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Abstract

Millions of somatic mutations have recently been discovered in cancer genomes. These mutations 

in cancer genomes occur due to internal and external mutagenesis forces. Decoding the mutational 

processes by examining their unique patterns has successfully revealed many known and novel 

signatures from whole exome data, but many still remain undiscovered. Here, we developed a deep 

learning approach, DeepMS, to decompose mutational signatures using 52,671,908 somatic 

mutations from 2780 highly curated cancer genomes with whole genome sequencing (WGS) in 37 

cancer types/subtypes. With rigorous model training and comparison, we characterized 54 

signatures for single base substitutions (SBSs), 11 for doublet base substitutions (DBSs) and 16 

for small insertions and deletions (Indels). Compared to the previous methods, DeepMS could 

discover 37 SBS, 5 DBS and 9 Indel new signatures, many of which represent associations with 

DNA mismatch or base excision repair and cisplatin therapy mechanisms. We further developed a 

regression-based model to estimate the correlation between signatures and clinical and 

demographical phenotypes. The first deep learning model DeepMS on WGS somatic mutational 

profiles enable us identify more comprehensive context-based mutational signatures than 

traditional NMF approaches. Our work substantially expands the landscape of the naturally 

occurring mutational signatures in cancer genomes, and provides new insights into cancer biology.
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Introduction

Cancer is linked to the gradual accumulation of somatic mutations [1]. In cancer genomes, 

somatic mutations are induced by either the intrinsic infidelity of the DNA replication 

machinery or endogenous mutagen exposures, or both [2]. These processes may generate 

unique mutational signatures that can be characterized at single or multiple base substitution, 

small insertion and deletion, genome rearrangement, and copy number variation levels [3]. 

The observed somatic mutations in each cancer genome are the outcome of multiple 

mutational processes that have acted during the course as well as other factors including 

natural selection, drug response, and technical biases in sequencing, errors in variant call, 

among others. Mutational signatures can be detected by comprehensive analysis of sequence 

context of these mutations. Recently, many signatures have been identified that could be 

linked to specific processes [4]. These included several well-established signatures like those 

associated with tobacco carcinogens [5, 6], ultraviolet light exposure [7], or defective DNA 

mismatch repair system [8]. Deep investigation of these signatures would not only improve 

our understanding of the molecular mechanisms of cancer development but also provide 

important insights into cancer prevention and therapeutic treatment strategies (e.g. smoking 

in lung cancer, drug treatment) [9]. However, these signatures are typically discovered by 

whole exome sequencing (WES) data and considering only the two immediate nucleotides 

of the somatic mutations.

So far, there has been only limited effort on systematic analysis of sequence-context based 

mutational signatures, mainly because of the data limitation [2]. In the past several years, 

large-scale analyses of cancer genomic data across different cancer types (i.e., pan-cancer 

study) have discovered more than 30 recurrent base substitution patterns [2, 10, 11], but 

most of these mutational signatures were identified using WES data [2]. Most recently, 

highly curated somatic mutations from whole genome sequencing (WGS) of tumor samples 

were made publicly available by International Cancer Genome Consortium (ICGC) Pan-

Cancer Analysis of Whole Genomes (PCAWG) working group [3]. These WGS-based 

somatic mutation datasets dramatically increase both the number of mutations and the 

coverage of the genomic regions [3]. And sequence-context based analysis of mutational 

signatures requires both coding (e.g. WES data) and non-coding regions (only available 

from WGS). Therefore, such new data provides us unprecedented opportunities to further 

uncover new mutational signatures, distinguish partially correlated signatures, and extract 

rare mutational signatures, among others [2]. So far, the majority of computational methods 

to discover mutational signatures has been based on the non-negative matrix factorization 

(NMF) algorithm [4], which was first applied in breast cancer in 2013 [11]. Since then, more 

applications of NMF to cancer somatic mutations have been reported and convenient 

software packages have been developed, such as SomaticSignatures [12], MutationalPatterns 
[13], MutSpec [14], and DeconstructSigs [15]. All these packages implement the NMF 
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method to conduct signature decomposition. However, NMF related methods often suffer 

from a high computational cost [16]. With the increase of exome-wide or whole genome-

wide mutation data, applications using NMF related methods become more intensive, thus, 

requiring strong computing facilities. In addition, NMF implements an algorithm to 

decompose the input matrix as linear combinations of each individual’s principal patterns. 

