infections in marine ecosystems is 
represented by a recent transcriptome study, providing new insights regarding transcriptional remod-
eling in Aureococcus cells when infected by the giant virus Aureococcus anophagefferens. Imme-
diately after A. anophagefferens infection, Aureococcus cellular genes related to light harvesting, 
photosystem structure, and isoprenoid biosynthesis are down- regulated while porphyrin biosynthesis 
genes are up- regulated (Moniruzzaman et al., 2018). This over- expression, by increasing intracellular 
porphyrin concentrations in infected cells, may increase cellular oxidative stress and may represent a 
host defense mechanism against the viral attack.

The choanoviruses in the phylum Nucleocytoviricota parasitize choanoflagellates, protistan preda-
tors. Choanovirus genomes assembled from metagenomic sequences encode the complete rhodopsin- 
based photosystem (Needham et al., 2019). This virally- induced light- driven energy transfer is closely 
connected with host ATP synthases and elegantly illustrates how giant viruses can modulate and alter 
nutrition and use of organic compounds by their unicellular eukaryotic hosts in marine environments 
(Needham et al., 2019). The photosystem genes in the choanoviruses may be the result of unique (or 
multiple) horizontal gene transfers events (Needham et al., 2019).

In another example of viral manipulation of host primary metabolism, genes encoding for proteor-
hodopsin were identified in the genomes of NCLDV Organic Lake Phycodnavirus (OLPV) 2 and Phae-
ocystis globosa virus (PGV) (Yutin and Koonin, 2012). Proteorhodopsins are photoreceptors found in 
marine planktonic bacteria, archaea, and eukaryotes (Béjà et al., 2000; Buhr et al., 2015; Frigaard 
et al., 2006; Lin et al., 2010; Slamovits et al., 2011). Metagenomic studies of extended sampling of 
NCLDV genomes revealed further that NCLDVs encode a large panel of diverse rhodopsins, repre-
senting one quarter of the current total diversity of rhodopsin proteins known to date (Schulz et al., 
2020). Their role as sensory rhodopsins may complement the host’s rhodopsin function, or conversely 
confer a new functionality to the host. It has been suggested that their expression may induce host 
phototaxis, and stimulate host relocation to nutrient- rich areas that are necessary for viral replication 
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(Yutin and Koonin, 2012). The origins of viral proteorhodopsin genes remain unknown, but they may 
have been captured from their unicellular eukaryotic hosts. Phylogenetic analyses based on sequences 
retrieved from metagenomic data argue for a monophyletic group formed by NCLDV rhodopsins, 
suggesting that these genes represent an ancestral trait shared by these viruses and which were then 
subsequently lost (Schulz et al., 2020). Furthermore, genes encoding putative carotenoid oxygenases 
have also been detected in these metagenomes. Viral carotenoid oxygenases may have the ability to 
modulate the host’s capacity to capture light and/or synthesize bioactive compounds. Thus, they may 
act in association with rhodopsins in order to provide metabolic advantages to infected populations 
(Schulz et al., 2020).

Others
In addition to primary metabolism energetic enzymes described above, a remarkable diversity of 
auxiliary metabolic genes involved in (i) carbon metabolism, nitrogen and nutrient cycling and (ii) soil 
organic matter degradation, have been found in marine viral communities (Table 2). It is hypothesized 
that these metabolic genes can complement deficient host metabolic pathways in order to sustain 
their host under environmental stressful conditions, with the overall goal to increase or maintain viral 
replication (Coutinho et al., 2017; Howard- Varona et al., 2020; Hurwitz and U’Ren, 2016). Such 
host / virus interactions appear to play an important role in the global ecosystem (Brum and Sullivan, 
2015; Hurwitz and U’Ren, 2016; Suttle, 2007; Zimmerman et al., 2020).

Other gene products have been implicated in the reprograming of cellular physiology during giant 
virus infection, especially in nutrient processing and oxidative stress (Monier et al., 2017; Moniru-
zzaman et al., 2018; Sheyn et al., 2016). For example, it has been reported that Mimiviridae and 
Phycodnaviridae families exhibit superoxide dismutase and glutathione peroxidase activities encoded 
by crucial enzymes involved in oxidative stress regulation (Table 2). A superoxide dismutase encoding 
gene, involved in the breakdown of reactive oxygen species (ROS), was found encoded in the Mega-
virus chiliensis genome (Lartigue et al., 2015). These enzymes likely help to protect the viral replica-
tion machinery from damage by ROS generated during viral infection (Moniruzzaman et al., 2018; 
Moniruzzaman et al., 2020).

