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Abstract: Various gene alterations related to acute leukemia are reported to be involved in drug
resistance. We investigated idarubicin (IDR) resistance using exome nuclear DNA analyses of
the human acute leukemia cell line MOLT-3 and the derived IDR-resistant cell line MOLT-3/IDR.
We detected mutations in MOLT-3/IDR and MOLT-3 using both Genome Analysis Toolkit (GATK)
and SnpEff program. We found 8839 genes with specific mutations in MOLT-3/IDR and 1162 genes
with accompanying amino acid mutations. The 1162 genes were identified by exome analysis
of polymerase-related genes using Kyoto Encyclopedia of Genes and Genomes (KEGG) and,
among these, we identified genes with amino acid changes. In resistant strains, LIG and
helicase plurality genes showed amino-acid-related changes. An amino acid mutation was also
confirmed in polymerase-associated genes. Gene ontology (GO) enrichment testing was performed,
and lipid-related genes were selected from the results. Fluorescent activated cell sorting (FACS)
was used to determine whether IDR permeability was significantly different in MOLT-3/IDR and
MOLT-3. The results showed that an IDR concentration of 0.5 µg/mL resulted in slow permeability
in MOLT-3/IDR. This slow IDR permeability may be due to the effects of amino acid changes in
polymerase- and lipid-associated genes.
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1. Introduction

We aimed to characterize the molecular mechanisms underlying idarubicin (IDR) resistance in
acute leukemia cells. It is known that gene alterations in acute leukemia cells are involved in drug
resistance. A better understanding of the mechanisms underlying drug resistance in these cells will
help to improve the effectiveness of chemotherapy. In this study, we investigated the mechanisms
underlying drug resistance in the human acute leukemia cell line MOLT-3 and its IDR-resistant
derivative MOLT-3/IDR by complete nuclear DNA analyses.

In recent years, the mortality rate of leukemia has been gradually decreasing due to increased bone
marrow transplantations; development of antibiotic, antifungal, and antiviral drugs; optimization
of transfusion therapy; analysis of treatment protocols by multicenter studies; and development
of molecularly targeted drugs [1,2]. In general, IDR, an anthracycline antitumor agent, is used as
a therapeutic agent for acute myelogenous leukemia. IDR has also been used for acute myeloid
leukemia, blast crisis of chronic myelogenous leukemia, and recurrence of acute lymphocytic
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leukemia. IDR has a superior remission induction effect than daunorubicin, and remission induction
therapy using idarubicin was reported to be effective in clinical trials of recurrent acute lymphocytic
leukemia [3]. IDR acts by inhibiting the transcription of RNA from DNA, which in turn prevents
the growth of cancer cells. Moreover, IDR is highly lipophilic and can therefore maintain a high
intracellular drug concentration even in P-glycoprotein-expressing cells. However, antitumor drug
resistance in solid and recurring tumors has decreased the effectiveness of antitumor drugs [1,2,4].
As patients with leukemia often respond differently to treatment, IDR resistance is becoming an
increasing problem and a significant barrier in treating patients. Therefore, understanding of the IDR
resistance mechanism will be useful for the development of molecular targeted drugs in the future.

Since 1995, we have conducted many experiments using the MOLT-3 cell line to determine
the genetic cause of IDR resistance. We have previously created cultures of various tumor cell
lines that are resistant to many antitumor drugs, including anthracycline [5–8]. We also analyzed
the molecular mechanisms underlying resistance in these cells to identify mutations or abnormal
expression of drug resistance genes [9–17]. We have shown that it is possible to overcome drug
resistance by using nucleic acid formations to suppress the expression of the genes that contribute to
drug resistance. Abnormal activation of kinase pathways has been observed in a range of malignant
tumors, as well as in some resistant cells. Furthermore, it has been confirmed that it is possible to
overcome resistant cells by suppressing small interfering RNA (siRNA) or nucleic acid preparation in
kinase pathways [15]. Analysis of the biomarkers associated with drug response may be useful for
treating cancer. We previously analyzed these biomarkers using cell panels treated with antitumor
agents and opioid analgesics, which are major obstacles in managing cancer treatment [18–20].