This is insufficient for capturing the non-linear and complex inherent structure of somatic 

mutation profiles.

Recently, artificial neural networks have achieved breakthrough in mining the features from 

large, but complex, benchmark data sets, including image analysis [17] and natural language 

processing [16]. Auto-Encoder Neural Network is one of the deep learning methods for 

learning compact and efficient representations of input data in a non-linear manner [18]. In 

this study, we developed a deep learning model based on Auto-Encoder structures (Fig. 1) to 

identify mutational signatures. We applied the method to the somatic mutations from ICGC 

PCAWG WGS dataset, currently the largest somatic mutation collection, to identify more 

comprehensive context-based mutational signatures. From the identified signatures, we 

linked them with known mutagens and evaluated the contributions of each signature to the 

spectrum of human neoplasia.

Results

Summary of mutation catalogues in ICGC PCAWG

The number of somatic mutations from the ICGC PCAWG WGS project is currently the 

largest in cancer research, making it ideal for mutation signature studies. We downloaded 

48,276,930 somatic single base substitutions (SBSs), 426,648 doublet base substitutions 

(DBSs), and 3,968,330 small insertions and deletions (Indels), with the median number of 

5260 SBSs, 25 DBSs, and 398 Indels per sample . Here, we called SBS, DBS, and Indel as 

mutation class. For each mutation class, its detailed mutation types are explained in Methods 

and Supplementary materials. Although most mutation patterns discovered from WGS data 

are quite similar to those from WES data [2, 3], the median mutation number is at least 50 

folds higher than that from the WES data [median numbers were 83 SBSs, 0 DBS and 4 

Indels from The Cancer Genome Atlas (TCGA) project] [2]. We observed a substantial 

difference in the numbers of somatic mutations across samples and across cancer types 

(Supplementary figures S1 and S2). We organized the data into three somatic mutation 

frequency matrices: MSBS, MDBS, and MIndel. In order to systematically characterize the 

mutational signatures among different cancer types, we firstly performed a T-distributed 

Stochastic Neighbor Embedding (t-SNE) analysis [19] for the three mutation classes. As 

shown in Fig. 2, the mutation frequency matrices failed to distinguish cancer types clearly, 

except for a few types such as kidney cancer, liver cancer, and melanoma samples. The 

majority of samples in other cancer types were not well distinguished but rather located 

together. One possible reason is that the observed mutation frequency matrices were the joint 

results from multiple mutational processes imposing on each cancer genome. To distinguish 

these unique driving forces and their resultant mutational signatures, it is thus needed to 

decompose the mutation matrices.

Pei et al. Page 3

Oncogene. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DeepMS: a DSAE model to decode comprehensive mutational signatures

We named our DSAE model to decode mutational signatures as DeepMS (deep learning of 

mutational signatures) (Fig. 1). The input to the DeepMS is the mutation frequency matrix 

(M) scaled by maximum mutation frequency with add-on noises (N), followed by [0, 1] 

truncation. We trained a DSAE model for each of the three mutation classes independently, 

with the input being XSBS (1536 SBS mutations × 2780 cancer genomes), XDBS (78 DBS 

mutations × 2780), and XIndel (84 Indels × 2780). We applied a parameter sweeping and 

used the reconstruction loss LH to determine the best parameters to fit the models. This 

procedure suggested that the best latent layer dimension was 200 for the SBS matrix, 35 for 

the DBS matrix, and 42 for the Indel matrix, respectively. For example, as shown in 