Sheyn et al., 2016. have shown that during lytic infection by Emiliana huxleyi virus, which infects 
the cosmopolitan unicellular eukaryotic algal host Emiliania huxleyi, glutathione was overproduced 
and that hydrogen peroxide (H2O2) was the major ROS during the onset of the lytic phase of infection. 
Moreover, the concomitant production of GSH and H2O2 occurred in the same cellular subpopulations 
that exhibited a higher rate of infection compared with cells that had little or no GSH and H2O2. Inter-
estingly, the inhibition of ROS production significantly reduced virion production and inhibited host 
cell death (Sheyn et al., 2016).

Ostreococcus virus 6, a virus of the green alga Ostreococcus tauri, harbors a gene encoding an 
ammonium transporter that is expressed during viral infection. The activity of this protein may increase 
host NH4 +uptake rates to fulfill the increased nitrogen requirements of infected cells undergoing 
viral replication (Monier et al., 2017). Moreover, numerous genes that encode for phosphate, sulfur, 
magnesium and iron transporters, ferric reductases and multicopper oxidases were identified recently 
in several NCLDV clades (Moniruzzaman et al., 2020; Schulz et al., 2017). These genes may boost 
the acquisition of these essential nutrients for host cell metabolism during virion production, notably 
in marine environments where nutrient availability may be limiting for cellular growth (Behrenfeld and 
Kolber, 1999; Herbik et al., 2002; Hogle et al., 2018; Saikia et al., 2014).

In addition to enzymes implicated in carbohydrate metabolism for energy generation as described 
above, some giant virus genes also encode proteins involved in the biosynthesis and manipulation of 
carbohydrate, lipid, and nucleotide metabolism. Coccolithoviruses, belonging to the family Phycod-
naviridae, possess a cluster of biosynthetic genes, including a serine palmitoyltransferase encoding 
gene, involved in the biosynthesis of glycosphingolipids, a major component of the virion membrane 
envelopes. High glycosphingolipid producing strains of E. huxleyi virus (EhV), which are extremely 
virulent and harbor a greater infectivity at high host densities, provide a selective advantage under 
laboratory conditions. However, field data obtained from natural environments suggest a better 
survival rate of slow glycosphingolipid producing EhVs, where lower host densities are encountered. 
Viral glycosphingolipid biosynthesis impacts on ecological balance in natural oceanic environments, 
where E. huxleyi plays an essential role in the global carbon cycle (Nissimov et al., 2019). Moreover, 
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Table 2. List of enzymes with other biological roles detected in NCLDVs.
The enzymes were grouped according to the biological process to which they belong and associated 
with the giant virus and/or the family in which they were identified.

Biological process Enzyme Function Detected in Family

Oxidative stress 
regulation

Superoxide dismutase

Catalyzes the dismutation of 
the superoxide radical into 
ordinary molecular oxygen and 
hydrogen

Emiliania huxleyi 
virus, Megavirus 
chiliensis, 
and others 
uncharacterized 
viruses*

Mimiviridae and 
Phycodnaviridae

Glutathione 
peroxidase

Reduces free hydrogen 
peroxide to water.

Emiliania huxleyi 
virus and others 
uncharacterized 
viruses*

Mimiviridae and 
Phycodnaviridae

Ion’s transport and 
assimilation

Ammonium 
transporter

Mediates the transport of 
ammonium ions

Ostreococcus 
virus 6 Phycodnaviridae

Phosphate transporter
Mediates the transport of 
phosphate ions

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Sulfur transporter
Mediates the transport of 
sulfur ions

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Magnesium 
transporter

Mediates the transport of 
magnesium ions

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Iron transporter
Mediates the transport of iron 
ions

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Ferritin Iron storage protein
Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Ferric reductases

Oxidation of NADPH and 
transference the electron to 
reduce metals like iron and 
copper

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Multicopper oxidases

Oxidation of different 
substrates by accepting 
electrons at a mononuclear 
copper centre and transferring 
them to a trinuclear copper 
centre.

