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ABSTRACT

Motivation: The DNA binding specificity of a transcription factor (TF) is

typically represented using a position weight matrix model, which im-

plicitly assumes that individual bases in a TF binding site contribute

independently to the binding affinity, an assumption that does not

always hold. For this reason, more complex models of binding speci-

ficity have been developed. However, these models have their own

caveats: they typically have a large number of parameters, which

makes them hard to learn and interpret.

Results: We propose novel regression-based models of TF–DNA

binding specificity, trained using high resolution in vitro data from

custom protein-binding microarray (PBM) experiments. Our PBMs

are specifically designed to cover a large number of putative DNA

binding sites for the TFs of interest (yeast TFs Cbf1 and Tye7, and

human TFs c-Myc, Max and Mad2) in their native genomic context.

These high-throughput quantitative data are well suited for training

complex models that take into account not only independent contri-

butions from individual bases, but also contributions from di- and

trinucleotides at various positions within or near the binding sites.

To ensure that our models remain interpretable, we use feature selec-

tion to identify a small number of sequence features that accurately

predict TF–DNA binding specificity. To further illustrate the accuracy of

our regression models, we show that even in the case of paralogous

TF with highly similar position weight matrices, our new models can

distinguish the specificities of individual factors. Thus, our work rep-

resents an important step toward better sequence-based models of

individual TF–DNA binding specificity.

Availability: Our code is available at http://genome.duke.edu/labs/

gordan/ISMB2013. The PBM data used in this article are available in

the Gene Expression Omnibus under accession number GSE47026.

Contact: raluca.gordan@duke.edu

1 INTRODUCTION

At the level of transcription, gene expression is regulated mainly

via the binding of transcription factors (TFs) to specific short

DNA sites in the promoters or enhancers of genes they regulate.

Accurate characterization of the DNA binding specificity of TFs

is critical to understand how these proteins achieve their regula-

tory purpose in the cell. Currently, the most widely used model

for representing the DNA binding specificity of a TF is the pos-

ition weight matrix (PWM, or DNA motif) (Staden, 1984;

Stormo, 2000), a matrix containing scores (or weights) for each
nucleotide at every position in the TF binding site. PWMs can

perform well in practice: these models have been combined with

chromatin accessibility data to successfully predict where specific

TFs bind across the genome in a cell-specific way (Kaplan et al.,

2011; Pique-Regi et al., 2011). However, PWM models make the

assumption that individual bases in a TF binding site contribute

independently and additively to the affinity of that site, which

is not always true in practice.
Dependencies among positions within TF binding sites have

been observed in small-scale experimental studies (Bulyk et al.,

2002; Jauch et al., 2012; Man and Stormo, 2001), in statistical

analyses of known TF binding sites (Tomovic and Oakeley,

2007; Zhou and Liu, 2004), and in computational analyses of

high-throughput in vitro and in vivo TF binding data (Badis

et al., 2009; Berger et al., 2006; Jolma et al., 2013; Zhao et al.,

2012). This suggests that extending the classic definition of a

PWMmay lead to specificity models that better fit the TF binding

data. Indeed, several studies have explored more complex models

of TF–DNA binding specificity and found that they outperform

PWMs (Barash et al., 2003; Siddharthan, 2010). However, com-

plex models are typically characterized by a large number of par-

ameters, which makes them hard to interpret (Agius et al., 2010;

Annala et al., 2011) and prone to overfitting (Zhou andLiu, 2004).
Here, we present regression-based models of TF–DNA

binding specificity, which take into account both the contribu-

tions from individual bases in a TF binding site and the contri-

butions from higher-order k-mers. Our approach differs from

previous work in three aspects: (i) our models are trained on

high-throughput quantitative data generated specifically for

this task; (ii) we use a new feature selection method based on

LASSO regression (Bach, 2008; Meinshausen and Bühlmann,

2010; Tibshirani, 1996) to restrict the number of features,

which makes our models easier to visualize and interpret; and

(iii) we include dependencies by using 2-mers and 3-mers as fea-

tures and by using a non-linear support vector regression (SVR)

method. The first aspect is important because many previous

models were trained either on a small number of high-resolution

binding regions (Barash et al., 2003; Zhou and Liu, 2004) or on

high-throughput in vivo data (Sharon et al., 2008; Siddharthan,

2010), both of which are noisy, have low resolution and may

reflect both direct and indirect DNA binding of the tested TFs

(Gordân et al., 2009). In vitro data from high-throughput

assays—such as protein binding microarrays (PBMs) (Berger

et al., 2006), MITOMI (Maerkl and Quake, 2007) or high-

throughput SELEX (Jolma et al., 2010; Zhao et al., 2009)—are

more appropriate for learning complex models of TF–DNA

binding specificity (Agius et al., 2010; Annala et al., 2011;*To whom correspondence should be addressed.
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Weirauch et al., 2013; Zhao et al., 2009). Here, we use the PBM

technology to generate custom data on the binding specificities of

the TFs of interest. Our microarray designs contain hundreds or

thousands of genomic DNA regions centered at putative DNA

binding sites for the TFs of interest (see Section 2 for details).
The features used in our regression models are based on the oc-

currences of 1-mers, 2-mers and 3-mers at various positions in the

TF binding sites or their flanking regions. Regression models that

take into account all k-mers have hundreds or thousands of par-

ameters, dependingon the value ofk andon the size of the flanking

regions. Such a large number of parameters can lead to overfitting

the training data and also make the models hard to visualize and

interpret. To overcome this problem, we use a feature selection

approach based on LASSO regression (Bach, 2008; Haury et al.,

2012; Meinshausen and Bühlmann, 2010; Tibshirani, 1996). This

allows us to drastically reduce the number of parameters to

estimate while maintaining high prediction accuracy.

