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A new structure-property 
connection in the skeletal elements 
of the marine sponge Tethya 
aurantia that guards against 
buckling instability
Michael A. Monn & Haneesh Kesari

We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya 
aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that 
are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and 
bone, have been studied primarily for their benefits to toughness properties. The structure-property 
connection we identify, however, falls in the entirely new category of buckling resistance. We use 
computational mechanics calculations and information about the spicules’ arrangement within the 
sponge to develop a structural mechanics model for the spicules. We use our structural mechanics model 
along with measurements of the spicules’ shape to estimate the load they can transmit before buckling. 
Compared to a cylinder with the same length and volume, we predict that the spicules’ shape enhances 
this critical load by up to 30%. We also find that the spicules’ shape is close to the shape of the column 
that is optimized to transmit the largest load before buckling. In man-made structures, many strategies 
are used to prevent buckling. We find, however, that the spicules use a completely new strategy. 
We hope our discussion will generate a greater appreciation for nature’s ability to produce beneficial 
designs.

Biological materials often possess quite distinct mechanical designs. The designs range from the overall shape 
of biological structures at the large-scale, to intricate 3D architectural motifs at the small-scale1,2. The shape of 
scales and claws3,4, the truss-like internal structure of vulture wings5, the brick-and-mortar arrangement of min-
eral tablets in mollusc shells6, and the graded porosity of grass stems7 demonstrate the diversity and visually 
striking nature of these mechanical designs. Some of these mechanical designs are products of unyielding evo-
lutionary pressures and are believed to enhance the properties of their corresponding structures and materials. 
Consequently, new strategies for improving a structure’s or a material’s performance can be discovered by study-
ing the structure-property connections in these mechanical designs. For example, structure-property investiga-
tions motivated by the remarkable toughness of nacre and bone have led to the development of new bio-inspired 
structural ceramics8–10.

Structure-property investigations have primarily focused on toughness-related mechanical properties for the 
past forty years6,11,12. Only a small amount of attention has been devoted to other equally important mechanical 
properties, such as strength, stiffness, and buckling resistance13–15. Buckling is the phenomenon in which a slen-
der, structural element that is subjected to an increasing axial compressive force abruptly starts to deform laterally 
when the force’s magnitude reaches a critical value. This instability dramatically reduces the structure’s ability to 
provide stiffness and structural support, and in many cases can lead to catastrophic failure.

There has always been a need for buckling-resistant designs at the large-scale, e.g., in light-weight aerospace 
and civil engineering structures16,17. Recently, however, understanding and controlling buckling has also become 
important at the small-scale as well. A number of stretchable electronics platforms being developed are based 
on the design of micro-scale structures whose buckling instabilities can be precisely controlled18–20. Bio-medical 
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instruments, such as needles, catheter guidewires, and stents depend on buckling resistance in order to effectively 
penetrate tissue or be inserted through narrow ducts or capillaries21–23. Stents must also provide reliable and 
long-term mechanical support to the surrounding tissue22,23.

We identify a new connection between the mechanical design and buckling resistance in the skeletal ele-
ments of the marine sponge Tethya aurantia. T. aurantia is a sessile animal that grows on rocky surfaces in the 
Mediterranean24. The skeletal elements that we focus on are needle-shaped structures called strongyloxea spicules 
(see Fig. 1). The strongyloxea (Sxa) are monolithic, axially symmetric, silica rods (see Fig. 2(b)). They are roughly 
35 μm thick, 2 mm long, and are tapered along their length (see Supplementary Section Details of Sxa profile 
measurements and Fig. 1(a)). We found that the tapered shape is remarkably uniform across different Sxa (see 
Section Measurement of Sxa profiles and Fig. 1(d)). Considering that sponges have a great degree of control over 
the shape of their spicules, it is natural to wonder whether this tapered shape has some functional significance.

