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Abstract: Antibiotic monotherapy may become obsolete mainly due to the continuous emergence
of resistance to available antimicrobials, which represents a major uncertainty to human health.
Taking into account that natural products have been an inexhaustible source of new compounds
with clinical application, lectins are certainly one of the most versatile groups of proteins used
in biological processes, emerging as a promising alternative for therapy. The ability of lectins to
recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of
activities. Currently the number of antimicrobials in research and development does not match the
rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising
therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of
action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an
update on the experimental application of antibiotic therapies based on the synergic combination
with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing
Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current
strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance,
and highlight the potential of lectins to modulate the host immune response against oxidative stress.
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1. Introduction

Worldwide, 57 million deaths are reported per year, of which 14.9 million are attributed
to infectious diseases [1,2]. For years, clinical therapeutic success was achieved; however,
the culture of indiscriminate administration of antibiotics aimed at human health and in
agriculture has enabled the dissemination and the acceleration of microbial resistance,
which has allowed them to evade the actions of the immune system and drugs, becoming
a challenge for current drug therapy [3]. The spread of antimicrobial resistance (AR)
represents a major challenge and threat to the future of therapies for various infections [4,5].

In recent years, there has been increasing knowledge of the impact that antibiotics
can have on the intestinal microbiota and host immunity response, and how the balance
of gut microbiota is essential to regulate numerous aspects of human physiology [6]. The
imbalance of the microbiota is related to the loss of the protective effects of the microbiota
against pathogens; several metabolic disorders, such as oxidative stress; and the expansion
of the host resistance gene pool, known as “resistome”, which can act as an amplifier of
antimicrobial resistance [7].

In addition to resistance, bacteria have virulence factors that allow infection to per-
sist, such as biofilms [8]. Biofilm can be defined as complex communities, formed by
different microbial cell types, immersed in an extracellular polymeric matrix composed
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of exopolysaccharides (EPS), proteins, lipids, and DNA adherents to a biotic or abiotic
surface [9]. Biofilm-producing microorganisms are responsible for causing most human
bacterial infections, as biofilm promotes a protective barrier between bacteria and the
environment, making bacteria highly resistant to antimicrobials, contributing significantly
to the failure of antimicrobial therapy [10].

In this period of resistance, the medical–scientific community has its efforts focused
on the discovery of new drugs or alternative methods of treatment. Unfortunately, it is
not possible to guarantee that the new drugs will be effective in the long term to cure such
diseases and that the eventual development of resistance to them will not happen, and they
may become ineffective in a few years’ time [11,12]. Therefore, innovative and effective
approaches are needed to better deal with these diseases. Among the strategies that have
been explored, the use of combined therapy has proven to be an emerging and effective
option [3].

Monotherapies represent the first-line therapy regimen since the mid-twentieth cen-
tury, since the first cases of resistance began to become evident: penicillin by Staphylococcus
aureus in 1928 [13] and streptomycin by Mycobacterium tuberculosis in the mid-1960s [14,15].
In addition, monotherapy has some disadvantages, such as limited spectrum, high cost,
and the probability of acquired resistance [16]. The toxicity of certain agents used in the
clinic, and the possibility of evolution and acquisition of resistance, has led combined
therapy to become a first-line treatment for some infections, with a better efficacy and
long-term prognosis compared to monotherapy [3,17].

Combination therapy assesses the simultaneous effect of two or more active com-
pounds, usually referred to as a “drug cocktail”. This therapy aims to obtain an overall
effect greater than the addition of its individual effects [18]. Combination therapy has
advantages, such as expanding the spectrum of action, less chance of developing resis-
tance, an additive or even synergistic effect, decreased side effects, and the possibility of
overcoming drug resistance [3,19].

According to the World Health Organization (WHO), combination therapy has been
used regularly as a therapy regimen in infectious diseases such as HIV/AIDS and tuber-
culosis due to its ability to reach different characteristics of the disease, and because it
is the most efficient way to avoid resistance [12,20]. There is growing interest in the use
of biomolecules with potential therapy for these comorbidities. This interest promoted
the direction of research aimed at the search for alternative therapies based on plants,
an inexhaustible source of several compounds with therapeutic properties [21]. Thus,
the objective of this article was to review, based on studies published between 2015 and
2021, the potential of therapies combined with lectins against bacterial infections, and
complementary strategies to overcome antibiotic resistance and oxidative stress through
the modulation of gut microbiota.