To illustrate the accuracy of our regressionmodels, we train and

test themoncustomPBMdata for fiveTFs fromthebHLHprotein

family: yeast TFs Cbf1 and Tye7, and human TFs c-Myc (‘Myc’),

Max andMad2 (‘Mad’). We show that for both yeast and human

bHLH TFs, our regression models can distinguish the binding

specificities of individual family members, although their PWMs

(Fig. 1) arehighly similar.This illustrates thatourapproachmaybe

used to better understand the importance of intrinsic sequence

preferences for achieving specificity within TF families.

2 APPROACH

Our approach for learning TF–DNA binding specificity models is

summarized in Figure 2. We design custom microarrays that con-

tain genomic regions centered at putative TF binding sites. Next,

we measure TF binding to the selected genomic regions, using the

PBM technology (Berger and Bulyk, 2009). Briefly, in a PBM

experiment, we express each TF of interest with an epitope tag

(typically a GST or 6xHis tag), purify it and apply it to a double-

stranded DNA microarray. After the TF binds its preferred se-

quences on the microarray, we label the microarray with a fluor-

ophore-conjugated antibody specific for the protein tag. Next, the

microarray is scanned to generate a fluorescence intensity value

for each DNA sequence present on the array. Higher intensities

correspond to DNA sequences with higher affinities for the TF.

The vast majority of PBM data available in the literature have

been generated using ‘universal’ array designs, which contain arti-

ficial DNA sequences designed to collectively cover all possible

10-mers (Berger et al., 2006). Thus, universal PBM data provide a

broad, unbiased view of the DNA binding preferences of TFs.

However, universal PBM data are not suitable to predict binding

of a TF to longer genomic sequences. To overcome this problem,
we designed custom ‘genomic’ arrays to directlymeasure TFbind-

ing of putative DNA binding sites in native genomic context.

The DNA sequences on our custom microarrays were
designed to include a large number of potential DNA binding

sites for the TFs of interest. To learn the DNA binding specifi-

cities of Cbf1 and Tye7, we used custom PBM data from Gordân

et al. (2013). For Myc, Max and Mad, we designed a new array

containing potential Myc/Max/Mad binding sites extracted from

the human genome. As all bHLH TFs used in this study are

known to have a strong preference for the E-box CACGTG,
both the Cbf1/Tye7 and the Myc/Max/Mad array designs

focus on the genomic sites centered at this E-box (Fig. 2).

From the raw PBM data, we compute the natural logarithm of
the normalized signal intensity for each DNA sequence contain-

ing the E-box CACGTG flanked by genomic sequences of 12 or

15 bases on each side for Cbf1/Tye7 andMyc/Max/Mad, respect-

ively. Next, we derive quantitative features from the sequence

content of the genomic regions flanking the CACGTG E-box

core, and we use them to train regression models that can predict

the PBM signal intensity (i.e. the in vitro TF–DNA binding spe-

cificity). Our custom PBM data allow us to investigate whether
the genomic flanks of the E-box sites influence binding affinity

differently for distinct members of the same TF family.

Regression-based approaches are a natural fit for the continu-
ous intensity data from PBM experiments. The purpose of a

regression model is to estimate a function f to fit the output y

to the input features X as y ¼ fðXÞ. In our case, y is the binding

intensity as measured on the microarray and X are DNA se-

quence features. In particular, to introduce dependency effects,

we take X to be all individual nucleotides, and all pairs, triplets

and quadruplets of sequential nucleotides (2-mers, 3-mers and
4-mers) in the DNA sequences in our training set. A good can-

didate function is expected to fit the training set well (i.e. y close

to f(X)) and to produce accurate predictions on new test ex-

amples (i.e. low generalization error). The latter is usually as-

sessed by cross-validation experiments, where part of the

dataset is used to learn the regression function, which is used

to predict the output y on the held out part.
When X is of high dimension, regularization is a standard

practice, which consists in smoothing function f to ensure low
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Fig. 2. Workflow of the proposed method for learning the DNA binding

specificity of TFs using custom PBMs
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Fig. 1. PWMs for yeast TFs Cbf1 and Tye7 (A) and human TFs Myc,

Max and Mad (B). PWMs were derived from universal PBM data

[Munteanu and Gordân, 2013 (B); Zhu et al., 2009 (A)], and PWM

logos were generated using enoLOGOS (Workman et al., 2005). As

Myc and Mad do not bind DNA efficiently on their own, the Myc and

Mad PBM experiments were performed using each TF in combination

with Max (see Section 3.1)
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generalization error and to prevent overfitting. One method of

regularization, known as ‘feature selection’, is to select a small

subset of features that are sufficient to model the data. We note

that our DNA sequence features result in high-dimensional fea-

tures, which support the use of feature selection. Feature selec-

tion lends a model interpretability, by basing predictions on a

small number of features that may have biological meaning,

which is a desirable property when one wants to study further

which features contribute to model accuracy.
Two popular regression methods are SVR (Smola and

Schölkopf, 2004) and LASSO regression (Tibshirani, 1996). SVR

oftenhas goodgeneralization error properties and,whenusedwith

a non-linear kernel, can capture non-linear functions f. LASSO

regression includes an L1 constraint that selects a small subset of

features in X to explain the y variable and is preferred for inter-

pretability purposes. However, the feature set selected by LASSO

is not robust, even to slight perturbations of the data. This lack of

stability casts doubt on the relevance of the subset of variables it

selects. Following previous work (Bach, 2008; Haury et al., 2012;

Meinshausen andBühlmann, 2010) on ‘stability selection’,wepro-

pose a regression scheme that combines SVR and a stable feature

selection procedure based on LASSO. We describe our method-

ology in detail in Section 3 and show the performance of our

models on human and yeast TF binding data in Section 4.