Supplementary table S1, the reconstruction loss LH tended to be close to 0 at 50 epochs, 

indicating that our DSAE model could restore the original input data matrix very well. For 

each mutation class, we added a noise matrix to the input matrix. The noise matrix was 

generated from the standard normal distribution, followed by scaling to the range of [0,1] 

[20]. Using these parameters, we obtained two components from each of the trained 

DeepMS models (Supplementary table S2). The component of the latent matrix was a 

compressed representation of somatic mutational signatures (SBS: 1536 × 200; DBS: 78 × 

35; Indel: 84 × 42). These signatures can be further interpreted as biologically meaningful 

features. The component of the weight matrix connected the input matrix to the latent matrix 

(SBS: 200 × 2780; DBS: 35 × 2780; Indel: 42 × 2780). This component can be interpreted 

as the contribution of cancer samples to each signature.

As expected, we found that both the latent matrix and the encoding weight matrix were 

informative for mutation signature discovery. For the latent matrix, each column could be 

considered as one candidate signature. For each signature, most values were close to 0 while 

a few formed “sharp” peaks (Supplementary figure S3), which resembled what genuine 

mutational signatures would look like in actual data and greatly reduced the probability of 

relatively featureless signatures [3]. Some latent vectors were highly correlated and were 

combined to represent one single mutation signature (see supplementary tables S2 and S3). 

For the encoding weight matrix, the values represented the contribution of each sample to a 

latent vector. These values approximately formed a uniform distribution (Supplementary 

figure S3). Both matrices were used to examine the relationship between the discovered 

mutational signatures and clinical information.

SBS mutational signatures

The number of SBS mutations varied dramatically among samples and cancer types, ranging 

from hundreds to millions (Supplementary figure S1) [2, 21]. For the DSAE model for SBS, 

there were 200 latent vectors. After grouping those with cosine similarity (cos) ≥ 0.8 

(Supplementary figure S4 and Supplementary table S3), we obtained a total of 54 SBS 

mutational signatures that were regarded independent (Fig. 3a and Supplementary figure 

S5). After comparing with the previous reports [3, 22], we found 17 out of these 54 

signatures were reported before (cos ≥ 0.8) and the majority of them (16/17) were linked to 

known mutational processes (Fig. 3b). Hereafter, we adopted the format D-SBS-Sx (D for 

the method DeepMS; SBS: mutation class; Sx: signature number x; similarly D-DBS-Sy and 

D-Indel-Sz for DBS and Indel signatures) to refer the signatures found by our DeepMS 
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models, like the format C-SBSx, C-DBSy and C-IDz (ID represents Indel) used in 

Alexandrov et al. (2020) study [3]. For example, D-SBS-S1 (peak at TCT>A), D-SBS-S8 

(peak at TCG>T) and D-SBS-S53 (peaks at TCN>T and TCT>A) had high similarity with 

two previous signatures (C-SBS10a and C-SBS10b), which were associated with putative 

polymerase epsilon (POLE) defection [23, 24]. D-SBS-S2 (peaks at CC [A|C|T]>T and 

TCN>T) and D-SBS-S48 (peaks at CC [A|C|T]>T, and TCC>T) showed high similarity with 

previous signatures C-SBS7a and C-SBS7b that were associated with the mutations at two 

adjacent pyrimidines (thymines, TT, or cytosines, CC) likely resulted from ultraviolet light 

exposure [3]. D-SBS-S5, S12, S15, S25, S30 and S45 (peak at GCN>T) were associated 

with defective DNA mismatch repair [3].

Among 37 new signatures identified only by DeepMS (Fig. 3a), we found some of them 

could be represented by combinations of constituent signatures. For example, D-SBS-S4 

could be split into two constituent signatures C-SBS13 (activation of APOBEC cytidine 

deaminase, peak at TC [A|T]>G) and C-SBS18 (reactive oxygen species, peak at NCA>A 

and TCT>A, where N can be any of the four nucleotides) [3]. D-SBS-S7 could be split into 

two constituent signatures: C-SBS36 (defective base excision repair due to MUTYH 
mutation) and C-SBS44 (defective DNA mismatch repair due to MLH1 inactivation) [3, 25]. 