We introduce and investigate the hypothesis that the Sxa’s taper is an adaptation aimed at enhancing their abil-
ity to provide stiffness to the sponge. Our hypothesis is motivated by the following observations. (a) Mechanical 
stiffness is important for the sponge. T. aurantia is primarily found in shallow, coastal environments, where it 
is subjected to forces exerted by underwater waves and currents24–26. It feeds by filtering microscopic organic 
particles and microorganisms from seawater. Large deformations of the sponge’s body caused by ambient loads 
could inhibit its ability to feed. Therefore, it is critical that the sponge’s body be stiff enough to limit any such 
large deformations. (b) The sponge derives its stiffness primarily from the Sxa. The Sxa are distributed within the 
sponge’s spherical body and are embedded in a collagenous matrix, called spongin (see Fig. 3(a))26,27. Spongin is 
very compliant, having a Young’s modulus of only 600 KPa28. The Sxa on the other hand are composed of silica, 
which has a Young’s modulus of 72 GPa29. The Sxa also lack any internal structure (see Fig. 2(b)) that would imply 
that they perform functions other than to provide mechanical support to the sponge. Finally, a closely related 
sponge—Tethya citrina—that grows in calmer waters is more compliant and produces fewer spicules per body 
volume26. This is consistent with mechanical tests performed on spicule containing tissues, which show that the 

Figure 1. Measurement of Sxa profiles. (a) A micrograph of several Sxa. (b) An SEM image of a single Sxa. The 
Sxa’s profile is highlighted. (c) A magnified view of (b) showing points composing the profile. (d) Dimensionless 
profiles of the 31 Sxa. The inset shows the distribution of αm. The square and error bar indicate the mean and 
standard deviation of αm. The scale bars in (a)–(c) are 500 μm, 250 μm and 25 μm, respectively.
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spicules drastically increase the tissue’s stiffness30. (c) The Sxa’s ability to provide stiffness is limited by their resist-
ance to buckling. (d) The buckling resistance of a slender structure can be increased by tapering it. The destabilizing 
bending moments arising from the eccentricity of a structure’s axial compressive loads are more intense at the 
structure’s center than at its ends. Hence, its buckling resistance can be enhanced by moving material away from 
its ends, towards its center. This result has been established both theoretically31 and experimentally32. We elabo-
rate on this result further in Section Comparison with the Clausen profile.

We test our hypothesis as follows. Based on mechanical testing (see Section Mechanical testing of Sxa) and 
sponge-anatomy informed computational mechanics calculations (see Section Computational mechanics calcula-
tions and Supplementary Section Computational mechanics model of a Sxa in its RoC), we construct a structural 
mechanics model for the Sxa (see Section The structural mechanics model for the Sxa). Using our model, we 
identify the shape of the structure that has the greatest resistance to buckling (see Section Comparison with the 
Clausen profile). Finally, we measure the Sxas’ tapers from SEM images and compare them with the shape of this 
optimal structure (see Section Comparison with the Clausen profile). We find that the Sxas’ tapers are strikingly 
similar to the shape of the optimal structure. This similarity suggests that the Sxas’ tapered shape enhances their 
resistance to buckling.

Our mechanical tests are discussed in Section Mechanical testing of Sxa. They show that the Sxa behave 
in a linear elastic fashion until failure. They also show that the Sxa’s deformation behavior in bending can be 
modeled exceptionally well using classical structural mechanics theories (see Fig. 2(d)). Furthermore, from the 
Sxa’s arrangement within the sponge’s body it is clear that the Sxa’s primary function is to stiffen the sponge 
against radial compressive stresses26,27,30. We analyze a Sxa and a small section of its surrounding spongin matrix 
using computational mechanics calculations that are consistent with the sponge’s skeletal anatomy (see Section 
Computational mechanics calculations and Supplementary Section Computational mechanics model of a Sxa in its 
RoC). The results from our computational mechanics calculations show that due to the difference in the stiffnesses 
of the Sxa and spongin, the spongin matrix transmits the radial compressive stresses to the Sxa as highly localized 
surface tractions on their ends (see Supplementary Section Computational mechanics model of a Sxa in its RoC). 
Synthesizing the knowledge gained from the mechanical tests, and the computational mechanics simulations, we 
model the Sxa as a simply supported column (see Section The structural mechanics model for the Sxa).