Uncharacterized 
viruses

Mimiviridae and 
Phycodnaviridae

Biosynthesis of 
glycosphingolipids

Serine 
palmitoyltransferase

Catalyzes the decarboxylative 
condensation of L- serine and 
palmitoyl coenzyme A to 
3- ketodihydrosphingosine. Coccolitho virus Phycodnaviridae

Polysaccharide 
biosynthesis

Hyaluronan synthase

Produces the 
glycosaminoglycan hyaluronan 
from UDP-α-N- acetyl- D- 
glucosamine and UDP-α-D- 
glucuronate Chlorovirus CVK2 Phycodnaviridae

Chitin synthase

Produces Uridine diphosphate 
(UDP) and [[[1,4- (N- acetyl- beta- 
D- glucosaminyl)]n+1]] from 
UDP- GlcNAc and [[[1,4- (N- 
acetyl- beta- D- glucosaminyl)]n]] Chlorovirus CVK2 Phycodnaviridae

Sugar metabolism
GDP- D- mannose 4,6 
dehydratase

Conversion of GDP- (d)- 
mannose to GDP- 4- keto, 
6- deoxy- (d)- mannose

Paramecium 
bursaria Chlorella 
virus 1 Phycodnaviridae

GDP- 4- keto- 6- 
deoxy- D- mannose 
epimerase/reductase

Converts GDP- 4- keto- 6- deoxy- 
d- mannose into GDP- l- fucose

Paramecium 
bursaria Chlorella 
virus 1

Phycodnaviridae

Table 2 continued on next page
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it has been shown that viral glycosphingolipids are able to suppress host cell growth by inducing 
programmed cell death (Monier et al., 2009; Rosenwasser et al., 2016; Vardi et al., 2009; Wilson 
et al., 2005).

Chloroviruses encode enzymes involved in (i) polysaccharide biosynthesis for example hyaluronan 
synthase, chitin synthase (Mohammed Ali et al., 2005). (b); (ii) sugar metabolism, for example GDP- D- 
mannose 4,6 dehydratase and GDP- 4- keto- 6- deoxy- D- mannose epimerase/reductase (Tonetti et al., 
2003); and (iii) polysaccharides degradation, for example chitinase and 1–3- beta glucanase (Sun et al., 
1999; Sun et al., 2000). These enzymes may be necessary for the infection cycle, for the ability to 
enter and exit the host cell (Van Etten et al., 2017). Polysaccharide lyases for example, pectate lyase, 
were also found to be encoded in the A. anophagefferens virus (AaV) genome (Moniruzzaman et al., 
2014). It is probable that the genes encoding these putative enzymes were acquired by lateral gene 
transfer from either bacteria or from their host A. anophagefferens (Moniruzzaman et al., 2014). AaV 
genes encoding polysaccharide lyases have been mainly detected in ocean sampling throughout the 
world suggesting that these viruses play important role(s) in shaping the biogeochemical potential, in 
global marine system communities (Gann et al., 2020).

Analysis of the A. polyphaga Mimivirus genome revealed the presence of genes potentially involved 
in the biosynthesis of viosamine, which may have a role in the formation of the long fibers surrounding 
the virions (Piacente et al., 2012). Moreover, several giant viruses harbor the metabolic machinery 
that is involved in the production of glycoconjugate substrates (Fischer et al., 2010; Philippe et al., 
2013; Piacente et al., 2015; Santini et al., 2013). Such genes include those encoding for nucleo-
tide sugars enzymes and glycosyltransferases (Piacente et al., 2014). These viral enzymes may play 
structural role(s), which seems obvious when considering the highly glycosylated surface of the virions 
that protect them from the environment. They also may play a role in the phagocytic vacuole (Lairson 
et al., 2008; Legendre et al., 2014; Legendre et al., 2015; Piacente et al., 2014).

Finally, even steroid metabolism may be manipulated by NCLDV infection. Genomes of many 
mimiviruses and pandoraviruses contain cytochrome P450 genes, which encode P450 monooxygenase 
enzymes (Lamb et al., 2019). P450s are key enzymes in the metabolism of numerous endogenous 
regulatory molecules and xenobiotics in Bacteria, Archaea, and Eukarya. To support this suggestion, 
multiple genes involved in other aspects of steroid metabolism, notably steroid reductases, are also 
present and expressed (typically early) during the course of NCLDV infection (De Souza et al., 2021).

Conclusion
Previously, viruses were traditionally defined as molecular genetic parasites, accessories to cellular life, 
and lacking many of the essential criteria that define living organisms, such as the ability to capture 
and store free energy. However, this strict paradigm has now been fundamentally challenged by the 
identification of a large number of energy- linked metabolic genes encoded in some NCLDV genomes, 
with sequence identity to cellular orthologs, including those possibly involved in energy generation 
from organic and inorganic compounds. These genes are thought to have been acquired by NCLDV 
from diverse sources, and especially from their hosts through lateral gene transfer. Notably, a number 
of the genes considered here were identified in metagenomic studies, which raises a possibility that 

Biological process Enzyme Function Detected in Family

Polysaccharides 
degradation

Chitinase

Chitin degradation by cleaves 
the disaccharide to its 
monomer subunits

Chlorella virus 
PBCV- 1 Phycodnaviridae

1–3- beta glucanase

Successive hydrolysis at 
the nonreducing end of 
the glucan, resulting in the 
formation of oligosaccharides 
and glucose

Chlorella virus 
PBCV- 1 Phycodnaviridae

Pectate lyase

Randomly cleaves α–1,4- 
polygalacturonic acid via a 
β-elimination reaction

Aureococcus 
anophagefferens 
virus Phycodnaviridae

*Enzyme’s genes were detected in NCLDVs from metagenome- assembled genome analysis.

