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What this study adds

This article addresses two important topics for the growing 
number of household air pollution studies that rely on mul-
tiple short-term exposure measurements: (1) what statistical 
approach is best for estimating chronic exposure from short-
term household air pollution measurements? and (2) how many 
measurements are needed? These questions are answered using 
simulations representing multiple different study designs and in 
a case study. The results have important implications for the 
design of future studies and the development of analysis plans 
for existing studies of chronic exposure.

Estimating long-term average household air 
pollution concentrations from repeated short-term 
measurements in the presence of seasonal trends 
and crossover
Joshua P. Kellera*, Maggie L. Clarkb 

Introduction
Exposure to household air pollution constitutes a major mor-
bidity and mortality burden around the world.1 Stoves for cook-
ing and heating in homes are a major source of household air 
pollution. Over the last two decades, many studies have been 
conducted to characterize and mitigate adverse health effects of 
household air pollution exposure, including improvements to 
biomass-burning stoves,2–4 the replacement of biomass-burning 
stoves with cleaner fuel alternatives,5–8 and economic programs 
to facilitate the adoption of cleaner fuel stoves.9,10 In almost 
all studies, only a limited number of short-term exposure mea-
surements are made owing to financial cost and participant 

burden.11 Typical study measurements are for 24–72-hour 
duration and the frequency of measures range from one per 
household12,13 to a series of three or four measurements aligned 
across a gestational period14,15 to measures across a multiyear 
period.4,16 Pollutant measurements can be made for room con-
centrations (typically kitchen) using a stationary monitor or for 
an individual’s personal exposure using a mobile monitor in the 
breathing zone.

When estimating the health effects of household air pollu-
tion exposure, short-term exposure measurements are often 
used directly with health outcome measurements ascertained at 
approximately the same time.5,17,18 Although this is appropriate 
for investigating acute health effects of exposure, it is subopti-
mal for investigating chronic exposure effects. Although each 
individual observation can be unbiased for exposure at that 
time, variability in single measurements introduces classical 
measurement error19 that can bias health analyses of long-term 
exposure.

Instead of using individual measurements in analyses of 
chronic exposure, combining the data to estimate the long-term 
average can reduce the effects of measurement error—in addi-
tion to better matching the epidemiologic target of chronic expo-
sure. Depending on the context, the long-term average might be 
a multiyear, multimonth, or multiweek average. Different aver-
ages might further be defined for different conditions, such as 
changes in stove type.

Abstract. Estimating long-term exposure to household air pollution is essential for quantifying health effects of chronic expo-
sure and the benefits of intervention strategies. However, typically only a small number of short-term measurements are made. We 
compare different statistical models for combining these short-term measurements into predictions of a long-term average, with 
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A common approach to estimating long-term averages is cal-
culating household averages,20,21 which is straightforward com-
putationally and conceptually. A better approach (in terms of 
lower error) is to predict the long-term average from a linear 
mixed model that includes a random intercept for each house-
hold. Empirically, McCracken et al22 demonstrated the benefit 
of using a mixed model compared to using household averages. 
Predictions of long-term average concentrations from mixed 
and Bayesian models with random effects have also been used 
by Grajeda et al23 and Keller et al,24 respectively. Most other 
studies that use linear mixed models use them to study factors 
related to pollutant concentrations, not to make predictions of 
long-term average exposures.25,26

Two aspects of McCracken et al22 to consider here are 
that they compared households with constant stove type and 
without accounting for the role of a continuous and smooth 
temporal trend. Seasonal changes, such as the Harmattan14 
in West Africa and rainy and dry seasons in Honduras27 and 
Nepal,28 can affect concentrations, and estimating a long-
term average requires accounting for these smoothly vary-
ing temporal differences—even in parallel randomized trials. 
Crossover in stove type, most often seen in stepped-wedge 
designs,2,4 allows all households to be measured with multiple 
stove types.3 But unlike seasonal trends, which we usually 
want to average over, it is often the goal to compute different 
values for changes in stove groups, which requires defining 
a separate long-term average for each stove type. This was 
done in Keller et al24; here, we provide justification for this 
approach.