In the column model, the Sxa’s stiffening ability is limited by the Euler buckling instability. Thus, the Sxa’s 
stiffening ability can be quantified by what we call its buckling strength, which is the maximum axial compressive 
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Figure 2. Three-point bending tests of Sxa. (a) Applied force, F, versus displacement at midspan, w0, for 
30 Sxa. Red points indicate the load and displacement at which each Sxa failed. (b) A cross-section of a fractured 
Sxa. (c) Micrograph of a bent Sxa just prior to failure. The indenter used to apply the force is outlined with 
dashed lines. (d) Points along the Sxa’s axis are obtained from (e). The blue curve labeled EB is the deformed 
shape predicted by Euler-Bernoulli theory. The scale bars in (b) and (c) are 10 μm and 250 μm, respectively.
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force that it can transmit without buckling. The shape that would be most consistent with our hypothesis would 
be the one for which the column model attains its maximum buckling strength. It has been shown using rigor-
ous mathematical techniques that the buckling strength of a simply-supported column can be enhanced by up 
to 33% over that of a cylinder by tapering it so that its radius as a function of length is described by what we call 
the Clausen profile33,34. Thus, to test our hypothesis we check how well the Sxa’s tapered shape is described by the 
Clausen profile.

We imaged 31 Sxa using scanning electron microscopy (SEM) and measured their profiles. In order to inter-
pret how well the measured profiles compare with the Clausen profile, we compare them to not only the Clausen 
profile but also to other prototypical tapered profiles (see Section Comparison with the Clausen profile). By fitting 
the profile models to the measured profiles, we find that the Clausen profile describes the Sxa’s tapered shape the 
best (see Fig. 4(B)).

We do not directly measure the buckling strengths of the spicules. However, we use our measurements of the 
Sxas’ profiles along with our structural mechanics model to estimate the buckling strengths of the Sxa (see Section 
Direct estimates of the Sxas’ buckling strengths). We compare the estimated buckling strengths of the Sxa to the 
buckling strengths of equivalent cylinders—i.e., cylinders with the same length, volume, and elastic properties 
(see Fig. 5). We find that the buckling strengths of the Sxa predicted by our model can be as much as 30% greater 
than those of their equivalent cylinders. This is close to the 33% enhancement that is achieved by the Clausen 
profile.

The resemblance of the Sxa’s profile to the Clausen profile is quite striking and supports our hypothesis. 
However, our work is only a first step in understanding the functional significance of the Sxa’s tapered shape. It 
is possible that the Sxas’ tapered shape serves a mechanical function that is different from the one that we have 
presumed. Or, it is also possible that the taper is simply a consequence of the spicular growth processes, and its 
resemblance to the Clausen profile is only a misleading coincidence. These possibilities cannot be ruled out with-
out having more information about the sponge’s anatomy and ethology. The most direct way to reject our hypoth-
esis would be to show that at least one of our key assumptions is incorrect. These key assumptions pertain to: (i) 
the importance of stiffness to the sponge, (ii) the primary function of the Sxa, (iii) the role of the buckling instabil-
ity in dictating the Sxa’s stiffening ability, and (iv) the effect of the spongin matrix on the Sxa’s buckling behavior.

Figure 3. Arrangement of Sxa within the sponge motivates a structural mechanics model. (a) A cross-section 
of the sponge reveals radial bundles of Sxa. (b) A bundle is composed of Sxa (dark) separated by spongin (light).  
(c) The presence of neighbors limits the deformation of a Sxa to a region of confinement (RoC). (d) Tractions 
applied to the ends of the RoC are transferred to the Sxa by the inter-spicule spongin (IS). (e) Von Mises stress 
computed from a computational mechanics model of (d). The distribution of axial force per unit length, Tz, along 
the length of a Sxa is localized at the ends. (f) A Sxa within its RoC, subjected to opposing forces with magnitude 
PM applied at its ends. A Sxa rotates until it is restrained by the presence of neighboring Sxa. The net force acting 
along a Sxa’s axis has a magnitude P, which includes contributions from PM and PN. The Sxa and RoC in (d)–(f) are 
not to scale. (g) A schematic of a simply supported column.
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Results
Measurement of Sxa profiles. We extracted the shape of 31 Sxa from SEM images (see Methods). Since the 
Sxa are axisymmetric, we describe a Sxa’s shape using its “profile”, which is a set of points z r( , )i

m
i
m , i =  1 …  250 

shown in Fig. 1(b,c). We measured the length, Lm, and maximum cross-sectional radius, Rm, of each Sxa from its 
profile (see Supplementary Section Details of Sxa profile measurements). By plotting the dimensionless profiles, 
z L r L( / , / )i

m
m i

m
m , for i =  1 …  250, we see that the general nature of the taper appears uniform across different Sxa. 