We speculated that these are likely resulted from the samples whose genomes were 

influenced by multiple factors [3]. In addition, a relatively featureless (“flat”) signature, i.e., 

D-SBS-S3, was identified by our model. This signature was associated with failure of DNA 

double-strand break-repair by homologous recombination [10]. Among the remaining 

signatures, some could be explained with the relationship to disease. For example, D-SBS-

S44 and D-SBS-S52 (peak at CC [C|T]>T) had 0.719 and 0.730 cos with C-SBS31, a 

signature associated with prior platinum compound chemotherapy [26]. In another example, 

D-SBS-S4, D-SBS-S7 and D-SBS-S50 could be further split into a signature (peaks at 

NCT>A) associated with 8-oxoguanine exposure or base repair gene MUTYH mutation. 

Normally, the MUTYH DNA glycosylase can restrain 8-oxoguanine-related mutagenesis 

outcome by excising the incorporated adenine, while MUTYH mutations impair this 

enzymatic function [27, 28]. Furthermore, D-SBS-S21, D-SBS-S23, D-SBS-S32, and D-

SBS-S39 (peaks at [C|G]AN>T and CCT>A) had 0.730-0.796 cos with C-SBS44, a 

signature associated with defective DNA mismatch repair due to MLH1 inactivation [25]. 

However, there are many signatures with unknown causes, which were probably derived 

from random mistakes during normal DNA replication [29]. Mutation frequency in some 

specific DNA sequences may be higher than expected by chance (e.g. hotspots) [30]. In 

addition to the well-known CpG dinucleotide hotspot associated with the C>T mutation, 

there are other sequences with higher mutation rate, such as the CpHpG trinucleotide, where 

H stands for A, C or T [31], and the GTAAGT motif [32]. It was observed that a sequence of 

±2 nucleotides around a mismatch site has an influence on the relative rates of SBSs and 

may lead to inherited disorders [33, 34]. Details in Supplementary information. However, 

such sequence context had much weaker effect than that of −1 and +1 bases [3, 11].

DBS mutational signatures

Tandem DBS and multiple base substitutions at immediately adjacent bases were observed 

with ~1% of the total SBS number [3], but the number of DBSs varied dramatically among 
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cancer samples and cancer types (Supplementary figure S1) [3]. Our application of DeepMS 

to the DBS matrix discovered 35 latent vectors. After grouping those having cos ≥ 0.8 

(Supplementary figure S4), we obtained 11 unique DBS mutational signatures 

(Supplementary figure S6). We further compared these signatures with those reported in 

previous studies [3] (Fig. 3b).

D-DBS-S1, which was highly similar to C-DBS1 (cos = 0.993), was characterized almost 

exclusively by CC>TT mutations. C-DBS1 is associated with ultraviolet light induced DNA 

damage and predominantly occurring in malignant melanomas [35]. D-DBS-S3 (C-DBS2, 

cos = 0.985) was composed of CC>AA mutations, with smaller number of CC>AG and 

CC>AT mutations. This signature is associated with tobacco smoking and mainly occurs in 

lung cancer [3]. D-DBS-S8 (C-DBS10, cos = 0.878) was composed of CG>TA and has been 

associated with defective DNA mismatch repair [3]. The remaining 6 signatures seem to be 

newly found, none of which had cosine similarity ≥ 0.8 with the previously reported 

signatures. For these signatures, we compared them with the compendium of environmental 

agents mutational signatures [22]. As a result, we found D-DBS-S6, which was featured 

with CT>TA and CT>AA, was associated with cisplatin therapy [22]. Interestingly, D-DBS-

S6 also showed cosine similarity of 0.43 with C-DBS5, a signature associated with platinum 

treatment [3].