3 METHODS

3.1 PBM data

CustomPBMdata for Cbf1 andTye7, in the formof normalized log signal

intensity values, were obtained from Gordân et al. (2013). For Myc, Max

andMad, we performed PBM experiments (Berger and Bulyk, 2009) using

6xHis-tagged proteins expressed and purified in bacteria (as described in

Lin et al., 2012). As Myc requires heterodimerization with Max to bind

DNA efficiently, the Myc PBM experiments were performed using both

Myc and Max on the same microarray. As in previous work (Munteanu

and Gordân, 2013), we used a 10 times higher concentration of Myc

compared withMax to ensure thatmostlyMyc:Max heterodimers, instead

of Max:Max homodimers, are formed. Similarly, Mad PBM experiments

were performed using both Mad andMax on the same microarray, with a

10 times higher concentration of Mad.

The Myc/Max/Mad custom array contains, in addition to positive and

negative control sequences, 36-bp long human genomic regions centered

at CACGTG sites. After scanning the microarray and normalizing the

raw PBM data (as described in Berger and Bulyk, 2009), we compute, for

each genomic sequence, the median log signal intensity over the six

replicate spots that contain that particular sequence. These median log

intensity values are used by the regression algorithms. In addition, to test

the reproducibility of our PBM data, we performed replicate PBM

experiments for TF Myc. We obtained a Pearson correlation coefficient

(R) of 0.98 between replicate experiments.

Before training regression models using the custom PBM data, we

filtered out any sequence that contained potential TF binding sites in

the regions flanking the CACGTG core, to ensure that each sequence

contains one and only one TF binding site. We required that the flanks

do not contain any 8-mer with a PBM enrichment score (E-score) greater

than 0.3. PBM E-scores range from �0.5 to þ0.5, with higher values

corresponding to higher sequence preferences; typically, E-scores4 0.35

correspond to specific TF–DNA binding (Berger et al., 2006; Gordân

et al., 2011). After the filtering step, we obtained 280 sequences for

Cbf1, 312 for Tye7, 4917 for Myc, 4430 for Max and 4292 for Mad.

As expected, the number of sequences for each TF is much higher for

the human TFs as compared with yeast TFs.

For each TF, we use N to denote the number of DNA sequences

selected from the custom PBM data. The averaged DNA binding inten-

sities (as measured on the PBMs) are the output y ¼ ðy1, . . . , yNÞ that we

aim to predict using regression models.

3.2 Feature derivation

It is commonly accepted that much of the binding specificity of a protein-

DNA complex is encoded in the base content of the DNA sequence.

Therefore, our regression methods use sequence-based features.

Numeric features are derived from sequences as follows. bHLH TFs

typically bind DNA as dimers, i.e. two copies of the same protein or

related proteins interact to bind two symmetric half-sites. Thus, as

there is no way to define a ‘left’ versus a ‘right’ flank, we describe the

base content of the two flanks simultaneously. To do so, we define

the flanks as a single sequence using the palindromic symmetry of the

E-box as shown in Figure 3. For each position flanking CACGTG, from

1 to 12 for Cbf1/Tye7 or 1 to 15 for Myc/Max/Mad, we count the

occurrences of each k-mer, where k 2 f1, 2, 3, 4g. We obtain n vectors

describing the sequences
�
ðxi1, . . . , xipÞ

�
i2ð1, ...,NÞ

where:

xij ¼
0:5 if the k-mer is present at that position in one flank
1 if the k-mer is present at that position in both flanks
0 otherwise

8<
:

The index j refers to one k-mer at a particular position. p is therefore the

product between the length of the flanking sequence and the number of

k-mers used (see Table 1 for values of p). More precisely, a feature value

of 1 means the corresponding k-mer is present in one flank at the cor-

responding position, and its complementary k-mer is present in the other

flank at the same position. We eliminate those k-mer features that are

completely absent from all sequences.

We note that Cbf1, Tye7 and Max bind DNA efficiently as homodi-

mers, i.e. using two copies of the same protein, whereas Myc and Mad

Fig. 3. DNA regions flanking the CACGTG E-box are used to derive

sequence-based features that take into account the dimer mode of DNA

binding by bHLH proteins

Table 1. Total number of features for different feature sets

Values of k 1 2 3 4 1–2 1–3 1–4

Cbf1 48 176 623 1596 224 847 2440

Tye7 48 176 624 1672 224 848 2520

Myc/Max/Mad 60 — — — 284 1116 —

i119

Stability selection for regression models of TF-DNA binding



need to heterodimerize with Max. Thus, in the case of Myc and Mad,

only one of the half-sites is bound by the TF of interest, whereas the other

is bound by the TF partner (Max). Ideally, one would treat the two

half-sites differently and learn one model for each half-site; however,

we do not know a priori, for each binding region, which half-site is

bound by which TF. For this reason, for Myc and Mad, we use the

same approach as for homodimers, recognizing that the specificity

signal will be diluted because of the heterodimerization with Max.