2. Biological Activities of Lectins

Lectins constitute a diverse class of proteins or glycoproteins of non-immune origin,
which have at least one carbohydrate recognition domain (CRD), and which bind in a
reversible and specific way to mono-, oligo-, or polysaccharides, without modifying their
covalent structure [22].

The ability of lectins to recognize carbohydrates present on the cell surface of microor-
ganisms has sparked interest in the possible applications of this biomolecule. They partici-
pate in many biological processes such as cell–cell recognition, host–pathogen interactions,
cell growth, cell communication, cell adhesion and migration, apoptosis, immunomodula-
tion, mitogenic induction, cancer metastasis, and differentiation [23–28]. Thus, lectins are
considered one of the most versatile groups of proteins used in biological processes and
biomedical research [29].

The application of this biomolecule has advantages such as preventing the initial stage
of adhesion, a fundamental step for establishing the infectious process; less propensity for
develop resistance to these molecules, due to the different mechanism of action of lectins
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compared to the antimicrobials used in the clinic; potentiation of antimicrobial activity;
better patient tolerance; and lower costs due to being renewable by nature [30–32].

2.1. Antibacterial Activity of Lectins

The antibacterial activity of lectins against Gram-positive and Gram-negative bacteria
results in the agglutination or inhibition of cell growth through its interaction with com-
ponents of the bacterial cell wall, such as carbohydrates, teicoic acid, lipopolysaccharides,
and peptideoglycans [33]. They can also act by inhibiting cell growth through different
mechanisms such as altering cell permeability, reducing nutrient absorption, pore forma-
tion and consequent extravasation of extracellular content, and/or through interaction
with membrane receptors that promote intracellular responses [34]. The recognition of the
specificity of a lectin to certain carbohydrates can help block the interaction of the bacteria
with the host cells, thus preventing future infections [35].

Although, in the last few years, there has been a significant increase in the number
of publications referring to lectins with antibacterial and antibiofilm potential (Table 1),
there are still no drugs derived from them in clinical use. There are already several reports
that some plant derivatives can increase the activity of drugs used against pathogenic
bacteria [36–38]. Through the association between natural products and conventional
antibiotics, synergistic interactions can be an effective strategy to overcome bacterial
resistance [12]. However, so far, few studies have considered the assessment of possible
synergism between lectins and conventional antibiotics (Table 2).

Table 1. Lectins with antibacterial activity.

Target Microorganism Lectin Reference

Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Providencia stuartii,

ESBL, Staphylococcus aureus, MRSA,
Streptococcus mutans, and

Enterococcus faecalis

Dypsis decaryi (Ddel) [39]

Enterococcus faecalis, Pseudomonas aeruginosa
and Staphylococcus aureus Portulaca elatior (PeRoL) [40]

Bacillus cereus, Bacillus subtilis, Enterococcus
faecalis, Escherichia coli, Klebsiella

pneumoniae, Micrococcus luteus, Pseudomonas
aeruginosa, Salmonella enteritidis,

Staphylococcus aureus, Streptococcus pyogenes,
and Xanthomonas campestres

Apuleia leiocarpa (ApulSL) [41]

Xanthomonas axonopodis and
Clavibacter michiganensis Acacia farnesiana (AfaL) [42]

B. subtilis, K. pneumoniae, Staphylococcus
epidermidis, and E. faecalis Phthirusa pyrifolia (PpyLL) [43]

ESBL: extended-spectrum beta-lactamases; MRSA: oxacilin/methicillin-resistant Staphylococcus aureus.
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Table 2. Antimicrobial activity of lectins alone and in combination with drugs.

Lectin Microrganism MIC MBC Synergism Reference

Canavalia ensiformis
(ConA) MDR S. aureus ≥1024 µg/mL NR

Gentamicin MICs were
reduced in association

with ConA (64 to
12.7 µg/mL)

[44]

Canavalia ensiformis
(ConA) MDR E. coli ≥1024 µg/mL NR

Gentamicin MICs were
reduced in association

with ConA (32 to
20 µg/mL)

[44]

Myracrodruon
urundeuva (MuBL)

Staphylococcus
aureus 12.5 µg/mL 100.0 µg/mL MuBL (0.4 µg/mL) and

cefotaxime (0.2 µg/mL) [45]

Myracrodruon
urundeuva (MuHL)

Staphylococcus
aureus 25.0 µg/mL 100.0 µg/mL

MuHL (0.8 µg/mL) and
cefoxitin (0.2 µg/mL)