Recently, we identified putative drug resistance genes using comparative genomic hybridization
(CGH) array and whole mitochondrial DNA sequence analyses [21]. We identified a unique mutation
site (p.Thr61Ile) in the ND3 gene of mitochondrial DNA in the MOLT-3/IDR cell line. From CGH array
analysis, we extracted five candidate drug resistance genes and focused specifically on the GALNT2
gene involved in O-linked glycosylation of lipids. A mutation in the stop codon of GALNT2 leads
to 18 additional amino acids being translated in the mutated protein compared with the wild-type.
However, we could not obtain a detailed evaluation at the single-nucleotide polymorphism (SNP)
level or mutated amino acid level. Our aim is to develop a method to overcome drug resistance by
combining nucleic acid formulation and inhibitors that target important resistance factors.

To understand the cause of drug resistance, we investigated the underlying mechanisms using
nuclear DNA analyses of the exomes of MOLT-3 and MOLT-3/IDR cells. In addition, we attempted
to identify mutations in MOLT-3/IDR and MOLT-3 cells by using both Genome Analysis Toolkit
(GATK) and SnpEff program [22]. Exome analysis is a method of comprehensive analysis using
only exon sequences, which is used in gene resistance analyses. For example, some researchers have
induced the disappearance of SNPs and the emergence of new SNPs, suggesting that the emergence of
drug-resistant clones from patient genes is possible [23–31].

In the future, we aim to target certain expression factors and gene mutations in resistant cells to
identify possible causes of differential cancer gene expression, independent of normal cells.

2. Materials and Methods

2.1. Generation of MOLT-3/IDR Cell Lines

To study the mechanism underlying IDR resistance, an IDR-resistant cell line was established from
the human acute leukemia cell line MOLT-3 (American Type Culture Collection (ATCC), Manassas,
VA, USA) [18]. MOLT-3 cells were treated with 40 nM IDR (Idamycin, Pfizer, New York, NY, USA)
for 8 h, at which point the surviving cells were subcultured weekly with IDR. The concentration
of IDR was increased by 20 nM at each exposure [32]. After 4 months, IDR resistance was tested
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the cells were
found to be 10 times more resistant to IDR. These cells were designated MOLT-3/IDR (Table S1) [21].
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Single colonies were subcultured and retested by MTT assay before cryopreservation. After thawing,
the cells were cultured for 1 month before use in subsequent experiments.

Similar attempts were undertaken to establish IDR-resistant subclones from the cell lines K562
and CCRF-CEM(CEM) to overcome concerns regarding instability in the MOLT3 system. However,
increasing the resistance by 10-fold in these cell lines was difficult.

2.2. Cell Lines and Culture Conditions

MOLT-3 and MOLT-3/IDR (ATCC) cells were cultured in Roswell Park Memorial Institute (RPMI)
1640 Medium (Nacalai Tesque, Kyoto, Japan) containing penicillin (50 IU/mL) and streptomycin
(50 µg/mL) and supplemented with 10% fetal calf serum. MOLT-3 and MOLT-3/IDR cells were
cultured for 2 days at a density of 1.6 × 106 cells/8 mL RPMI1640 culture medium per 100 cc cell
culture dish (Eppendorf, Hamburg, Germany).

2.3. Exome Analysis of MOLT-3 and MOLT-3/IDR

We performed exome analysis to investigate the IDR resistance mechanism in MOLT-3 and
MOLT-3/IDR cells. Exomes of DNA samples were enriched using previously captured platforms
obtained using the SureSelect XT Reagent Kit and SureSelect XT Human All Exon V5 (Agilent
Technologies, Santa Clara, CA, USA) and assembled using the SeqNovaCS Data Analysis System at
Hokkaido System Science Co., Ltd. (Sapporo, Japan). Prepared libraries were then sequenced with
2 × 100 bp paired-end reads on Hiseq1000 and HiSeq 2500 sequencers (Illumina, San Diego, CA, USA).