3.3 Feature selection with ‘Stable LASSO’

LASSO regression enables feature selection through the use of an L1

penalty. In particular, the output y is modeled as a linear function of

the input features X by estimating the coefficient vector w 2 R
p that

minimizes the squared residual error plus the (scaled) absolute value of

the coefficient weights, inducing many of the weights to go to zero, and

effectively eliminating the use of that feature in prediction. We can write

LASSO regression as the following optimization problem:

min
w

�

2
kw k1 þ

XN
i¼1

yi � wTxi
� �2

Parameter � reflects the trade-off between fit and sparsity, or the propor-

tion of features removed. The penalty term means that a solution w be-

comes sparser as � increases. Thus, a smaller set of features are used to

model y.

The least angle regression (LARS) algorithm (Efron et al., 2004) allows

us to compute the solution path for all values of �. This iterative algo-

rithm adds features to the linear model one by one and exploits the fact

that the w coefficients vary continuously as � increases. A good value for

� is often chosen by cross-validation; instead, we keep the whole solution

path, in a stability selection procedure described later in the text.

LASSO regression is sensitive to perturbations of the training set and

often does not result in a robust set of selected features. This is especially

true when the features are correlated, as is the case here because of re-

dundancy between k-mers of different lengths. As the coefficient values

estimated for each feature are unstable, they cannot be used directly as

importance scores for features. To overcome those limitations, Bach

(2008); Haury et al. (2012) and Meinshausen and Bühlmann (2010)

have proposed the use of a stability selection procedure. This consists

in randomly perturbing the dataset many times, running LASSO on those

perturbed datasets and combining the successive regressions to obtain

importance scores for each feature, based on the frequency with which

they are selected in the successive LASSO runs. Such a score is akin to a

probability that the feature should participate in the model.

Algorithm 1 Stable LASSO

INPUT: X 2 R
ðn, pÞ, y 2 R

n, �¼ perturbation level, T¼number of

iterations

OUTPUT: An area score for all features

for t¼ 1 to T do

Randomly perturb the data:

Draw a subsample (yt, Xt) of size n/2 from (y, X)

Draw a vector w � U ½�, 1�pð Þ

Re-weight the features: Xt  Xtw

Compute the LASSO path of length n/2 using LARS

Keep the selection matrix Ft 2 f0, 1g
p, n=2 where

Ftði, jÞ ¼
1 if i-th feature selected at j-th LARS step
0 otherwise

�

end for

Compute the area score for feature i as

fi ¼
2

nT

Xn=2
j¼1

XT
t¼1

Ftði, jÞ

As described in Algorithm 1, at each iteration t¼ 1 . . .T, we perturb

the original training set (y,X): we randomly subsample one half of the

training set (yt,Xt) and reweight all features in Xt using randomly gener-

ated weights w drawn uniformly on [�, 1]. Parameter � controls the level

of perturbation: a smaller � implies more variable weights, whereas �¼ 1

means no reweighting.

In practice, instead of a loop of length T as shown in Algorithm 1, we

run a single loop of length T/2 and compute the LARS path on the two

random halves of the dataset at each iteration. This still allows us to

compute the ‘area score’ (i.e. the feature importance score) as the average

of T selection frequency matrices, as shown in Figure 4. The area score

can be interpreted as the area under the average selection frequency curve

over T iterations (see Fig. 5).

In the classic version of LASSO regression, one needs to select a value

for parameter �. Instead, the area score uses the whole regularization

path and therefore has the great advantage of avoiding any arbitrary

cutoff on the number of features and any additional computation time

owing to parameter selection.

We observed that the area scores were distributed according to a multi-

modal distribution, each model corresponding to a given k-mer length.

This suggests we cannot apply a single uniform threshold on the import-

ance score across all features with different values of k. Instead, we derive

one threshold value for each group of features of the same length. To do

so, we computed a background score distribution for each k-mer length

by randomly permuting the intensity values and running Stable LASSO

on the permuted values. We then select features with an area score higher

than the mean plus two standard deviations of their corresponding back-

ground distribution. Finally, we use this feature subset as input to an

Fig. 4. Output of Algorithm 1: T binary matrices describing which

features are selected along the LARS path

Fig. 5. Computation of the ‘area score’ for each variable. An average

selection frequency curve over the T iterations is computed for each

feature (five features are shown in this figure). The area under each

curve represents the area score for the corresponding feature
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SVR to learn binding specificity models. In Section 4, we show that this

Stable LASSO selection procedure performs better than simply choosing

a small number of features (random selection) or choosing features based

on their SVR weights (SVR selection) (see Fig. 7).

3.4 Regression with SVR

SVR (Smola and Schölkopf, 2004) uses the concept of maximum margin

(Vapnik, 1998) for regression. SVR is formulated as an optimization

problem as follows:

min
1

2
jj f jj2 þ C

XN
i¼1

�i þ �
�
i

� �

Subject to

yi � fðxiÞ � "þ �i

fðxiÞ � yi � "þ ��i

�i, �
�
i � 0

8>><
>>:

The only difference between the SVR and the SVM lies in the loss

function, which is devised for a continuous output in the case of the

SVR. This loss function, called the "-insensitive function, enforces the

support vectors, or informative examples, to lie within a tube of width

" around function f. Parameter C orchestrates the trade-off between the

loss term, which enforces a good fit to the training data, and the margin

term, which regularizes the f function and often produces better general-

ization error. Parameter " plays a similar role to C, with small values of

" leading to a better fit on the training set, and larger values preventing

overfitting.