MuHL (0.2 µg/mL) and
cefotaxime (0.2 µg/mL)

[45]

Myracrodruon
urundeuva (MuLL)

Staphylococcus
aureus 25.0 µg/mL 100.0 µg/mL

MuLL (0.8 µg/mL) and
cefoxitin (0.2 µg/mL)

MuLL (0.4 µg/mL) and
cefotaxime (1 µg/mL)

[45]

Myracrodruon
urundeuva (MuBL) CA-MRSA 25.0 µg/mL 100.0 µg/mL

MuBL (6.2 µg/mL) and
cefoxitin (0.004 µg/mL)
MuBL (6.2 µg/mL) and

cefotaxime (0.004 µg/mL)

[45]

Myracrodruon
urundeuva (MuHL) CA-MRSA 25.0 µg/mL 100.0 µg/mL

MuHL (0.0007 µg/mL)
and cefoxitin (32 µg/mL)

MuHL (0.0007 µg/mL)
and cefotaxime

(32 µg/mL)

[45]

Myracrodruon
urundeuva (MuLL) CA-MRSA 50 µg/mL 100.0 µg/mL

MuLL (3.1 µg/mL) and
cefoxitin (0.004 µg/mL)
MuLL (6.2 µg/mL) and

cefotaxime (0.004 µg/mL)

[45]

Parkia platycephala
(PPL)

Multi-resistant
S. aureus ≥1024 µg/mL NR

Gentamicin MICs were
reduced in association

with DVL (64 to
25.4 µg/mL)

[32]

Punica granatum
sarcotesta (PgTeL)

ESBL
Escherichia coli 25 to 50.0 µg/mL 50 to 100.0 µg/mL

PgTel (0.003 to
0.48 µg/mL) and

ceftazidime (0.78 to
12.5 µg/mL)

[46]

Punica granatum
sarcotesta (PgTeL)

MBL
Escherichia coli 25 µg/mL 100.0 µg/mL PgTel (0.097 µg/mL) and

ceftazidime (0.39 µg/mL) [46]

Punica granatum
sarcotesta (PgTeL)

ESBL Escherichia
coli 25 to 50.0 µg/mL 50 to 100.0 µg/mL PgTeL (6.25) and

ampicillin (0.006 µg/mL) [46]

Punica granatum
sarcotesta (PgTeL)

ESBL
Escherichia coli 25 to 50.0 µg/mL 50 to 100.0 µg/mL

PgTeL (0.0030 µg/mL)
and carbenicillin

(12.5 µg/mL)
[46]

Punica granatum
sarcotesta (PgTeL)

MBL
Escherichia coli 25 µg/mL 100.0 µg/mL PgTeL (0.78 µg/mL) and

cefuroxime (0.048 µg/mL) [46]

Calliandra
surinamensis

pinnulae (CasuL)
Staphylococcus sp. 15.0 µg/mL No activity

Casul (0.00183 µg/mL)
and ampicillin

(0.0156 µg/mL)
[47]
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Table 2. Cont.

Lectin Microrganism MIC MBC Synergism Reference

Calliandra
surinamensis

pinnulae (CasuL)

Staphylococcus
aureus 3.75 µg/mL No activity

Casul (2.30 × 10−4,
3.66 × 10−3 µg/mL) and

tetracycline (0.12,
3.12 × 10−2 µg/mL)

[47]

Alpinia purpurata
(ApuL) MRSA >400 µg/mL No activity

ApuL (0.125 µg/mL to
50 µg/mL) and oxacillin

(0.003 µg/mL to
7.7 µg/mL × 10−6)

[48]

Alpinia purpurata
(ApuL)

MDR
Pseudomonas

aeruginosa
>400 No activity ApuL (0.003 µg/mL) and

ceftazidime (2 µg/mL) [48]

Lectin from
Acinetobacter

baumannii

Staphylococcus
aureus 256 µg/mL No activity Lectin and ceftazidime

(32 µg/mL) [49]

Lectin from
Acinetobacter

baumannii
Escherichia coli 1024 µg/mL No activity Lectin and ceftazidime

(128 µg/mL) [49]

MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; CA-MRSA: community-acquired methicillin-resistant
Staphylococcus aureus; MBL: metallo-β-lactamase; ESBL: extended-spectrum beta-lactamases; MDR: multidrug-resistant; NR: not reported.