For mutational analysis, we used the GATK tool [33]. The Unified Genotyper GATK tool was
used to identify mutant genotypes in both MOLT-3 and MOLT-3/IDR. Using hg38 obtained from the
University of California (Santa Cruz, CA, USA) as a reference, we identified mutation sites within the
genotypes of each sample. In addition, we annotated our findings in SnpEff [22]. For the identified
mutations, we confirmed the information already available in the database, such as the presence or
absence of the gene or amino acid mutations. Based on information obtained from the SnpEff [34]
annotation, we compared the mutations detected in MOLT-3 and MOLT-3/IDR cells and identified
genes with mutations accompanied by specific amino acid mutations in MOLT-3/IDR cells. We created
a script for the extraction of these genes, and then investigated the genes that were assumed to be
related to IDR resistance mechanisms.

2.4. KEGG Pathway Analysis

IDR has been shown to inhibit nuclear polymerase activity, potentially by cutting one or both
strands of double-stranded DNA before inhibiting recombination by the enzyme topoisomerase II.
Therefore, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to
reveal the functions of polymerase-related genes and other specific mutated genes [35]. The selected
pathways were used as DNA replication pathways for complex network analysis of proteins and
enzymes that play a role in and are required for DNA replication.

2.5. GO Enrichment Test

Identified genes were used to perform the gene ontology (GO) enrichment test using the gene
ontology enrichment analysis and visualization tool (GOrilla) [36]. The GOrilla enrichment test
allocates an Ensembl ID to each gene based on the information about gene function provided by
the GO test. Within a set of detected genes, common functions become apparent by studying gene
relationships. This system allowed us to visualize gene relationships by comparing many functions
within a set of detected genes. The reference was set to Homo sapiens, and enrichment tests were
performed using the single ranked list of genes. The p-value threshold was set at 10−3.
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2.6. Drug Treatment

IDR was dissolved in an Otsuka distilled water solution (Otsuka, Osaka, Japan). After 2 days
of culturing, MOLT-3 and MOLT-3/IDR cells were suspended in RPMI 1640 culture medium in
a 24-well culture plate (Eppendorf) with the density adjusted to 2 × 105 cells/mL/well. MOLT-3 and
MOLT-3/IDR cells were cultured without (control) or with IDR (0.1, 0.5, and 1 mg/mL) for 10 min.

2.7. Flow Cytometric Analysis

Concentration experiments were conducted according to the method described by Smeets et al. [32].
IDR was used at concentrations of 0, 1, 10, and 50 µg/mL; it was added to the cells and cells were
washed within 60 min. In the preliminary experiment, cells were recovered by trypsinization; 1 mL of
the medium containing cells was centrifuged; the supernatant was separated using a pipette; 1 mL PBS
was added; the mixture was then centrifuged and aspirated; further, 300 µl PBS was added; and lastly,
the mixture was subjected to fluorescent activated cell sorting (FACS) analysis. This experiment
was repeated twice. Based on the results, we selected a concentration of 1 µg/mL, which compared
between the MOLT 3 cells and IDR cells. Because of this reaction, we performed another detailed
test with the three concentrations 0, 0.1, and 0.5 µg/mL, with one set for 30 min and the other set
for 10 min. After IDR treatment, the cells were recovered by trypsinization; 1 mL of the medium
containing treated cells was subjected to centrifugation; the supernatant was aspirated; 1 mL medium
was again added, and the mixture was centrifuged; the supernatant was removed, 300 µL medium
was added; and lastly, the mixture was subjected to FACS analysis. In addition, time from the point of
washing was also considered. Measurements were done at 0, 30, and 90 min; in the intermittent period,
the mixture was incubated in a CO2 incubator. After 10 min of incubation, the cells were washed twice
with RPMI 1640 culture medium and added to 300 µL of RPMI 1640 culture medium in 5 mL Falcon
round-bottom polystyrene tubes (CONING, New York, NY, USA). IDR quantification was performed
using a BD Fortessa cytometry analyzer (Beckton Dickinson, San Jose, CA, USA) and analyzed with
FlowJo version 7.6.5 software (TreeStar, San Carlos, CA, USA).

3. Results

3.1. Detection of Mutations Using GATK and SnpEff

We detected mutations by comparing the exome sequence data (MOLT-3 and MOLT-3/IDR)
with the reference genome using GATK. For this, we did not map MOLT-3 and MOLT-3/IDR
directly when attempting to identify the mutations, as both MOLT-3 and MOLT-3/IDR cells contain
fragmented short-leads.