To make a more quantitative comparison of the Sxas’ tapers we compute the aspect ratio, αm =  Lm/2Rm, for each 
Sxa. The values of αm are plotted in Fig. 1(d). The mean and standard deviation of αm are 53.6 and 8.7, respec-
tively. The small scatter of αm further supports our viewpoint that the tapered shape is uniform across different 
Sxa.

Mechanical testing of Sxa. The Sxa are primarily composed of silica35, which is a well-characterized 
ceramic material that behaves in a linear elastic fashion and fails through brittle fracture. Cursory inspection of 
the surfaces of fractured Sxa (see Fig. 2(b)) suggests that they are essentially homogeneous silica rods. However, 
spicules also possess a proteinaceous scaffold within their silica36,37. In some related species this protein forms 
distinct layers, which may affect the deformation and failure behavior of the spicules13,35,38,39. While T. aurantia’s 
Sxa do not contain separate layers of protein and silica, the influence of any underlying protein scaffold on their 
elastic behavior is unknown. Furthermore, the composition of the silica itself varies spatially within the Sxa40. 
To ascertain the effect of any potential elastic inhomogeneities on a Sxa’s deformation behavior, we performed 
three-point bending tests on 30 Sxa using a custom-built flexure device. Briefly, the Sxa were suspended over a 
trench with vertical, parallel walls and were indented by a cantilever that also acts as a force sensor. The details of 
our flexure device and three-point bending tests will be published elsewhere.

The magnitude of the transverse force, F, and deflection of the Sxa’s axis in the y-direction at midspan, w0 (see 
Fig. 2(c)), were recorded until the Sxa failed. The w0–F data for the Sxa are shown in Fig. 2(a). The failure of every 
Sxa we tested was defined by a single fracture event. The fracture events are marked with red points in Fig. 2(a). 
The w0–F response of every Sxa was linear until failure. This observation indicates that the Sxa’s mechanical 
behavior is linear elastic until failure.

We compared a Sxa’s deformed shape during a bending test to that predicted by Euler-Bernoulli theory 
for an elastically homogeneous, tapered beam41. Euler-Bernoulli (EB) theory is a highly successful structural 
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Figure 5. Estimated buckling strengths of Sxa. The relative buckling strengths, (Ps −  Pc)/Pc, of the 31 Sxa 
whose profiles were measured in Section Measurement of Sxa profiles are estimated using our structural 
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mechanics theory used for modeling the deformation of slender, linear elastic structures that primarily deform 
through bending. For details of how the shape predicted by EB theory was computed, see Supplementary Section 
Deflection of a tapered beam in three-point bending predicted by Euler-Bernoulli theory. The displacement of a Sxa’s 
axis in the y-direction was measured from images taken during the bending test (see Fig. 2(c)). A representative 
comparison of these measured displacements with those predicted by EB theory is shown in Fig. 2(d). The meas-
urements and the theoretical predictions match very well for 27 of the 30 Sxa. This supports that the Sxa’s behavior 
is linear elastic and shows that a Sxa is elastically homogeneous along its length. Furthermore, it shows that a Sxa’s 
deformation can be described by an EB theory for an elastically homogeneous, tapered, axially symmetric beam.

Computational mechanics calculations. Being embedded within the sponge, a Sxa likely experiences 
a complex distribution of tractions along its length. However, using computational mechanics calculations we 
found that due to the Sxas’ arrangement within the sponge and the large mismatch between the compliance of the 
Sxa and the spongin, the tractions are localized at the ends of the Sxa (see Supplementary Section Computational 
mechanics model of a Sxa in its RoC). Thus, the most appropriate structural mechanics model based on EB theory 
would be a simply supported column, which is described by equations (1–3).