Indel mutational signatures

The number of Indels was within a small range in most cancer types although variation was 

observed. Some cancer types showed more deletions while others more insertions [3]. In 

most cancer genomes, the numbers of Indels were ~10% of the numbers of SBSs 

(Supplementary figure S1). The application of DeepMS to the Indel data unveiled 42 latent 

vectors representing candidate signatures. After grouping those that had cos ≥ 0.8, we had a 

total of 16 Indel mutational signatures (Supplementary figure S4). Eight of them have been 

previously reported [3], including six with known mutational processes (Fig. 3b).

D-Indel-S1 (C-ID2) and D-Indel-S2 (C-ID1) were mainly composed of deletions and 

insertions of thymine at long (≥ 5) thymine mononucleotide repeats and were likely due to 

DNA mismatch repair deficiency [3]. D-Indel-S3 (C-ID6) was characterized by deletions 

with ≥ 5 nt (Supplementary figure S7) and exhibited overlapping microhomology at the 

deletion boundaries with a mode of 2 nt and often longer stretches. These mutation patterns 

were attributed to defective homologous recombination repair [3, 36]. D-Indel-S5 (C-ID13, 

cosine similarity = 0.962) was characterized by deletions of thymine at thymine-thymine 

dinucleotides. Alexandrov et al. (2020) postulated ultraviolet perhaps predominantly induced 

thymine than cytosine dimers, although the underlying mechanism is unclear [37]. In 

addition, D-Indel-S8 and D-Indel-S9 (C-ID3, associated with tobacco smoking, cos = 0.801 

and 0.870) were both characterized predominantly by short cytosine deletions (≤ 5 nt) with 

small member of short cytosine (≤ 5 nt) at mononucleotide cytosine repeats.

Associating mutational signatures with clinical variables

Somatic mutations found in cancer genomes are the consequence of a combination of 

multiple factors. Under the hypothesis that each mutational factor would leave its own 
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characteristic mark on the genome [13], we fitted regression models to investigate the 

association between our discovered mutational signatures with clinical variables 

representing patient environmental exposure histories. We hypothesized that a signature 

having a stronger association with samples with a particular exposure would have a higher 

chance to be causally linked to that exposure.

We conducted the analyses to the latent vectors (candidate signatures before merging) 

obtained for SBS, DBS, and Indel, respectively. In total, we obtained 15, 7 and 8 latent 

vectors with significant SBS, DBS and Indel association respectively (Fig. 4). For example, 

D-SBS-latent 32 was significantly associated with alcohol and tobacco smoking intensity 

and history; D-SBS-latent 42 and latent 117, were significantly associated with solar 

ultraviolet exposure. In addition, D-DBS-latent 29 (mainly CC>AA) were associated with 

alcohol history; D-DBS-latent 27 (CC>TT) was associated with ultraviolet exposure. These 

findings were consistent with both previous studies [3, 35] and our results described in the 

previous subsections.

Associating mutational signatures and cancer types

To examine the correlation between the number of mutations attributable to each signature 

and a specific cancer type, we further fitted a logistic regression model to estimate how 

samples of a given cancer type contributed to each signature. As shown in Fig. 5 and 

Supplementary figure S8, we observed a number of signatures had significant correlations 

with certain cancer types. For instance, D-SBS-S1 was significantly associated with 

colorectal adenocarcinomas, while D-SBS-S2 was significantly associated with skin 

melanoma. In addition, we observed D-DBS-S10 was significantly associated with head 

squamous cell carcinoma, and D-DBS-S8 was significantly associated with kidney renal cell 

carcinoma. Moreover, D-DBS-S1 and D-DBS-S3 might be weakly related to skin 

melanomaand lung squamous cell carcinoma, respectively. Simultaneously, D-Indel-S2 

[mainly insertions of thymine at long (≥ 5) thymine mononucleotide repeats] was 

significantly associated with myelodysplastic syndromes, and D-Indel-S14 was significantly 

associated with head squamous cell carcinoma. Interestingly, we observed some signatures 

presented negative association pattern with cancer type. For example, bone osteosarc is 

negatively associated with D-SBS-S12, S35 and S44, indicating that these mutational 

signatures were significantly depleted from bone osteosarcoma

Discussion

Cancer is a genetic disease where somatic mutations contribute significantly to the 

tumorigenesis and progression, as well as clinical outcome such as drug response. In this 

work, we developed a constructive approach based on the Denoising Sparse Auto-Encoder 