We then annotated the detected mutations using SnpEff and compared the mutations detected
in MOLT3 and MOLT-3/IDR cells according to the annotated information. This procedure is shown
in Figure 1. Further, we extracted the mutated genes and genes with amino acid changes from
both MOLT-3 and MOLT-3/IDR cells. We also extracted specific genes only found in MOLT-3/IDR
and specific genes with amino acid changes, and determined the number of mutations in specific
amino acid sequences by comparison. The results are summarized in Table 1 and are labeled as
mutations in MOLT-3, mutations in IDR-MOLT3, and number of specific mutations in MOLT-3/IDR.
Specific mutations in MOLT-3/IDR were obtained by comparing MOLT-3 and MOLT-3/IDR,
and extracting the mutations that occur specifically in MOLT-3/IDR. The total number of mutations
increased with the number of genes in the category, including splicing variants, noncoding genes,
and predicted genes. Consequently, we identified 8839 genes with specific mutations and 1162 genes
with accompanying amino acid mutations in MOLT-3/IDR cells (Tables S2 and S3). In addition,
5124 mutated amino acids were found to exist specifically in MOLT-3/IDR cells.
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Table 1. Genome Analysis Toolkit (GATK) and SnpEff mutant analysis.

MOLT-3 MOLT-3/IDR MOLT-3/IDR only

Mutant base 286,781 318,539 194,683
Mutant genes 47,520 49,712 8839

Genes containing amino acid changes 12,452 12,906 1162
Endemic amino acids 33,712 36,489 5124

GATK: Genome Analysis Toolkit; SnpEff: SNP effect; IDR: idarubicinGenes 2018, 9, x FOR PEER REVIEW  5 of 14 

 

 

Figure 1. Procedure for identifying specific gene mutations. We extracted mutated genes and genes 

with amino acid changes from both MOLT-3 and MOLT-3/IDR cells. In addition, we extracted specific 

genes that only existed in MOLT-3/IDR cells and specific genes with amino acid changes, and then 

determined the number of mutations in specific amino acids by comparing them. SNP: Single 

Nucleotide Polymorphism. 

3.2. Results of KEGG Pathway Analysis 

In addition to inhibiting nuclear polymerase activity, IDR cuts DNA strands by inhibiting the 

enzyme topoisomerase II, which recombines DNA by cutting one or both strands of double-stranded 

DNA. Using this mechanism, we examined mutations of polymerase-related genes and identified 

1162 genes from exome analysis, which were then investigated by KEGG pathway analysis. We then 

identified genes containing the expected amino acid changes (Table S2). 

Figure 2 shows the classification of the identified genes into the three groups: DNA replication 

genes, genes related to protein functions, and genes related to transcription. Circles indicate genes 

with amino acid changes. We did not observe any amino acid changes or gene mutations related to 

topoisomerase. However, it is possible that common mutations were removed among MOLT-3/IDR 

and MOLT-3 cells. For these mutations, we analyzed amino acid changes in the domain using the 

Uniprot database. Mutations were identified in polymerase-related genes associated with the 

observed amino acid changes. However, we did not detect mutations in any domain. Nevertheless, 

given the effect of IDR, we can consider that provided the mutations were found in genes, IDR is 

somehow involved (Table 2). 

Table 2. Genes with polymerase-related amino acid changes. 

Gene Mutant Amino Acid Domain Known or Unknown 

LIG1 p.Lys702Glu × × 

MCM3 

p.Ile3Leu × × 

p.Asp391Gly MCM × 

p.Ala620Pro × × 

MCM7 p.Val273Ile × × 

RFC1 
p.Gly416Asp BRCT × 

p.Leu612Pro × × 

RNASEH2B 
p.Phe95Cys × × 

p.Ala287Ser × × 

BRCT: Breast cancer 1 C-terminal 

3.3. Analysis of Genes Using the Gene Ontology Enrichment Test 

One aim of this study was to determine the most common functions in a set of 1162 genes identified 

by exome analysis. To achieve this, GOrilla was used to analyze biological processes and cell 

structure/molecular functions [37]. Further, in vivo processes related to gene function were visualized 

based on the annotation of each gene. mutations were removed in MOLT-3/IDR and MOLT-3 cells. 