The Sxa are not uniformly scattered throughout the sponge’s body, rather they are grouped in bundles that 
extend radially from the sponge’s center to its outer surface (see Fig. 3(a))26. The Sxa are aligned along the bun-
dles’ lengths and are staggered with respect to each other (see Fig. 3(b)). The bundles are 220–490 μm thick26 
and a bundle’s cross-section contains approximately 50 Sxa27. From the average bundle thickness, number of Sxa 
per bundle, and Sxa diameter, we estimate the distance between the axes of neighboring Sxa to be ≈ 45 μm (see 
Supplementary Section Estimation of the distance between adjacent Sxa in a bundle). Thus, the Sxa within a bundle 
are separated from each other by a small amount, ≈ 8 μm, of spongin.

External forces acting on the sponge are transmitted by the spongin to the Sxa as tractions on their surfaces. 
To determine the distribution of these tractions, we performed a stress analysis on a continuum mechanics model 
of an individual Sxa embedded in a cylindrical section of spongin. We refer to this cylinder as a Sxa’s region of 
confinement (RoC) (see Fig. 3(c,d)). The diameter of the RoC is equal to the distance between neighboring Sxa 
in a bundle.

We model the spongin in the RoC as an isotropic, linear elastic solid with Young’s modulus and Poisson’s 
ratio of 600 KPa and 0, respectively. These values correspond to measurements of the mechanical properties of 
spongin in a related species28. Furthermore, measurements of the Young’s modulus of spicules from a related 
species42 indicate that the silica is between four and five orders of magnitude stiffer than the spongin. We will 
present Young’s modulus measurements of the Sxa from our own work in a future paper. Motivated by this large 
difference in stiffnesses, we model a Sxa as a rigid inclusion whose surface is bonded to the spongin in its RoC. We 
assume that external forces act normal to the sponge’s surface and result in axial compressive stresses in the Sxa 
bundles. Therefore, we apply compressive tractions to the ends of the RoC (see Fig. 3(d)). Since the spongin in a 
RoC is also connected to the spongin in the RoCs of neighboring Sxa, we constrain points on the lateral surface 
of the RoC from moving in the radial direction. Further details about this model can be found in Supplementary 
Section Computational mechanics model of a Sxa in its RoC.

We computed the stress field in the spongin using finite element procedures (see Fig. 3(e))43. We found that 
for a wide range of traction distributions applied to the ends of the RoC, the axial force per unit length acting on 
the Sxa is always localized on the Sxa’s ends (see Fig. 3(e) and Supplementary Section Computational mechanics 
model of a Sxa in its RoC). This localized force distribution contrasts with that predicted for an ellipsoidal inclu-
sion embedded in a linear elastic solid subjected to far-field compressive stress. Specifically, a celebrated elasticity 
solution by Eshelby44 predicts that the axial force per unit length will vary in a piecewise affine fashion along an 
ellipsoidal inclusion. It is not necessary, however, for this result to hold true for non-ellipsoidal inclusions. Thus, 
our numerical results do not contradict Eshelby’s solution. In fact, they are consistent with results from compu-
tational models of short fiber reinforced composites45,46, full-field elasticity solutions for rigid line inclusions47, 
and photoelasticity experiments on line-like inclusions48. Based on the insight gained from our computational 
mechanics calculations, we modeled the effect of the spongin by replacing the tractions applied to the ends of the 
RoC with opposing point forces, ± PM at the Sxa’s ends (see Fig. 3(f)).

The structural mechanics model for the Sxa. Initially a Sxa behaves like a column with two free ends, 
which is unstable when subjected to the the axial forces ± PM. Even if these forces are aligned with the Sxa’s axis, 
small perturbations in the configuration will inevitably cause the Sxa to rotate about one of its transverse axes. 
However, after rotating by only a small amount (≈ 1.3°), the proximity of neighboring Sxa in the bundle will pre-
vent further rotation (see Fig. 3(f)). Due to the spongin’s large compliance, it is unlikely that this small rotation 
will substantially change the stress state in the spongin and consequently the traction distribution on the Sxa’s 
surface. However, there will be non-negligible reaction forces, ± PN, at the points where a Sxa is restrained by its 
neighbors. The net force at a Sxa’s end, P, which includes contributions from PM and PN, must act in the direction 
of the Sxa’s axis (see Fig. 3(f)). This is a consequence of static equilibrium and can be deduced using a free body 
diagram.