Neural Network to decompose somatic mutation profiles from WGS of cancer samples in 37 

cancer types/subtypes. Our proposed DSAE approach is superior to the traditional NMF 

approaches by two features: the denoising feature enables the intermediate representation of 

signatures to be robust for the small number of random variants in the input samples [18, 

38], and the sparse feature allows appropriate signature representation [39]. By applying 

DSAE to matrices of different mutation classes derived from the 52,671,908 somatic 
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mutations covering 2780 cancer whole genomes in 37 cancer types/subtypes, the 

comprehensive mutation signature catalogues we discovered represent the most 

comprehensive landscape of mutational signatures in cancer, and will provide new insights 

into understanding mutational processes linking to various environmental and genetic factors 

in cancer.

Our primary goal was to use a non-linear model to identify mutational signatures from 

cancer mutational profiles. As validation, many mutational signatures from our work across 

three mutation classes were close to previous NMF approaches [3]: 30 (17 + 5 + 8) out of 81 

(54 SBS + 11 DBS + 16 Indel) of our signatures showed high similarity with those identified 

by NMF approaches [3]. Interestingly, we found 26 (16 + 4 + 6) of them were associated 

with known mutational processes or other factors. The high annotation frequency (26/30, 

86.7%) implies that DeepMS can identify genuine common signatures and can dig out major 

information with high reliability. Among the remaining newly identified mutational 

signatures, some showed moderate level of association with previous constituent signatures. 

However, there are other signatures without significant correlation with any clinical 

information available in this study. One possible reason is the lack of the necessary clinical 

data, such as mutagen exposure, previous medicine and treatment history, diet habit, and 

other deleterious environmental factors. Another reason is that the contributions from 

environmental factors are likely not strong compared to the accumulation of random errors 

during normal DNA replication [29]. Nevertheless, this study represents a novel deep 

learning approach to assess the contribution from each signature to the burden of mutational 

catalogues of individual cancer using the most comprehensive cancer data at the WGS level. 

Our regression models identified a number of associations between mutational signatures 

and cancer types, and these findings were consistent with previous studies [3, 35], 

supporting our approach to be reliable. Importantly, our DeepMS approach revealed a 

number of associations that have never been reported before. These new signatures will 

expand our knowledge in cancer biology.

Our work has several limitations. First, despite that the median number of mutations from 

current WGS (PCAWG: 5740) was much larger than that from previous WES data (TCGA: 

89), most of these mutations were located in the non-coding regions and lacked strand bias 

information [40]. Therefore, all mutational signatures in this study had limitation of without 

considering strand specificity. Second, we optimized different dimension of latent nodes in 

the hidden layer to minimize the reconstruction error. However, in this situation, some latent 

nodes were not independent. We had to merge similar latent nodes to representative 

signature, thereby bringing difficulty in evaluating each signature’s contribution. Despite 

these challenges, our work provides a complementary way to first time utilize deep learning 

model to study somatic mutational signatures at large-scale, and at WGS level (both coding 

and non-coding). With the accumulation of data and improvement of artificial intelligence 

technology, neural networks will become a promising strategy to discover novel somatic 

mutational signatures with more WGS data being released in future.

Taken together, we presented the first deep learning approach to explore the mutational 

signatures from the largest ever somatic mutation dataset: whole genome sequencing of 

2780 samples in 37 cancer types/subtypes. Our method could effectively capture non-linear 
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relationships among mutation patterns. It provides an alternative, but powerful, approach to 

the traditional methods based on non-negative matrix factorization. We identified a total of 

54 SBS, 11 DBS and 16 Indel mutational signatures. These results included both the 

previously reported ones (n=30) and novel signatures (n=51), representing a substantially 

expanded landscape of the naturally occurring mutational signatures in pan-cancer genomes. 