An essential ingredient to any SV method is the kernel function K,

which can be thought of as a similarity function between any two example

points. Function f can be written as fðxÞ ¼
PN

i¼1 �iKðx
i, xÞ The simplest

kernel is the linear kernel, which is the dot product between the feature

vectors for two samples:

Klinðx
i,xjÞ ¼ xi, xj

� �
,

implying f is linear in the input features x. Other kernels, however, yield a

non-linear function f, via the ‘kernel trick’. This consists in defining an

implicit mapping of the original features into a higher dimension space

and looking for a linear function f in that transformed space. A common

non-linear kernel is the radial basis function (RBF) kernel, defined by

Krbfðx
i,xjÞ ¼ exp �

jjxi � xj jj2

2�2

	 

:

The linear SVR allows us to associate coefficients to the features

by rewriting f(x) so that coefficient for variable j is wj ¼
PN

i¼1 �ix
i
j

However, the relationship between the features and the output is often

better modeled by a non-linear (but not interpretable) kernel such as

the RBF kernel.

Each model was evaluated by computing by computing the squared

Pearson correlation coefficient (R2) between predicted DNA binding spe-

cificity/intensity and the actual PBM log signal intensity values.

4 RESULTS

4.1 Regression models trained on custom PBM

data give accurate predictions of DNA binding

specificity

We first evaluate the performance of full SVR regression models
(i.e. without any feature selection) learned from yeast and human
custom PBM data. To describe the DNA sequences, we used

k-mers of different lengths and generated several features sets
that included, successively, {1, 2, 3, 4, 1–2, 1–3, 1–4}-mers.
Table 1 shows the resulting number of features (p) for different

feature sets. Next, for each feature set, we ran a linear and an

RBF SVR. We used 10-fold cross-validation for parameter selec-
tion over a large grid of possible parameter values. Each model

was evaluated by computing the Pearson squared correlation
coefficient (R2) between the predicted and the actual signal in-

tensity of held out test data. For each method, a 10-fold cross
validation was carried out to assess the performance in predicting

binding specificity for test DNA sequences.
Figure 6 shows that the linear and RBF SVR model predic-

tions are well correlated with the actual intensity. Among the

regression models tested here, linear SVR models based on
1-mer features are technically equivalent to PWM models,

including the assumption of independence and additivity.
These models fit the data well and result in R2 values of 0.6 or

higher in the 10-fold cross-validation test. This is in agreement
with previous studies suggesting that even when the additivity

assumption does not fit the data perfectly, in many cases, it gives
a good approximation of the data (Benos et al., 2002; Zhao and

Stormo, 2011). However, taking into account non-independent
contributions, by either using the RBF kernel or by incorporat-

ing 2-mer and 3-mer features, slightly improves the accuracy of
our regression models trained on custom PBM data.

Using 1-mers and 2-mers is enough to reach a good perform-
ance on Cbf1 and including 3-mers improves performance only

slightly on Tye7. Taking into account 4-mer features in addition
to 1-mers, 2-mers and 3-mers did not improve our models any

further for TFs Cbf1 and Tye7 (Fig. 6). Based on this observa-
tion, we limited all experiments on the larger human datasets to

feature sets containing 1-mers, 1–2-mers or 1–3-mers. Overall,
from Figure 6, we see that the best regression-based specificity

models were obtained using the RBF kernel and either 1–2-mer
or 1–3-mer features.

4.2 Feature selection using Stable LASSO maintains or

improves the accuracy of DNA binding models

Although the regression models trained on 1–2-mer and 1–3-mer

features are highly accurate, they are hard to interpret because of
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Fig. 6. Performance (R2) of linear and RBF SVR regression methods

(without feature selection) for learning binding specificity from sequence

content. We used several feature sets to investigate the use of including

longer k-mers in the models
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the large number of features (Table 1). To address this problem,
we used the Stable LASSO feature selection procedure described
in Section 3.3 and re-ran the linear and RBF SVRs using only the

subset of selected features. The performance on the regression
models remained almost the same or even improved slightly after
the feature selection step (Fig. 7).

We also compared the performance of Stable LASSO against
a feature selection procedure based on the feature weights
learned by the linear SVR model. More precisely, for each data-

set, we ran a linear SVR using the full set of features, computed
the feature coefficients, ranked the features in decreasing order
of their absolute value and then selected the same number of

features as were previously selected by Stable LASSO. We also
implemented a ‘random selection’ procedure that selects ran-
domly, the same number of features as Stable LASSO.

We tested these two alternative procedures on the smaller of
our two datasets (i.e. the yeast data). Figure 7 shows that both
SVR selection and random selection perform worse than Stable

LASSO, demonstrating the power of the bootstrap and random-
ization scheme to select relevant features for this problem, which
maintain or even improve the accuracy of the model.

In addition, we note that running feature selection before
training the regression model greatly reduces the computation
time, which is important, especially for the human TF data.

As an example, for Cbf1 data, an RBF SVR without feature
selection and with parameters optimized on a grid of size 1620

ran in an hour on a laptop with a 2.3 GHz Intel Core i5 and
4 GB RAM, when the method with Stable LASSO feature se-
lection took only 7 min, and the parameters were optimized on

the same grid. We believe this huge difference comes mostly from
kernel computation, as it increases linearly with the size of the
feature set. Moreover, we hypothesize that reducing the feature

set might also make the problem easier to solve and therefore
help the SVR algorithm to converge faster.