Thus, a Sxa can be modeled using the EB theory in which the column’s ends are subjected to compressive, 
axial forces and cannot move in the direction perpendicular to the column’s axis. We refer to this model as a sim-
ply supported column (see Fig. 3(g)). In this model, the transverse deflection, w, is governed by the differential 
equation
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for all z ∈  (0, L), and boundary conditions

= =
= =

w w 0, (2)z z L0

= =
= =

EI EI 0, (3)w zz z w zz z L, 0 ,

where P, E, L and I are the magnitude of P, the column’s Young’s modulus, length and second moment of area, 
respectively. Based on the results of Sections Measurement of Sxa profiles and Mechanical testing of Sxa we take E 
to be constant and I(z) =  πr(z)4/4, where r(z) is the radius of the Sxa’s cross-section—i.e. its profile.

Comparison with the Clausen profile. The buckling strength of a simply supported column is the small-
est P for which there exists a solution to equations (1–3) other than w =  0 for all z ∈  [0, L]. For an elastically 
homogeneous column, the buckling strength can be modulated by varying I, or in this case r, along the column’s 
length31. Our hypothesis would gain support if the profile of the simply supported column with the greatest buck-
ling strength resembled the measured profiles of the Sxa.

The profile that maximizes a simply supported column’s buckling strength for a given length, L, and volume, 
V, was first sought by Lagrange in the late 1700s49. The correct solution, however, was discovered in 185150, and an 
accessible proof that it is in fact optimal was given in 196234. This optimal profile, which we refer to as the Clausen 
profile, is given by

ρ θ α θ= −( ) (2 ) sin( ), (4)1

ζ θ
π
θ θ=


 −



( ) 1 1

2
sin(2 ) ,

(5)

where ρ =  r/L and ζ =  z/L are the dimensionless radial and axial coordinates, respectively, and θ is a parameter 
that lies between 0 and π33,34. The parameter α =  (3πL3/16V)1/2 is a measure of the column’s aspect ratio. We refer 
to a column whose taper is described by the Clausen profile as a Clausen column (see Fig. 4(A)).

To test our hypothesis, we compared the Clausen profile to the Sxa profiles. We did this by fitting equa-
tions (4) and (5) to each Sxa profile in the least-squares sense by varying the parameter α (see Supplementary 
Section Fitting profiles to the Sxas’ shape). The best fit Clausen profile for a representative Sxa is shown in Fig. 4(B). 
We also fit three other prototypical profiles; a semiellipse, an isosceles triangle and a constant to the Sxa profiles 
(see Supplementary Section Fitting profiles to the Sxas’ shape and Fig. 4(A)). We use the sum of squared residuals 
for a fitted profile, mSSR, to indicate how well that profile describes a Sxa’s shape. The medians, means and stand-
ard deviations of each profile’s mSSR are shown in Table 1, from which we see that the Clausen profile has the 
lowest mean and median mSSR. Furthermore, a two-sided Wilcoxon signed rank test indicates that the median 
mSSR for the Clausen profile differs from that of the semiellipse profile at the 1% significance level (p =  0.0002). 
Thus, using the median mSSR as a metric, we conclude that the Clausen profile describes the Sxas’ tapers the best 
out of the different profiles that we considered. Further investigation using another comparison criterion also 
supports this conclusion (see Supplementary Section Additional profile comparison using the Akaike information 
criterion for details).

Direct estimates of the Sxas’ buckling strengths. The fact that the Clausen profile describes the 
measured Sxa profiles the best among the prototypical tapered profiles that we considered gives strength to our 
hypothesis. However, it is still possible that there may exist some other profile, which corresponds to an alternate 
hypothesis, that describes the Sxa’s taper even better than the Clausen profile. If such a profile exists, would our 
hypothesis remain viable?