Moreover, the regression-based approaches allowed us to quantitatively link the mutational 

signatures with environmental exposures and cancer types, supporting the practice of 

precision medicine. These associations between signatures and clinical/demographical 

phenotypes are also potential indicators for cancer prevention and therapeutic treatment 

strategies.

Materials and methods

Pan-cancer whole genome somatic mutation data

Genome-wide somatic mutation data was generated and curated by the ICGC PCAWG 

group. We downloaded the data from Synapse (syn11726620, November 8, 2018). In total, 

there were 52,671,908 somatic mutations from 2780 cancer genomes covering 37 cancer 

types/subtypes. The list of cancer names and related information is summarized in 

Supplementary table S4. Throughout this work, we refer single base substitutions (SBSs), 

doublet base substitutions (DBSs), and small insertions and deletions (Indels) as mutation 

classes and each single nucleotide change as a mutation type.

Preparation of mutation profiles

To obtain the input matrix for our model, we first built a mutation frequency matrix for each 

of the three mutation classes: SBS, DBS and Indel. Details can be found in Supplementary 

information and Supplementary figure S9. Overall, we included 1536, 78 and 84 mutation 

types for the SBS DBS, and Indel class, respectively [3]. We constructed three mutation 

frequency matrices: MSBS, MDBS, and MIndel. Each matrix was formatted as mutation types 

on rows and samples on columns, i.e., M = {mij}, i = 1,…K, j = 1,…N, where mij 

represented the frequency of mutation type i in sample j, K was the total number of mutation 

types (KSBS = 1536, KDBS = 78, KIndel = 84), and N was sample size (N = 2780). Due to the 

difference of mutation frequency among the three mutation classes (SBS, DBS and Indel), 

we re-scaled the mutation frequency to the [0, 1] interval by dividing the maximum mutation 

frequency for further deciphering. t-SNE analysis was conducted using the R package tSNE 
[19] to explore the data distribution.

Framework of DSAE model for mutational signature discovery

We designed our DSAE model with three layers: an input layer, a latent layer, and an output 

layer (Fig. 1). For each dataset, we randomly selected 80% of the input matrix as the training 

data and the remaining 20% as the testing data. The encoding process includes a linear 

transformation of the input matrix followed by a nonlinear Rectified Linear Units (ReLU) 

transformation.
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The decoding process aims at reconstructing the input by transforming the latent matrix Y 
using the decoding weight matrix Wd and the hidden bias vector bd, followed by applying a 

Softmax classification.

We defined the loss function LH based on the difference between the input matrix (X) and 

the reconstructed mutational profiles on the output layer (Z). LH, also called the 

reconstruction error, takes the format of mean squared error (MSE). To avoid flat signatures, 

we further included a L1 regularization to minimize LH, defined as:

minimize LH x, z = minimize 1
K i 1

K
zi xi

2 + λ × 1
K Y L1

where K is the total number of mutation types and λ is the parameter to balance the relative 

contribution between the mean squared error (the left part) and the mean of absolute value of 

latent matrix Y (the right part).

To accelerate the training process, we trained the DSAE model in sample batches. Training 

processes stopped once the specified number of epochs was reached. DSAE models were 

implemented using the Keras python library with a TensorFlow backend (version 1.0.1).

Model hyperparameter optimization and latent contribution evaluation

Several parameters in the model could impact the performance, such as dimension of the 

latent layer, number of epochs, batch size, and learning rate. To reach the appropriate 

performance of the model, we carried out parameter optimization with a 10-fold cross 

validation for each mutation class (SBS, DBS, and Indel), respectively. After parameter 

sweeping, we selected the optimized parameters with the best performance: the latent vector 

dimensions were determined as 200, 35 and 42 for SBS, DBS and Indel, respectively; L1 

regularization was determined as λ = 1 × 10−12; the batch size was determined as 32 over 50 

training epochs with a learning rate of 0.001, and the noisy factor was 0.01 for DBS or 0 for 

SBS and Indel. To allow the manual interpretation of nodes, we named each node in the 

hidden layer as “latent i” based on the order appeared.