Figure 1. Procedure for identifying specific gene mutations. We extracted mutated genes and genes
with amino acid changes from both MOLT-3 and MOLT-3/IDR cells. In addition, we extracted
specific genes that only existed in MOLT-3/IDR cells and specific genes with amino acid changes,
and then determined the number of mutations in specific amino acids by comparing them. SNP: Single
Nucleotide Polymorphism.

3.2. Results of KEGG Pathway Analysis

In addition to inhibiting nuclear polymerase activity, IDR cuts DNA strands by inhibiting the
enzyme topoisomerase II, which recombines DNA by cutting one or both strands of double-stranded
DNA. Using this mechanism, we examined mutations of polymerase-related genes and identified
1162 genes from exome analysis, which were then investigated by KEGG pathway analysis. We then
identified genes containing the expected amino acid changes (Table S2).

Figure 2 shows the classification of the identified genes into the three groups: DNA replication
genes, genes related to protein functions, and genes related to transcription. Circles indicate genes
with amino acid changes. We did not observe any amino acid changes or gene mutations related to
topoisomerase. However, it is possible that common mutations were removed among MOLT-3/IDR
and MOLT-3 cells. For these mutations, we analyzed amino acid changes in the domain using the
Uniprot database. Mutations were identified in polymerase-related genes associated with the observed
amino acid changes. However, we did not detect mutations in any domain. Nevertheless, given the
effect of IDR, we can consider that provided the mutations were found in genes, IDR is somehow
involved (Table 2).

Table 2. Genes with polymerase-related amino acid changes.

Gene Mutant Amino Acid Domain Known or Unknown

LIG1 p.Lys702Glu × ×

MCM3
p.Ile3Leu × ×

p.Asp391Gly MCM ×
p.Ala620Pro × ×

MCM7 p.Val273Ile × ×

RFC1
p.Gly416Asp BRCT ×
p.Leu612Pro × ×

RNASEH2B
p.Phe95Cys × ×
p.Ala287Ser × ×

BRCT: Breast cancer 1 C-terminal
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3.3. Analysis of Genes Using the Gene Ontology Enrichment Test

One aim of this study was to determine the most common functions in a set of 1162 genes
identified by exome analysis. To achieve this, GOrilla was used to analyze biological processes and cell
structure/molecular functions [37]. Further, in vivo processes related to gene function were visualized
based on the annotation of each gene. mutations were removed in MOLT-3/IDR and MOLT-3 cells.

Figure 3 shows the relationships and related processes of a single identified gene; the lower
the p-value, the larger the difference in expression level compared with the reference. The p-values
are color-coded as described in the figure legend. The second graph was created by considering the
processes with the lowest p-values from the lower layer of each extracted process and then displaying
it as a graph. The ID shows its location in Figure 3. ID4 mainly represents removed processes that are
related to fatty acids, as well as one process that was removed regardless of the p-value as an example.
This was not used in the analysis. Of the processes removed, five were involved in the metabolism of
fatty acids (Table 3).

Figure 2. Polymerase-related genes identified using Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. DNA replication of genes related to protein functions and genes related
to transcription are shown. Circles indicate genes with amino acid changes. We did not observe any
amino acid changes or gene mutations in topoisomerase genes. However, it is possible that common
mutations were removed in MOLT-3/IDR and MOLT-3 cells. Adapted from [35].

According to the Cancer Chemotherapy Center [38], newly synthesized fatty acids thrive despite
containing numerous exogenous lipids, and a number of lipid metabolism enzymes, including fatty
acid synthase, contribute to cancer development and transformation. In particular, the fatty acid
metabolism enzyme acyl-COA synthetase acts as an inhibitory agent in the mitochondria-dependent
intrinsic apoptotic pathway. This has been found to impact cancer survival rates and resistance to drugs.
Therefore, it is believed that variations in lipid-related genes that include fatty acids may be related
to IDR tolerance levels. To confirm this, a GO enrichment test was performed, which included the
previously removed processes and lipid-related genes selected from the results. The selected genes are
shown in Table 4. Uniprot was used to determine whether domain amino acids changed in the removed
genes. We found that domain amino acids were altered in adiponectin (ADIPOQ), arachidonate
5-lipoxygenase (ALOX5), and ALOX15 genes. The C1 domain in ADIPOQ and lipoxygenase domain
amino acids in ALOX5 and ALOX15 were found to be altered. ADIPOQ is related to lipid oxidation,
fatty acid oxidation, fatty acid catabolism, lipid modification, and lipid metabolism [39–48]. ALOX5 is
also related to lipid metabolism [49–53]. ADIPOQ, ALOX5, and ALOX15 are reportedly associated
with lung cancer, colorectal cancer, and colon cancer [54–58]. In particular, ALOX5 has attracted
increasing attention as a key gene for drug targeting and overcoming drug resistance in patients with
leukemia [59–67].
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Mutations associated with amino acids in lipid-related genes and mutations in the domains of
amino-acid-related genes were also present.