4.3 Interpretability

Table 2 reports the numbers of features that were selected for

each feature set and TF. These numbers are small such that our

models become interpretable, a desirable property for under-

standing how binding is enacted. This algorithm also provides

a short list of features and their importance scores that reflect

how often each feature was selected. To determine whether a

particular sequence feature has a positive or negative influence

on TF binding, we can look at the sign of the feature weight

calculated from the linear SVR model (Section 3.4). As an ex-

ample, Figure 8 shows the selected features for Cbf1 and Tye7,

ordered by position on the flank from the core to the extremity

(see Fig. 3), and then by k-mer size (i.e. first 1-mers and then 2-

mers). The second-to-last column gives the importance score as-

signed to each feature by our algorithm, and the last column is

Fig. 8. Selected features for Cbf1 (top) and Tye7 (bottom) ordered by

position on the flank and length. Positions are specified relative to the

core of the binding site (position 1 is the closest to the core). The second-

to-last column is the area importance score of the feature, and the last

column reports the weight coefficient attributed to the feature by a linear

SVR. In red, we show the features with the six top coefficients; the blue

features are those that contribute negatively to binding
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Fig. 7. Predicting binding intensity for Cbf1, Tye7, Myc, Max and Mad

using a regression-based model trained on selected features. The squared

correlation coefficient between predicted intensity and actual intensity (y-

axis) is computed for different feature selection strategies followed by a

linear and an RBF SVR. Feature selection on 1–2-mers performed best

for Cbf1 and Tye7. Feature selection on 1–3-mers performed best for

Myc, Max and Mad TFs. A Wilcoxon paired signed rank test shows a

significant difference between 1–2-mers and 1–3-mers, with P-values

{0.002, 0.002, 0.0059}, respectively

Table 2. Size of feature set selected by the Stable LASSO algorithm

Feature set Cbf1 Tye7 Mad Max Myc

1–2-mers 20 20 35 25 22

1–3-mers 56 46 130 98 95
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the coefficient assigned to it when a linear SVR is trained on the
selected set to predict binding intensity. We observe that the
order on positions correlates well with the importance score
order, suggesting that, as expected, positions right next to the

E-box are more important than positions further away. Our se-
lection procedure does identify features in the distal flanks that
appear to be important for model accuracy (e.g. feature AA at

position 11 in the Tye7 model, Fig. 8). Interestingly, the selected
distal features are mostly 2-mers that exhibit specific DNA shape
characteristics. For example, AA/AT dimers are typically bent

toward the minor groove, and AA/TT shows the largest roll
among all dimers (Zhurkin et al., 1991). Both minor groove
width and roll are important for DNA binding by TFs

(Gordân et al., 2013; Rohs et al., 2010).

4.4 Model specificity

When trying to predict TF–DNA interactions using models of

DNA binding specificity, a difficult problem arises in the case of
paralogous TFs (i.e. TFs that belong to the same protein family).
Such TFs often have highly similar DNA binding specificities

(Badis et al., 2009; Jolma et al., 2013), despite the fact that
they are observed to interact with different sets of genomic
sites in vivo (ENCODE Project Consortium, 2012). For some

paralogous TFs, simple models such as PWMs are sufficient to
capture differences in sequence preferences (Fong et al., 2012;
Zhou and O’Shea, 2011). In many cases, however, the PWMs

of paralogous TFs are virtually identical. Two such examples are
studied in this article: Saccharomyces cerevisiae TFs Cbf1 and
Tye7, and Homo sapiens TFs Myc, Max and Mad.
Cbf1 and Tye7 bind distinct sets of targets sites in yeast cells

and have different regulatory functions (Harbison et al., 2004;
Kent et al., 2004; Nishi et al., 1995). However, their PWMs are
similar (MacIsaac et al., 2006; Zhu et al., 2009) (Fig. 1A) and

cannot be used to distinguish the genomic regions bound in vivo
by the two TFs with any specificity (Gordân et al., 2013). Myc,
Max andMad are members of a network of TFs that controls cell

proliferation, differentiation and death. Despite playing different
roles in the cell and having different sets of targets sites in vivo
(ENCODE Project Consortium, 2012), Myc, Max andMad have
almost identical PWMs (Fig. 1B). Myc, Max and Mad PWMs

cannot be used to differentiate between the genomic regions
bound in vivo by these factors (Munteanu and Gordân, 2013).
To illustrate that our regression-based approach can generate

TF–DNA binding models specific enough to distinguish between
paralogous TFs, we performed a comparison among three dif-
ferent types of models: (i) available PWMs of size 10 for the TFs

of interest (Munteanu and Gordân, 2013; Zhu et al., 2009); (ii)
linear SVR models trained on custom PBM data using 1-mer
features from the core 10 positions (these models are technically

equivalent to PWMs of size 10, but learned from our quantitative
PBM data); and (iii) RBF SVR models trained on custom PBM
data following feature selection. We trained each model on data
for one TF and used it to predict the binding specificity of related

TFs. All the PWMs used in this analysis have been derived from
universal PBM data and are in good agreement with previously
reported motifs for the same TFs (Munteanu and Gordân, 2013;

Zhu et al., 2009). We chose PWMs of size 10 because they ob-
tained the best correlation coefficients between the PWM log

ratio scores (for the putative binding site in each PBM probe)

and the PBM log signal intensity.