In this article, we address how to best estimate long-term 
average concentrations in the presence of these temporally 
varying factors, focusing on the impact of study design 
(number and timing of measurements) and on the choice of 
a statistical model. The sections that follow provide (1) a 
description of the statistical context and assumed data-gener-
ating model, (2) a review of different approaches for estimat-
ing long-term average concentrations in mixed models with 
between-subject and time-varying, within-subject variables, 
(3) a simulation study that demonstrates the effects of dif-
ferent study designs and modeling choices on the error in the 
predictions, and (4) a case study demonstrating these differ-
ences using data from a 3-year stepped-wedge intervention 
study in Honduras.

Statistical framework

We are interested in estimating the long-term average pollut-
ant concentration for a specific unit. We will refer to this unit 
as a household and describe the concentration as representing 
household air pollution, but the methodology could apply to 
measurements of other types of indoor concentrations or an 
individual’s personal exposure. The difference between a house-
hold concentration and individual personal exposure is import-
ant, but beyond the current scope.

Let Xij  denote the measured concentration for house-
hold i ( i n= …1, , ) at visit j ( j J= …1, , ). We assume that the 
(possibly log-transformed) value of Xij  is a combination of a 
study-wide average, denoted by the parameter β0;  a time-con-
stant household effect due to unmeasured factors, modeled as 
a Ni A~ ( , );0 2σ  a combination of p  measured variables, such as 
access to electricity, that impacts long-term average concentra-
tions and vary between but not within households, denoted by 
zir ( r p= …1, , ); factors that vary within a household and define 
different conditions for a long-term average, such as stove type 
in a crossover trial, denoted by wijk  ( k K= …1, , ); smooth tem-
poral variation due to seasonality and similar factors, denoted 
as f ti j( ); and transient effects, such as day-of-week, denoted 
by vijs  ( s q= …1, , ). The assumed data-generating model is as 
follows:

X a z w f t vij i ir rr

p
ijk k i jk

K
ijs s ijs

q= + + + + + += = =∑ ∑ ∑β β θ γ ε0 1 1 1
( ) ,,

 
(1)

where the final term ε σij EN~ ,0 2( )  is the observation error. 
Using measurements Xij  directly in statistical models for a 
corresponding health outcome will lead to classical measure-
ment error19 from the variability ( εij  term) in the short-term 
measurements.

Based on equation 1, the long-term average we wish to esti-
mate for each household is as follows:

µ β β θi j
K

fw,T
T T

( ) = + + + +( )= =∑ ∑∑0 1 1

1
a z t wi ir rr

p
i tk kkt| |
( ) .∈  

(2)

The long-term average is defined for a specific time range, 
denoted by T . This time range might be the entire study 
duration, a gestational period, or other health-relevant expo-
sure period, but it must be within the temporal range of the 
data (although perhaps outside the temporal range of obser-
vations for a specific unit). The final term in equation 2 aver-
ages the temporal trends over this period by summing the 
values at all time points and then dividing by the number of 
time points in the period (denoted by | |T ). In many settings, 
it may be desirable to choose T  to symmetrically average 
over seasonal trends (e.g., including one rainy and one dry 
season). We write the long-term average µi w,T( ) as a function 
of the vector of conditions w  (that may vary over time) to 
indicate a different long-term average for each combination 
of conditions; if there is only one condition, we can write the 
long-term average as µi( )T .

In the sections that follow, we compare different methods 
for estimating µi w,T( )  using the data Xij . The comparison 
metric is root mean squared error (RMSE), which is defined 
as RMSE ˆ ( , ), ( , ) [( ˆ ( , ) ( , )) ]µ µ µ µi i i iEw w w wT T T T( ) = − 2  for the 
prediction ˆ ( , )µi w T . The RMSE combines information on bias 
and variance. In addition to absolute differences in RMSE, we 
will compare approaches through their relative RMSE, which 
is the ratio R MSE MSEˆ ˆ( , ), ( , ) / ( , ), ( , )µ µµ µi i i iRw w w wT T T T( ) ( )’  
for two different predicted long-term averages, ˆ ( , )µi w T  and 
ˆ ( , ).µi’ w T

Methods for estimating long-term averages

Basic case: no predictors and no time-varying effects

The simplest setting is when there are no predictor variables 
or time-varying factors. Under these assumptions, the long-term 
average is µ βi ia= +0  and we have the data-generating model 
as follows:

 
X aij i ij= + +β ε0 .