3.4. Analysis of IDR Permeability in MOLT-3/IDR and MOLT-3 Cells by FACS

Numerous mutations in lipids and plasma membrane proteins were detected by the GO
enrichment test. Subsequently, FACS was used to study IDR permeability in MOLT-3/IDR and
MOLT-3 cells (Table S4). IDR was used at concentrations of 0, 0.1, and 0.5 µg/mL for 0, 30, and 90 min
after the washing step. IDR was administered after incubation for 10 min. The measurements were
recorded 12 times in total over 2 days, with the results shown in Figure 4, Figure 5, and Figure 6. An IDR
concentration of 0.5 µg/mL was found to significantly slow the drug’s permeability (p-value = 0.001) in
MOLT-3/IDR cells compared with that in MOLT-3 cells. Furthermore, IDR permeability was also slow
in MOLT-3/IDR cells at 0 min after washing (p-value = 0.029; p-value < 0.05). Our results confirmed
that an IDR concentration of 0.5 µg/mL resulted in the slowest permeability in MOLT-3/IDR cells
immediately after administration at 0 min after washing. After incubation for 30 and 90 min, cells
treated with 0.5 µg/mL IDR showed slightly slow permeability. This difference in permeability is
believed to be related with IDR resistance. In addition, the fluorescence intensity of IDR permeability
of the MOLT-3 cells at a concentration of 0.5 µg/mL was higher than that of the MOLT-3/IDR cells.

Table 3. GO enrichment test results.

ID Description p-Value Number of Genes

1 fatty acid beta-oxidation 1.63 × 10−5 3
2 regulation of cellular carbohydrate metabolic process 4.08 × 10−5 5
1 lipid oxidation 4.22 × 10−5 3
1 fatty acid oxidation 4.22 × 10−5 3
1 fatty acid catabolic process 4.22 × 10−5 3
1 fatty acid beta-oxidation using acyl-CoA dehydrogenase 5.28 × 10−5 2
3 response to tumor necrosis factor 6.70 × 10−5 6
4 negative regulation of plasma membrane long-chain fatty acid transport 5.28 × 10−4 2

Table 4. Lipid-related genes.

Gene Mutant Amino Acid Domain Known or Unknown

ACOX2 p.Lys66Thr × #
ACAD10 p.Arg69Cys × ×
ADIPOQ p.Tyr216His c1q ×

AGK p.Thr2Met × ×
ALOX15 p.Asn237Ser Lipoxygenase ×

ALDH3A2 p.Leu479Arg × ×
AGPAT9 p.Glu321Gln × ×
ALOX5 p.Asp465Val Lipoxygenase ×
ABHD3 p.Asp291Tyr × ×
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Figure 3. Functional analysis using the Gene Ontology (GO) enrichment test. The related processes and relationships of a number of identified genes are shown.
The lower the p-value, the larger the difference in expression level compared with the reference. p-values are color coded as follows: white, > 10−3; light orange,
10−3 to 10−5; orange, 10−5 to 10−7; dark orange, 10−7 to 10−9; red, < 10−9. The next graph was created by considering the process with the lowest p-value from the
lower layer of each extracted process and then displaying it in a graph. The ID shows its location in Figure 3. ID4 mainly represents the removed processes that relate
to fatty acids, and also one process that was removed regardless of its p-value as an example.
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IDR, the permeability was slightly slower. In particular, IDR permeability at 0 min after washing was
the slowest in MOLT-3/IDR cells (t-test, p-value = 0.029; p-value < 0.05, t-test).
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4. Discussion

In the current study, we investigated the molecular mechanisms underlying IDR resistance
using the human T cell leukemia cell line MOLT-3 and its IDR-resistant derivative MOLT-3/IDR.
We attempted to identify genes specifically mutated in MOLT-3/IDR cells by both mitochondrial and
nuclear DNA analyses.