To answer this question, we numerically estimated the Sxas’ buckling strengths, Ps, using the measured profiles 
and our structural mechanics model. Briefly, we computed a Sxa’s second moment of area I(z) =  πr(z)4/4 from 
its profile, r(z), and used the Rayleigh-Ritz method51 to find an approximate value for the smallest P for which 
there exists a solution to equations (1–3) other than w =  0. We computed Ps for each of the 31 Sxa whose profiles 
we measured in Section Measurement of Sxa profiles and compared it to the buckling strength Pc =  πEV2/(4L4) of 
the equivalent cylinder—i.e., the cylinder with the same length, volume, and elastic properties (see Fig. 5). Taken 
as a group, we found that the median buckling strength of the Sxa is 13.4% greater than that of their equivalent 
cylinders. Furthermore, some Sxa achieve values of (Ps −  Pc)/Pc as large as 0.3 which is close to the enhancement 
of 0.33 provided by the Clausen column33 (see Fig. 5).

mSSR × 1000

Median Mean s.d.

Clausen, (4)–(5) 0.157 0.156 0.077

semiellipse, (S8) 0.247 0.281 0.165

triangle, (S9) 2.078 2.125 0.839

constant, (S10) 0.721 0.769 0.404

Table 1.  mSSR of the candidate profiles (N = 31).
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So, even if there existed a profile that better resembled the Sxas’ tapers, the fact still remains that the Sxas’ 
tapers substantially enhance their buckling strengths. Therefore, even if there existed a better matching profile 
based on an alternate hypothesis, the support for our hypothesis would still remain strong. Such a scenario would 
only mean that the Sxa serve more than one function.

Discussion and Concluding remarks
The structure-property connection that we identify in the Sxa represents a completely new type of entry 
into the growing library of structure-property connections in biological materials and structures. This new 
structure-property connection is related to buckling resistance rather than toughness enhancement, which is the 
focus of the majority of past structure-property investigations. While the identified connection is related to the 
structure’s stiffness, by being sharply focused on preventing buckling it is quite different from the stiffness-related 
structure-property connections that have been identified in biological structures, such as stems and quills14,15. We 
hope that our work encourages the investigation of the potential buckling resistance offered by the tapered shapes 
of other slender biological structures, such as hedgehog quills and echinoderm spines.

Though the result that tapering a slender structure can increase its buckling strength is well known in the 
applied mathematics community, it has not been widely adopted by the engineering community for the design of 
buckling-resistant structures. The Sxa demonstrate that tapering structures to increase their buckling resistance 
is indeed useful in practice. It would be interesting to see how engineers extrapolate this result to more general 
structures, such as trusses. Quantifying the enhancements in such generalizations will lead to the formulation of 
some very interesting mathematics and mechanics problems.

We also believe that this work will increase the interest in structure-property investigations. Interest in 
bio-inspired engineering was originally based on the tacit assumption that evolutionary adaptation produced 
close-to-optimal mechanical designs52. However, now it is understood that for adaptations to take root they do not 
have to be close-to-optimal, but only “good enough”53. This understanding stemmed from the fact that there are 
very few examples of mechanical designs in biological structures and materials that have been rigorously shown 
to be close-to-optimal13,54–56. This new understanding acts as an important bulwark against efforts that blindly 
imitate mechanical designs in biology without first understanding their functional significance. Unfortunately, 
this new understanding can also lead to excessive skepticism about the effectiveness of adaptations, and conse-
quently, about the importance of investigating structure-property connections. Since our results show that the 
taper in Sxa is not just a beneficial adaptation, but is in fact a close-to-optimal adaptation, we believe that our 
findings will help alleviate such skepticism. To elaborate, if the elliptical profile described the Sxas’ profiles the 
best, then their tapered shape would still be a beneficial adaptation since the elliptical profile increases a column’s 
buckling strength by roughly 12% compared to its equivalent cylinder. However, the Sxa is best described by not 
just any beneficial taper, but by that for which the enhancement to buckling strength is the largest.