An study conducted by Moura and collaborators [45] evaluated the anti-staphylococcal
effect of lectins isolated from the bark (MuBL), heartwood (MuHL), and leaves (MuLL)
of Myracrodruon urundeuva, as well as the interaction effect of the same ones associ-
ated with cefoxitin and cefotaxime. MuBL, MuHL, and MuLL presented bacteriostatic
(MIC = 12.5–50 µg/mL) and bactericidal (MBC = 100 µg/mL) effects against S. aureus
NCTC 8325 and MRSA clinical isolates. A synergistic effect was observed in all combi-
nations, presenting the greatest MIC reduction at 14-fold with the combinations MuBL–
cefoxitin, MuLL–cefoxitin, MuBL–cefotaxime, and MuLL–cefotaxime against CA-MRSA.
An exception was the MuBL–cefoxitin combination, which showed an additive effect
against S. aureus NCTC 8325 isolate [45]. The lectin extracted from the leaf of Schinus
terebinthifolia (SteLL) presented synergistic activity when combined with ciprofloxacin
against S. aureus NCTC 8325 [50].

Procópio and collaborators [47] evaluated the anti-staphylococcal effects of lectin
extracted from the leaves of Calliandra surinamensis pinnulae (CasuL) against bovine and
caprine mastitis isolates, and the synergistic effect of the CasuL–tetracycline combination
was proven against S. aureus, and CasuL–ampicillin against Staphylococcus sp., with a
fourfold reduction in the MIC value of the drug [47]. The synergistic effect of the lectin
ApuL extracted from the inflorescence of Alpinia purpurata with oxacillin against two MRSA
strains and ApuL with ceftazidime against MDR P. aeruginosa [48] was also demonstrated.
Since its emergence, S. aureus represents one of the main global causes of nosocomial
infections and the main bacterial species that causes mastitis in dairy animals [47,51].
Its diversity of virulence factors, such as biofilm production, in addition to the different
resistance profiles such as MRSA and vancomycin-resistant S. aureus (VRSA), made it
possible to adapt to different environments, which demonstrates its versatility in different
epidemiological contexts [52].

Da Silva and collaborators [46] investigated the antimicrobial activity of lectin ex-
tracted from the sarcotesta of Punica granatum (PgTeL) against E. coli producing β-lactamase
(CTX-M, CMY, and MBL) isolates, as well as the possible interaction with different drugs.
In this study, several interactions had a synergistic effect against some isolates, among them,
PgTeL–ceftazidime against four isolates of ESBL-positive E. coli and one isolate of MBL-
positive E. coli, PgTeL–ampicillin against an ESBL-positive isolate, PgTeL–carbenicillin
against an ESBL-positive isolate, and PgTeL–cefuroxime against three ESBL-positive iso-
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lates. The combination allowed for a 4- to 128-fold reduction in the MIC values of cef-
tazidime, 33-fold of ampicillin, 16-fold of carbenicillin, and 256- to 1000-fold of cefurox-
ime [46]. In another study it was possible to verify that the combination of a lectin obtained
from the strain of Acinetobacter baumannii with ceftazidime against S. aureus and E. coli
showed a significant increase in antibacterial activity compared to monotherapy, with an
eightfold reduction in MIC against both microorganisms [49].

Infections caused by ESBL-positive strains are currently reported on almost every con-
tinent [53]. β-lactamases represent one of the main mechanisms of resistance to β-lactams
and third generation cephalosporins in Gram-negative bacteria [54]. The other therapeutic
option is the carbapenems, one of the choices for the therapy of MDR bacteria, which
increases the selective pressure on the appearance and dissemination of strains producing
carbapenemases [55]. In view of the limited spectrum of antimicrobials, administration
combined with lectins has shown to be a promising option [21].

Santos et al. [56] published two studies recently focused on assessing lectin antimi-
crobial activity and its association with drugs. In the first study, the lectin extracted from
the seeds of Dioclea violet (DVL) was evaluated, and although it did not present any clin-
ical activity when evaluated alone (MIC ≥ 1024 µg/mL), DVL–gentamicin combination
increased the antibiotic activity expressively, reducing the gentamicin MIC from 50.8 to
10.1 µg/mL against MDR S. aureus, and from 32 to 12.7 µg/mL against MDR E. coli [56]. In
the second study, similar results were observed when Santos et al. [57] evaluated the lectin
extracted from Vatairea macrocarpa (VML) seeds (MIC ≥ 1024 µg/mL); furthermore, when
combined with gentamicin, norfloxacin, and penicillin, an increase in antibiotic activity
was also seen, with an MIC reduction of 512 to 128 µg/mL, 40.3 to 32 µg/mL, and 512 to
406.4 µg/mL, respectively, against MDR S. aureus [57].