GATK mutation detection and annotation using SnpEff helped us identify genes associated with
amino acid changes. Given the active mechanism of IDR, it was hypothesized that polymerase-related
genes would also contain mutations. KEGG pathway analysis showed that LIG and helicase plurality
genes contained amino-acid-related alterations in resistant strains. Furthermore, amino acid mutations
were also found in polymerase-associated genes, but not in the domains. This suggests that while gene
function remained unchanged, IDR active sites in the genes were altered, preventing the drug from
functioning normally. This may be related to the development of IDR resistance.

Next, a GO enrichment test was performed using GOrilla, in which genes with mutated amino
acids were linked to GO terms and the biological processes related to each gene were determined.
We found that a large number of genes were related to fatty acid and lipid metabolism. In cancer
cells, de novo synthesis of fatty acids thrives regardless of exogenous lipid levels. Through fatty acid
synthesis, enzymes associated with acyl-CoA synthetase, lipid metabolism, and fatty acid metabolism
promote cancer development and growth. Given their relationship with cancer survival and drug
resistance, the detected genes were examined further. We found a large number of genes associated
with amino acid mutations in the domain. In addition, mutations resulting in amino acid changes
were found in polymerase- and lipid-associated genes.

FACS was then used to determine whether IDR permeability differed significantly between
MOLT-3/IDR and MOLT-3 cells, with the results showing that an IDR concentration of 0.5 µg/mL
resulted in slow IDR permeability in MOLT-3/IDR cells. In addition, the fluorescence intensity of IDR
permeability in the MOLT-3/IDR cells at a concentration of 0.5 µg/mL was lower than that in MOLT
cells. This is considered to be a factor indicating resistance. Kapli et al. addressed this by showing
that sensitive cells accumulated more drug and showed at least 2-fold greater levels of brightness than
the resistant cells [68]. This is believed to be due to the effects of amino acid changes in polymerase-
and lipid-associated genes. Whether this is indeed related to the acquisition of IDR resistance will be
a topic of a future study; however, the discovery of a number of genes likely related to IDR resistance
implies that significant progress has been made in leukemia research in relation to the understanding
of the mechanisms behind the acquisition of IDR resistance.

Further studies should focus on the mechanism underlying IDR resistance acquisition to
determine whether it is related to amino acid changes. Furthermore, we believe that using the
K 562 and CEM cell line, we would like to confirm the results obtained in our analyses the same way.
We aim to undertake such research and provide new information on the acquisition of IDR resistance.

The results of the current study will broaden our knowledge on the genetic diversity of the
mechanisms associated with drug resistance and genomic and gene correlation research. Moreover,
we believe that our research will contribute to next-generation genetics. The use of new bioinformatics
technology will form the basis of next-generation cancer genetics research.

5. Conclusions

We detected mutations in MOLT-3/IDR and MOLT-3 cells using both GATK and SnpEff.
Subsequently, we identified 8839 genes with specific mutations in MOLT-3/IDR cells and 1162 genes
accompanied with amino acid mutations. Among the 1162 genes, genes related to polymerases,
fatty acid synthesis, and lipid metabolism showed nonsynonymous mutations, suggesting that these
genes are related to IDR permeability. FACS was used to determine whether the permeability of IDR
was significantly different between MOLT-3/IDR and MOLT-3 cells. The results showed that although
there was no significant difference between the two cells, an IDR concentration of 0.5 µg/mL resulted
in slow IDR permeability in MOLT-3/IDR cells. This may be due to the effects of amino acid changes
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found in polymerase- and lipid-associated genes. Taken together, our findings suggest that multiple
mutations in the genes identified in the current study are involved in IDR resistance. In the future,
we intend to analyze the roles of these genes in IDR resistance in leukemia cells in greater depth by
using targeted inhibitors, cell proliferation, and IDR sensitivity assays.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/8/390/s1.
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