To assess the impact and contribution of each latent layer, we nullified each latent layer 

within the model by setting all output from that latent to zero to block information flow, 

instead of removing it followed by re-training [41]. The new reconstruction error LH′ was 

compared to the original LH to represent the contribution of the corresponding latent layer, 

which was later used for signature weight calculation.

Mutational signature comparison

We used the cosine similarity implemented in the R package MutationalPatterns [13] to 

compare two mutational signatures A and B: cos = similarity A, B = i 1
K AiBi

i 1
K Ai2 i 1

K Bi2
. A 

cos of 1 indicates the two signatures are identical and 0 indicates the two signatures being 

independent.
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Mutational signatures across cancer types

We used the encoding weight matrix We to determine mutational signatures in association 

with cancer types or cancer clinical variables. For each cancer type, we defined a group 

label, g (a vector in length N = 2780), to denote samples from the cancer type (gi = 1) and 

samples from other cancer types (gi = 0). We fitted a logistic regression as follows: logit(g) ~ 

(We)T. The clinical data was downloaded from the ICGC website [42].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Framework of Denoising Sparse Auto-Encoder (DSAE) model. Mutation frequency matrices 

of single base substitution (SBS), double base substitution (DBS) and insertion/deletion 

(Indel) combined with a random noise factor matrix were used as the input to the model, 

followed by encoding and decoding processes. For encoding step, we obtained two 

components: the latent matrix (latent node activities) that represents the compressed 

information of somatic mutational signatures, and the weight matrix W that reflects the 

contribution of each cancer sample to the activity of each latent node. For decoding step, the 

latent node activities derived from these mutation types are decoded back into reconstructed 

expression values through the decoding weight matrix W′. The reconstructed matrices were 

compared with the input to estimate the reconstruction error, which was subsequently used 

to evaluate and terminate the model fitting. For each mutation type, we trained a DSAE 

model by following this procedure, aiming to minimizing the difference between initial and 

reconstructed values. After the model training, we nullified each latent layer within the 

model by setting all output from that latent to zero; this process blocked information flowing 

through estimating the contribution of each latent layer.
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Fig. 2. 
t-SNE plots for the signatures of three somatic mutational classes. (a) SBS. (b) DBS. (c) 

Indel. Each dot represents a cancer sample. Color of dots indicates cancer types or subtypes.
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Fig. 3. 
Comparison of somatic mutational signatures with Alexandrov et al. (2020) study. (a) A 

heatmap showing the cosine similarity values between our mutatinal signatures (y-axis) and 

those that were previously reported [3] (x-axis). The color is proportional to the cosine 

similarity. Two signatures with cosine similarity ≥ 0.8 were labeled with *. (b) Venn 

diagrams showing the overlap of the detected mutatinal signature in this study with the 

Alexandrov et al. (2020) study [3]. **: D-DBS-S1 shows high similarity with two signatures 

(C-DBS1 and 11), so it was labeled “3(4)”.
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Fig. 4. 
Association between latent vector and patient environmental exposure based on regression 

models. (a) The network only shows the relationship between latent vector and clinical data 

with significant association [regression with -log10 (Benjamini and Hochberg [43] adjusted 

p-value) < 0.05 for SBS mutations and < 0.2 for DBS and Indel mutations]. The network 

layout is based on a force-directed graph. Edge width is proportional to -log10(adjusted p-

value). (b) Four specific latent vectors associated with enviromental exposure are 

highlighted with detailed visulization.
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Fig. 5. 
Association between mutational signatures and 37 cancer types/subtypes through logistic 

regression models. The network shows the relationship between mutational signatures and 

cancer types/subtypes with significant association [regression with -log10 (Benjamini and 

Hochberg [43] adjusted p-value) < 0.2]. A circle node represents a mutational signature and 

a rectangle node represents a cancer type or subtype. A red edge indicates an enrichment 

pattern while a blue edge indicates a depeted pattern.
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