Figures 9 and 10 present the results of our specificity analysis,

reporting the squared correlation coefficients between predicted

and true binding intensities. In general, we notice that a model

learned on TF A is less accurate at predict intensity for TF B

than the model actually trained on data for TF B. For instance,

our best SVR models after stability selection for yeast TFs were

obtained on 1–2-mer features. In a 10-fold cross-validation test,

the model trained on Cbf1 data proved highly accurate at pre-

dicting Cbf1 binding specificity (R2
¼ 0.737) and not so accurate
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Fig. 9. Scatter plots of predicted versus true DNA binding specificity for

regression-based models learned on the yeast data, using prior stability

selection on 1–2-mer features. The ‘predicted binding specificity’ values

represent predicted PBM log intensities. The ‘true binding specificity

values’ represent actual PBM log intensities. Top panels: predicting

DNA binding specificity for Cbf1 from a model learned on Cbf1 data

(left) and Tye7 data (right). Bottom panels: predicting DNA binding

specificity for Tye7 from a model learned on Cbf1 data (left) and Tye7

data (right). All tests were done using 10-fold cross-validation
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at predicting Tye7 specificity (R2
¼ 0.461); similarly for Tye7

(Figs 9 and 10A).
The two PWM models in our comparison (Fig. 10B and C)

exhibit smaller and more similar correlation coefficients, and
are therefore less accurate and less specific. For instance, we
see that predicting binding signal for Cbf1 from the Cbf1

versus the Tye7 PWMs gives similar results (Fig. 10C)
(R2
¼ 0.147 and 0.130, respectively). Learning PWM-like

models from the custom PBM data improves both the accuracy

and the specificity of the models (Fig. 10B), but the best models
are the ones that include non-independent contributions and are
trained on custom PBM data (Fig. 10A). These results suggest

that highly quantitative data (such as the custom PBM data in
our study) allow us to gain both in specificity and accuracy.
In addition, departing from the standard PWM model (by

adding dependencies between adjacent positions and non-linear
contributions to binding) helps improve the models even further

on both levels.

5 DISCUSSION

We have presented a new approach for learning regression-based
models of protein–DNA binding specificity from quantitative TF
binding data, using SVR with feature selection. When tested on

yeast and human TF binding data, our models are able to predict
the specificity of each TF of interest. In addition, we show that
the regression models trained on custom PBM data are able to

distinguish binding behaviors of paralogous TFs, even when
their PWM models are similar. Several factors contribute to

the accuracy and specificity of our TF–DNA binding models.
First, we train our regression models on quantitative high-

resolution data obtained using a high-throughput in vitro tech-

nology (PBM). This allows us to train complex models of speci-
ficity without the risk of overfitting the training data. High-
throughput, in vitro data, including data generated using the

PBM technology, has been previously used to train complex
models of TF–DNA binding specificity (Agius et al., 2010;
Annala et al., 2011; Weirauch et al., 2013). Our approach is

somewhat similar to the work of Agius et al. (2010) and
Annala et al. (2011), who also learn regression models from
PBM data. However, both these studies use PBM data generated

using universal array designs, which contain artificial DNA se-
quences designed to collectively cover all possible 10-mers
(Berger et al., 2006). When using such an array design, each

probe on the array may contain 0, 1 or more binding sites for
the TF of interest, and these binding sites may be located at any

position along the probe (i.e. any position relative to the free
DNA end). Given the well-characterized positional bias in the
universal PBM data (Berger et al., 2006), models trained on these

data either try to learn the bias (Zhao and Stormo, 2011) or
implicitly assume that the bias will average out when multiple
probes are considered (Annala et al., 2011; Weirauch et al.,

2013). In contrast, our custom microarray is designed so that
each probe contains a single putative binding site located at
the same location related to the free DNA end. This allows us

to learn regression models that take into account k-mer occur-
rences at specific positions relative to the core of the binding site,
as opposed to k-mers occurrences along the probes as done pre-

viously in Annala et al. (2011). The use of positional information

makes our models easier to interpret than simple k-mer based

models.
Second, by using a feature selection procedure, we restrict our

regression models to a small number of parameters while main-

taining a high prediction accuracy. This makes our models easier

to visualize and interpret than other complex models of DNA

binding specificity. For example, Agius et al. (2010) have also

developed SVR-based models trained on PBM data. Their

models fit the universal PBM data very well; however, the

models are based on a special string kernel that makes is difficult

to identify specific features that are important for model accur-

acy. In contrast, our feature selection procedure identifies rele-

vant sequence features and also reports how frequently each

feature is selected and how it contributes to the binding affinity

(see Fig. 8).
Third, unlike the widely used PWM models, our regression

models take into account non-independent contribution from

individual bases in a TF binding site, by using the RBF kernel

in the SVR algorithm and by incorporating 2-mer and 3-mer

features. Importantly, our algorithm selects sequence features

not only in the regions next to the CACGTG core but also in

distal flanking regions, where the TF might not make specific

DNA contacts. This suggests that the flanking regions may have

an indirect influence on the binding affinity, possibly exerted

through DNA shape, a hypothesis that we have tested previously

for yeast TFs Cbf1 and Tye7 (Gordân et al., 2013). We note,

however, that the current study is different from our previous

work in several respects: previously, we neither performed any

feature selection nor tried to interpret the specificity models; in-

stead, we focused on the importance of intrinsic sequence pref-

erences of paralogous TFs Cbf1 and Tye7 for achieving in vivo

specificity, and on the potential role of DNA shape in providing

a mechanistic explanation for the influence of flanking regions

on DNA binding affinity. In the current study, we generate

custom data for human TFs in addition to using the yeast data

from Gordân et al. (2013), and we focus on using feature selec-

tion to get more accurate and interpretable models of binding

specificity.
Future work will include developing similar models for TFs

from other structural classes and organisms, as well as refining

the feature selection procedure and testing other feature selection

methods (Maldonado andWeber, 2010; Nguyen and de la Torre,

2010; Yang and Ong, 2010) that might help us identify sequence

features relevant for model accuracy.