Silva and collaborators [32] obtained similar results with the lectin extracted from
the seeds of Parkia platycephala (PPL) against MDR S. aureus. PPL did not show antibac-
terial activity (MIC ≥ 1024 µg/mL), but PPL reduced the gentamicin MIC from 64 to
25.4 µg/mL. The association of lectin extracted from the seed of Canavalia ensiformis (ConA)
with gentamicin promoted a reduction of 80% and 37.5% of the MIC value against MDR
S. aureus and MDR E. coli, respectively, while ConA did not show antibacterial activity
(MIC ≥ 1024 µg/mL) when administered alone [44]. Gentamicin represents an antibiotic
of the aminoglycoside class, with a broad spectrum of antibacterial action, used to treat
nosocomial infections caused by Gram-negative and staphylococcal agents, and can be
used synergistically with β-lactam for greater treatment coverage [58,59]. Studies have
demonstrated a positive modulation of the antibiotic activity of aminoglycosides based
on the combination with natural products, being a promising alternative for decreasing
bacterial resistance [58,60].

In all reports found, it was observed that lectins intensified the therapeutic effect
of commercial antimicrobials, promoting a reduction in MIC. Based on these findings,
the lectin could act as an adjuvant when combined with antibiotics in the treatment of
bacterial infections.

2.2. Antibiofilm Activity of Lectins

The production and cellular release of mature biofilms in medical devices is a constant
concern in hospital environments due to the possibility of them becoming a new source
of local and systemic infections [61]. In addition, the recurrence of the infectious process
often occurs due to the presence of biofilms or even originates from primary infections
associated with biofilms [62].

The spread of MDR strains to almost all classes of antimicrobials available worldwide,
associated with a decrease in the production/introduction of new effective antimicrobial
agents, both for the prevention and treatment of infections caused by biofilm-producing
microorganisms, represents a major global health challenge, especially in underdeveloped
countries, where infectious diseases are responsible for around 50% of deaths [63,64].
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The adhesion and colonization of the surfaces constitute preliminary steps in the
development of the infection, but the recognition of the carbohydrates present on the
bacterial cell surface could prevent the adhesion to the host cells and to the surfaces of
medical devices, making the formation of bacterial biofilm infeasible, in addition to being
able to eradicate the preformed biofilms [34,65].

Although the antibiofilm potential of lectins has already been evidenced previously
(Table 3), until now, only two articles have verified the interaction of lectins with drugs,
meeting the objective of the present study (Table 4).

Table 3. Lectins with antibiofilm activity.

Target Microorganism Lectin Reference

β-lactamase-producing Escherichia coli Punica granatum (PgTeL) [46]
S. aureus and Candida albicans Alpinia purpurata (ApuL) [48]

Serratia marcescens and Bacillus sp. Moringa oleífera (WSMoL) [66]
S. aureus, MRSA, E. coli, and
Staphylococcus saprophyticus Calliandra surinamensis (Casul) [67]

P. aeruginosa Litchi chinensis [68]
ESBL: extended-spectrum beta-lactamases; MRSA: oxacilin/methicillin-resistant Staphylococcus aureus.

Table 4. Antibiofilm activity of lectins in combination with drugs.

Lectin Microorganism Antibiofilm Activity Reference

Alone Combination

Recombinant
hemolymph plasma

lectin (rHPLOE)

Pseudomonas
aeruginosa PA14

rHPLOE at 0.63 µM
inhibits 51% of P. aeruginosa

biofilm formation
rHPLOE at 5 µM inhibits
24% of preformed biofilm

of P. aeruginosa

25 µM of azithromycin +
rHPLOE at concentrations of

0.31, 0.63, 1.25 and 2.5 µM
inhibit 19%, 21%, 39% and 43%

of preformed biofilm of P.
aeruginosa, respectively

25 µg/mL of cephalexin +
rHPLOE at concentrations of

0.31, 0.63, 1.25 and 2.5 µM
inhibit 33%, 33%, 38% and 50%

of preformed biofilm of P.
aeruginosa, respectively

[69]

Calliandra
surinamensis

pinnulae lectin
(CasuL)