Table 2 continued
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some of these genes inferred as being in viral genomes might instead represent genes from bacteria, 
and emphasize the need for viromics benchmarking (Pratama et  al., 2021). Indeed, the filtration 
process to discard non- viral sequences does not completely exclude the possibility of a contamination. 
Recognizing that caveat, we expect that sequences analysis in such metagenomic studies cited here 
employed benchmarking and curation approaches sufficient to discriminate between viral and micro-
bial sequences. However, it should be noted that NCLDV apparently endogenize into various green 
algae, complicating the accurate assignment of partial metagenome assemblies, but also emphasizing 
the role of HGT in host and virus evolution (Moniruzzaman et al., 2020). Isolation of these viruses by 
culture and direct sequencing of viral strains combined with further analysis in molecular biology and 
biochemistry should be a complementary approach to elucidate their presence in the viral genomes.

Phylogenetic analysis reveals that these metabolic genes have diversified into virus- specific 
lineages. However, the origin of many of these genes still remains obscure, particularly as these 
NCLDV metabolism sequences tend to cluster together phylogenetically in deep- branching clades. 
This finding suggests that they diverged from their cellular orthologs in the distant past (Aherfi et al., 
2022; Moniruzzaman et al., 2020; Needham et al., 2019; Schvarcz and Steward, 2018). These 
complex metabolic genes are thought to play a role(s) in manipulating host energy metabolism path-
ways during infection and help to ensure optimal intracellular host environments required for viral 
replication. Indeed, viruses are able to reshape the virocell metabolism not only by reprogramming 
host- encoded metabolic networks, but also by expanding the virocell metabolic abilities / needs 
by introducing new viral encoded auxiliary metabolic genes. This concept is particularly well illus-
trated by marine viruses, which play key role(s) in ecology, biogeochemistry and evolution of the 
marine environment, by impacting nutrient recycling and driving species composition. The massive 
amounts of viral macromolecules and viral particles that are synthesized in an infected cell impose 
heavy demands on the host. Biosynthesis of the elements that make up a viral particle, namely nucle-
otides, amino acids and sometimes fatty acids, requires energy in the form of ATP. The recruitment of 
cellular compartments involved in the morphogenesis and transport of new viral particles such as the 
Golgi apparatus and the membrane endoplasmic reticulum also requires energy that cannot totally 
be provided by host cell metabolism, perhaps particularly in harsher environments. A suggestion of a 
virus aiding thermal tolerance of a host has been made (Márquez et al., 2007). Therefore, the NCLDV 
auxiliary metabolic genes may be involved in energy generation by boosting, in either a dependent 
or independent manner, the energy metabolism enzymes of the host cell to create an appropriate 
environment for viral replication.

At this time, it is difficult to ascertain whether these viral primary metabolism enzymes function 
according to the exact mechanisms as their corresponding host orthologs. Further efforts are urgently 
required to elucidate whether these viral metabolism enzymes function independently. Such findings 
will help discern if the virus becomes autonomous and does not parasitize the metabolism of the host 
cell, or whether they are just enzymes that manipulate the host energetic metabolic system. Genetic 
and biochemical approaches must be considered going forward, including exploring individual viral 
enzymes functioning in a heterologous background, including complementation of knockout mutants 
(either in bacteria or yeast) to determine if the viral enzymes modulate host energy production.

The detection of the viral primary metabolic genes (with the potential to be involved in energy 
production) runs contrary to our traditional view of virus biology. Until recently, viruses have been 
regarded as parasites of the host cell’s energy machinery rather than encoding their own virus meta-
bolic machinery (Moreira and López- García, 2009) and supporting the proposed virocell concept 
(Forterre, 2013). The notion of viral manipulation and expansion of the host metabolic network 
suggests that host cells with highest metabolic activity may be more permissive to viral infection. 
Metabolic modulation is thus the central hub of the host–virus dynamics. Further research in the 
coming years will help shed light on such unprecedented findings.
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