Finally, it is amazing to us that evolution has endowed such a simple animal—one that even lacks a brain—
with a mechanical design that has engaged some of the most brilliant scientific minds57. We wonder whether the 
significance of the Sxa’s shape would have been identified if the Clausen profile were not already known. To that 
end, we also wonder whether the lack of suitable mechanics models for other mechanical designs obscure their 
significance and thereby allow them to hide in plain sight.

Methods
SEM imaging of strongyloxea. Strongyloxea from T. aurantia sponges were received dried and separated 
from the surrounding spongin. The Sxa were first examined using a polarized light microscope (Nikon Ci Pol). 
Intact, undamaged Sxa were mounted to aluminum stubs using conductive carbon tape. The mounted Sxa were 
sputter coated with approximately 10 nm of carbon and then imaged with a scanning electron microscope (FEI 
Helios, or LEO 1530 VP) at roughly 500X magnification. At this magnification, the field of view was roughly 
250 μm ×  200 μm in the FEI Helios (130 μm ×  90 μm in the LEO 1530 VP). Therefore, a complete image of a Sxa 
consisted of 7–14 overlapping frames. These frames were aligned and stitched together to make a single compos-
ite image using a Fourier transform-based phase correlation method implemented in ImageJ58. A representative 
composite image is shown in Supplementary Fig. S1.

Extracting strongyloxea boundary geometry from SEM images. Each composite image was first 
converted to a binary image in which the Sxa and background are made up of white and black pixels, respectively. 
Points on the boundary of the Sxa were identified using the Moore-Neighbor tracing algorithm implemented in 
MATLAB’s Image Processing Toolbox59 (see Supplementary Fig. S1). There were roughly 15,000 boundary points 
obtained for each Sxa. A line was fit to these points to determine the orientation of each Sxa’s axis. We used this 
line as the axial—z—direction in the (z, r) coordinate system shown in Fig. 1(c) and Supplementary Fig. S1. The 
locations of the boundary points were translated so that the point with the smallest z coordinate was located at the 
origin. Finally, the locations of the boundary points were converted from pixels to micrometers using a scale bar 
taken from the first frame of each composite image.

Denoising and subsampling strongyloxea boundary data. We divided a Sxa’s boundary points into 
50 partitions so that the z coordinates of the points in the jth partition satisfy (j −  1)Lm/50 ≤  z ≤  jLm/50, where 
j =  1, … , 50 and Lm is the maximum z value of the boundary points. The average z and r coordinates of the points 
in each partition were interpolated along with the end points, (0, 0) and (Lm, 0), to generate the Sxa’s midline (see 
Supplementary Fig. S1). We used the midline to divide the boundary points into two halves. Boundary points 
whose r coordinates were greater (resp. less) than those of the midline at the same z value constitute the upper 
(resp. lower) half-boundary. Each half-boundary was denoised using a Savitzky-Golay filter with a kernel size of 
approximately 1/12th the total number of boundary points. The two sets, +

= …z r( , )i i i 1, ,250
 and −

= …z r( , )i i i 1, ,250
, were 
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obtained by sampling the denoised upper and lower half-boundaries, respectively. The z values of these points 
were selected such that z1 =  0, z250 =  Lm and −+z zi i1 , = …i 1, , 249 is a constant—i.e., the points are equally 
spaced in the z direction. The sets +

= …z r( , )i i i 1, ,250
 and −

= …z r( , )i i i 1, ,250
 constitute our model for a Sxa’s boundary 

and are used in Supplementary Section Quantification of a Sxa’s axial and lateral symmetries for quantifying the 
Sxa’s symmetries. After quantifying a Sxa’s symmetries, the −

= …z r( , )i i i 1, ,250
 set is discarded and the +

= …z r( , )i i i 1, ,250
 

set is used in the calculations and analysis in Sections Measurement of Sxa profiles, Comparison with the Clausen 
profile, and Direct estimates of the Sxas’ buckling strengths. In those sections we refer to the set +

= …z r( , )i i i 1, ,250
 as 

a Sxa’s profile and denote it as 
= …z r( , )i

m
i
m

i 1, ,250
.
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