Staphylococcus
aureus

CasuL at 3.75 µg/mL
inhibits 30% of S. aureus

biofilm formation

CasuL-tetracycline
(0.00023 µg/mL + 0.12 µg/mL)
inhibits approximately 26% of

S. aureus biofilm formation
CasuL-tetracycline (0.00366

µg/mL + 0.0312 µg/mL) inhibits
approximately 60% of Ssp6PD

biofilm formation
CasuL-ampicillin

(0.00183 µg/mL + 0.0156 µg/mL)
inhibits approximately 35% of

Ssp01 biofilm formation

[47]

Fu et al. [69] evaluated the antibiofilm potential of a plasma lectin from Tachypleus
tridentatus hemolymph (rHPLOE). This lectin was able to inhibit the biofilm formation of
P. aeruginosa PA14, as well as to disperse the preformed biofilm. The combined therapy
with azithromycin and cephalexin was also tested against the preformed biofilm of P.
aeruginosa, and both combinations were able to inhibit the formation of the biofilm in a
concentration-dependent association. From the total protein assay, it was observed that
both combinations promoted a significant reduction in the levels of biofilm proteins. This
change can destabilize the structure of the mature biofilm, facilitating the action of an
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antimicrobial. The eradication of biofilms with commercial antimicrobials is a complicated
task, and one of the reasons is that the concentration required to eradicate the biofilm
can reach a thousand times more than is necessary to eliminate planktonic bacteria of the
species [37,70–72].

The second study conducted by Procópio and collaborators [47] evaluated the effects
of CasuL lectin and the combinations of CasuL–tetracycline and CasuL–ampicillin against
S. aureus isolated from bovine and caprine mastitis. CasuL showed antibiofilm activity
against only one S. aureus strain, and all combinations promoted the inhibition of biofilm
formation. In front of the Ssp01 isolate, CasuL did not show antibiofilm activity, and
against Ssp6PD, CasuL and antibiotics showed no activity; on the contrary, they stimulated
the development of biofilm. However, when combined, they reached 60% of inhibition
against these isolates. The combination allowed not only a significant result, but also the
reduction of the concentration required for each antimicrobial to inhibit this virulence
factor. The combination of lectins with conventional antimicrobials can act to increase the
spectrum of activity of the drug, reducing or leading to the absence of side effects due to
the administration of lower doses, in addition to reducing the possibility of the emergence
of resistance and minimizing the impact on therapeutic options in the long term [37].

3. Microbiota in Host Health

The human intestinal microbiota consists of a dynamic community of microorganisms,
commensals, symbiotics, and pathogens in balance [73]. It is estimated that it is colonized
by about 1014 bacterial cells, which have essential functions to ensure the health of the
host [74]. Despite their diversity, most of the bacteria present in the human digestive tract
belong to the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria [75].

Several physiological and immunological processes are influenced and regulated
by the microbiota, such as energy homeostasis, metabolism, endocrine signaling, and
intestinal epithelial health, among others [76]. However, the microbiota is dynamic and
subject to complications in the face of everyday life changes, such as in diet, geography,
medical interventions (antibiotics), and comorbidities [73]. These changes can disturb
the microbiome, leading to intestinal dysbiosis, either due to the profound or transitory
loss of microbial diversity, or the acquisition of pathogenic characteristics by symbiotic
microorganisms, resulting in a greater susceptibility to pathogenic invasion and systemic
spread by commensal microorganisms [76,77].

In the hospital context, one of its most important functions is the protection against
enteric bacterial pathogens, preventing nosocomial infections, since the intestine represents
a large reservoir of opportunistic microorganisms [75]. In recent years, studies have shown
several implications of the microbiota in the face of indiscriminate and excessive use
of antibiotics, such as the increased rates of antimicrobial resistance, expansion of the
host resistance gene pool, and loss of the gastroprotective effect of the microbiota, thus
increasing the risk of translocation through of the intestinal barrier to other sites, and
greater susceptibility to systemic and recurrent infections [6,7].

In addition, antibiotic therapy can lead to the selection of MDR bacteria from its own
microbiota, which represents a clinical challenge given the greater risk of therapeutic failure
associated with a prolonged hospitalization, and that patient could become a new source
of patient–patient infection transmission, which could be fatal for immunocompromised
individuals whose commensal microbiota can no longer guarantee protection against
colonization by exogenous bacteria [78].