In conclusion, our regression-based approach for learning

complex models of TF–DNA binding specificity from custom

PBM data can be easily extended and improved, and we antici-

pate that the proposed regression models will help explain, at

least in part, how paralogous TFs with highly similar PWMs

are able to interact with distinct genomic targets.

ACKNOWLEDGEMENTS

The authors thank Peter Rahl and Richard Young (Whitehead

Institute andMIT) for providing purified c-Myc, Max andMad2

proteins.

Conflict of Interest: none declared.

i124

F.Mordelet et al.



REFERENCES

Agius,P. et al. (2010) High resolution models of transcription factor-DNA

affinities improve in vitro and in vivo binding predictions. PLoS Comput.

Biol., 6, e1000916.

Annala,M. et al. (2011) A linear model for transcription factor binding affinity

prediction in protein binding microarrays. PLoS One, 6, e20059.

Bach,F.R. (2008) Bolasso: Model consistent LASSO estimation through the boot-

strap. In: Cohen,W.W., McCallum,A. and Roweis,S.T. (eds.) Proceedings of the

25th International Conference on Machine Learning, New York, NY, USA.

Badis,G. et al. (2009) Diversity and complexity in DNA recognition by transcription

factors. Science, 324, 1720–1723.

Barash,Y. et al. (2003) Modeling dependencies in protein-DNA binding sites. In:

Proceedings of RECOMB 2003. New York, NY, USA, pp. 28–37.

Benos,P. et al. (2002) Additivity in protein-DNA interactions: how good an

approximation is it? Nucleic Acids Res., 30, 4442–4451.

Berger,M. et al. (2006) Compact, universal DNA microarrays to comprehensively

determine transcription-factor binding site specificities. Nat. Biotechnol., 24,

1429–1435.

Berger,M.F. and Bulyk,M.L. (2009) Universal protein-binding microarrays for

the comprehensive characterization of the DNA binding specificities of tran-

scription factors. Nat. Protoc., 4, 393–411.

Bulyk,M.L. et al. (2002) Nucleotides of transcription factor binding sites exert inter-

dependent effects on the binding affinities of transcription factors. Nucleic Acids

Res., 30, 1255–1261.

Efron,B. et al. (2004) Least angle regression. Ann. Stat., 32, 407–499.

ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA

elements in the human genome. Nature, 489, 57–74.

Fong,A.P. et al. (2012) Genetic and epigenetic determinants of neurogenesis and

myogenesis. Dev. Cell, 22, 721–735.

Gordân,R. et al. (2009) Distinguishing direct versus indirect transcription factor-

DNA interactions. Genome Res., 19, 2090–2100.

Gordân,R. et al. (2011) Curated collection of yeast transcription factor DNA bind-

ing specificity data reveals novel structural and gene regulatory insights. Genome

Biol., 12, R125.

Gordân,R. et al. (2013) Genomic regions flanking E-box binding sites influence

DNA binding specificity of bHLH transcription factors through DNA shape.

Cell Rep., 3, 1093–1104.

Harbison,C. et al. (2004) Transcriptional regulatory code of a eukaryotic genome.

Nature, 431, 99–104.

Haury,A.C. et al. (2012) TIGRESS: Trustful inference of gene regulation using

stability selection. BMC Syst. Biol., 6, 145.

Jauch,R. et al. (2012) The crystal structure of the Sox4 HMG domain-DNA com-

plex suggests a mechanism for positional interdependence in DNA recognition.

Biochem. J., 443, 39–47.

Jolma,A. et al. (2010) Multiplexed massively parallel SELEX for characterization

of human transcription factor binding specificities. Genome Res., 20, 861–873.

Jolma,A. et al. (2013) DNA binding specificities of human transcription factors.

Cell, 152, 327–339.

Kaplan,T. et al. (2011) Quantitative models of the mechanisms that control genome-

wide patterns of transcription factor binding during early Drosophila develop-

ment. PLoS Genet., 7, e1001290.

Kent,N.A. et al. (2004) Cbf1p is required for chromatin remodeling at promoter-

proximal CACGTG motifs in yeast. J. Biol. Chem., 279, 27116–27123.

Lin,C.Y. et al. (2012) Transcriptional amplification in tumor cells with elevated c-

Myc. Cell, 151, 56–67.

MacIsaac,K.D. et al. (2006) An improved map of conserved regulatory sites for

Saccharomyces cerevisiae. BMC Bioinformatics, 7, 113.

Maerkl,S.J. and Quake,S.R. (2007) A systems approach to measuring the binding

energy landscapes of transcription factors. Science, 315, 233–237.

Maldonado,S. and Weber,R. (2010) Feature selection for support vector regression

via kernel penalization. In: IJCNN 2010. Barcelona, Spain, pp. 1–7.

Man,T.K. and Stormo,G.D. (2001) Non-independence of Mnt repressor-operator

interaction determined by a new quantitative multiple fluorescence relative

affinity (QuMFRA) assay. Nucleic Acids Res., 29, 2471–2478.
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