Therefore, different strategies based on the modulation of the composition of the
intestinal microbiota to combat antimicrobial resistance has been explored [79]. This
modulation is performed mainly through the administration of prebiotics; probiotics; and,
more recently, fecal microbiome transplantation (FMT) [6].
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3.1. Gut Microbiota Modulation
3.1.1. Prebiotics and Probiotics

Prebiotics are nondigestible food components (polysaccharides, oligosaccharides,
fibers), which selectively act on the proliferation and activity of beneficial microorganisms
present in the colon [80]. Prebiotics induce the reduction in luminal pH, avoiding the
adhesion of pathogens, which activate regulatory T cells (Tregs) that generate an anti-
inflammatory response and short-chain fatty acids (SCFAs) as a final product, which act as
nutrients for the enteric epithelium [76,81].

Probiotics are live microorganisms that, when administered in an adequate amount,
confer benefits to the health of the host. In addition to presenting antimicrobial activity
against pathogens, it can also cause a reduction in intestinal permeability; increased secre-
tion of mucin and IgA, both involved in the protection of mucous membranes; stimulation
of defensins to prevent colonization of pathogens; and increased tolerance of the immune
system against commensal pathogens. Lactobacillus and Bifidobacterium are the anaerobic
bacteria most used in probiotics beneficial to human health [6,82]. The efficacy of probiotics
in eradicating the intestinal transport of vancomycin-resistant Enterococci (VRE) [82] and
colonization reduction of the gastrointestinal tract by MRSA has already been demon-
strated when Lactobacillus rhamnosus was administered [83]. It is also hypothesized that
probiotic species may lead to the reduction of MDR organisms and antibiotic resistance
genes (ARGs) present in the intestinal microbiota [84]. Prebiotics and probiotics can also be
administered in combination, known as a symbiotic product, due to the synergistic effect
promoted by the combination [80].

3.1.2. Fecal Microbiome Transplantation (FMT)

In view of the AR scenario, FMT has stood out as one of the most effective alter-
natives for infection control, flora restoration, and for the selective eradication of MDR
bacteria present in the intestinal microbiota [7]. It comprises the transfer of processed
feces from a healthy donor to the colon of a diseased recipient. This transfer can be per-
formed through oral capsules, parenterally, endoscopically, and/or through colonoscopy
administration [75,79].

The determinant of its benefits is not yet known, it is believed that it is due to the
addition of viable diners capable of restoring intestinal dysbiosis, or by the translocation of
viruses, proteins, vitamins, SCFAs, or the combination of these, which play a fundamental
role in reversing intestinal imbalance [7,79].

FMT is recommended by the Infectious Diseases Society of America (IDSA) and the
Society for Healthcare Epidemiology of America (SHEA) as a therapeutic alternative for
patients with recurrent Clostridioides difficile infection (CDI) when antibiotic therapy fails [7].
Randomized clinical trials, have already achieved cure rates of an average of 80% after
FMT in these patients, and the results are significantly more effective when compared to
treatment by fidaxomycin and vancomycin [84,85]. Reduction in the frequency of ARGs
and/or colonization by MDR bacteria has already been reported in immunocompetent and
immunocompromised patients colonized with carbabenemase-positive and ESBL-positive
Enterobacterales after TMF [6,86]. However, standardization and careful selection of fecal
samples is essential since ARGs can be acquired through donor feces through FMT [87].

Therefore, strategies aimed at modulating the intestinal microbiota should be opti-
mized and investigated, given their potential to reduce and prevent colonization by MDR
bacteria, especially in cases where the treatment of choice has not been effective, thus
providing a possible alternative to conventional antibiotic therapy in the treatment of
infections, a key issue in fight AR.

3.1.3. Strategies to Combat Oxidative Stress Based on Gut Microbiome Modulation

While an overabundance of symbiotic microorganisms resides in our body, it protects
us from a range of exogenous pathogens. Therefore, there must be a balance between the
activation of the immune system and tolerance to its own components [88]. The genetic and
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immunological history of the human beings in the face of different exposures, especially
overexposure to antimicrobials, is responsible for shaping the microbial pattern and its
function [6].

The microbiota is also sensitive to diet, in which chronic consumption of fatty foods
and excessive alcohol intake causes the increase of oxidative stress and inflammatory
state, leading to intestinal dysbiosis, and an increased risk of cardiovascular disease [89],
metabolic syndromes, insulin resistance [90], and even cancer [91].

Oxidative stress corresponds to the imbalance between the production of reactive
oxygen species (ROS) and their removal by protective mechanisms. It results from the
excessive production of ROS, or the limitation of defense systems [92]. Despite not being
the primary cause of certain diseases, its effect extends to deeper layers of the intestinal
wall, which can trigger inflammatory events in obesity, diabetes, and hypertension, given
its systemic dissemination [93,94]. Prolonged state of oxidative stress leads beyond to the
imbalance of the human microbiota, but also to the programmed death of hepatocytes, due
to the activation of resident macrophages [95].

The ROS defense system comprises enzymatic and non-enzymatic antioxidants. The
non-enzymatic mechanism involves endogenous (metabolites) and exogenous (nutrients)
antioxidants [96]. Among endogenous products, lectins stand out for their ability to modu-
late the innate immune system, mediating reactive oxygen and nitrogen species, and the
adaptive immune system, through the production of cytokines [97]. The role of lectins
in guaranteeing the symbiotic interaction between symbiotic plants and microorganisms,
caused interest in investigating their possible gastrointestinal effect in vivo using murine
models [98]. The adherence capacity of phytohemagglutinin (PHA), lectin extracted from
red beans Phaseolus vulgaris, was observed, allowing for the colonization of E. coli and
species of Streptococcus [99]. The mushroom lectin, Agaricus bisporus (ABL), showed an
inhibitory and antiproliferative effect on macrophages, in addition to a reduction in vitro
of nitric oxide (NO) production by peritoneal macrophages [25]. Galecin-3 acts in im-
munomodulatory processes by the prevention of cell apoptosis through mitochondrial
protection and inhibition of ROS production [100].

Nutracenics are exogenous compounds derived from food (fruits, vegetables, mush-
rooms), which have a similar effect to prebiotics in the positive modulation of the micro-
biota, favoring strains of Lactobacillus and Bifidobacterium, acting in the prevention and
treatment of diseases [101,102].

Polyphenols (PPs) have stood out as one of the most important natural antioxidant
bioactives. They are secondary metabolites of plants, and studies indicate that PPs modu-
late the microbiota through prebiotic effects, the neutralization of free radicals, the reduction
of cellular apoptosis via the modulation of mitochondrial dysfunction, and the inhibition
of pathogenic intestinal bacteria [96,103]. The microorganisms present in the microbiota act
in the metabolization of high molecular weight PPs into more active phenolic metabolites,
which significantly influence the structure and function of the community [104]. Another
known source of nutraceuticals is grapes, due to their high content of flavonoids, which
have antioxidant and anti-inflammatory effects, providing neuro- and cardioprotection, as
well as resveratrol, also found in grapes [105].

In conclusion, the combination of traditional drugs and compounds of natural origin,
such as lectins, optimizes the inflammatory response to the increasing pressure of oxidative
stress, being a possible alternative to prolonged administration of medications such as
anti-inflammatories and antibiotics.

4. Conclusions

The traditional antibiotic monotherapies do not seem to be a sustainable long-term
solution for the treatment of infections caused by resistant bacteria, as they are active in
limited spectra and can be ineffective within several years. Antibiotics can also promote
an imbalance in the diversity and function of the human microbiome, wich can lead to
intestinal dysbiosis. Consequently, the use of a combination therapy of antibiotics with
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natural products, such as lectins, has become an emerging area of interest in the scientific
community as a way to overcome multidrug resistance, and a promising strategy in the
modulation of the microbiota to combat oxidative stress. Its stands out for having greater
bioavailability, which facilitates the screening process to ensure its non-toxicity through
in vivo studies and reduces the cost of testing, while maintaining the plasticity of the
microbiota. Altogether, the findings of this study suggest that the combined administration
can not only increase the pharmacological effect, as was seen by the reduction the MIC
of the respective drugs, but can also minimize the side effects due to the administration
of smaller doses, reducing the capacity to develop resistance to the therapy. Thus, the
possibility of applying these molecules as synergistic potentiators of antibiotics and as a
complementary therapeutic approach represents a promising future in the clinical–scientific
scope for the treatment of highly resistant infectious diseases. However, as there are no
reports on the use of a combination of lectins and antibiotics used in the clinical setting,
further studies should be carried out to identify possible limitations, such as clinical trials
to assess stability, dose, frequency, and selectivity, along with others. It is important to
know whether the lectin can affect the drug’s molecular mechanism of action. Genetically
modified organisms (GMOs) lacking the specific resistant mechanism can be used to define
the pharmacokinetic and pharmacodynamic targets. Other aspects must be considered as
well, such as polymicrobial infections, the presence of different resistance mechanisms, and
combination with more than one antibiotic of different classes.
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