 
(3)

The household average X
J

Xi ijj

J
⋅ =

= ∑1
1

 is an unbiased esti-

mator of µi  and has RMSE equal to σE J2 / .  However, Xi⋅  is 
inefficient because it does not share any information between 
households. Alternatively, we can fit a mixed model to equation 
3 with a random intercept for each household to account for 
the ai  term. The predicted average from the mixed model is as 
follows:
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(4)

This prediction, commonly called the empirical best linear 
unbiased predictor, has optimal29 (i.e., smallest) RMSE for pre-
dicting µi. The prediction µ̂i  in equation 4 is a combination 
of the household average, Xi⋅, and the study-wide average, ˆ .β0  
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The trade-off between these two values is controlled by the 

shrinkage factor σ

σ σ
A

A E J

2

2 2

�

�� + /
. In the extreme case where there is 

no between-household difference ( σA
2 0� = ), then ˆ ˆµ βi = 0. In the 

other extreme in which measurements are made without error 
( σE

2 0� = ), then ˆ .µi iX= ⋅  The mixed model shrinkage approach 
provides the benefits of both the household-level and shared 
information.

Impact of between-household predictor variables

Although model 3 provides a convenient illustration, in prac-
tice, there are typically measured factors that affect concentra-
tions and vary between households or individuals. Examples 
include stove type, access to electricity for heating or cooking, 
physical characteristics of the home, and material assets, which 
can be associated with economic resources. Including these 
between-household factors leads to the mixed model:

 
X a zij i ir r ijr

p= + + +
=∑β β0 1

ε .
 

(5)

For the model in equation 5, the predicted long-term average is 
as follows:

 
ˆ ˆ ˆˆ ,µ β βi i ir rr

p
a z= + +

=∑0 1  
(6)

where we suppress the dependence on time interval T  because 
there are no time-varying factors. The prediction in equation 6 
remains optimal compared to the household average approach 
( Xi⋅ ).

If the between-household factors zir  are known, it is always 
best to include them in the model. However, it can be instructive 
to consider what happens if zir  is left out of the model (whether 
because it is unmeasured or because of analyst choice). In this 
case, σA

2  is inflated by a factor of βr Var( zir), which would lead 

to a higher intraclass-correlation, ICC = σ

σ + σ
A

A E

2

2 2

�

� �
. Thus, as more  

(fixed effect) predictors are added to the model, the ICC will 
go down and a larger proportion of variance is explained by 
within-person variation. In general, this means that as the 
number of fixed effects increases, the benefit of each additional 
repeated measure is reduced—although not completely; it 
remains beneficial (i.e., leads to lower RMSE) to make multiple 
measurements on each household. This also demonstrates how 
comparisons of ICC across models with different predictors 
can be misleading.

Impact of seasonal and other time-varying effects

We now consider the impact of smoothly varying seasonal 
trends on estimating long-term average concentrations. These 
effects are represented by the f ti j( )  term in the data-generating 
model 1. The mixed model for this case is as follows:

 
X a z h tij i

r

p

ir r
r

R

ij r ij= + + + +
= =
∑ ∑β β η ε0

1 1
r( ) ,

 
(7)

where h tijr( )  are temporal basis functions, such as splines for 
calendar time. In some settings, effects of climate may be binned 
into categories (e.g., “cold/dry,” “warm/dry,” and “warm/
wet” seasons22), which amounts to using a piece-wise con-
stant temporal trend. This can simplify interpretation but may 
not well represent concentrations during transitional periods 
between seasons. Because of temporal variation in the exposure 

concentrations, the long-term average now depends upon a cho-
sen time period given as follows:
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In practice, averaging over temporal effects is accomplished by 
making predictions at each time point t  in T  and averaging 
these predictions together.

Other time-varying factors can have short-term, nonsmooth 
variation, such as weekday differences in cooking patterns or 
differences in time of day of pollutant measurements. These 
terms, represented by vijs ss

q γ
=∑ 1

, do not affect the predicted 

long-term average when the values are centered (
i j

ijsv∑∑ = 0), 
thus the predictor is still equation 8.

A major disadvantage of the household average approach 
is that it cannot adjust for either type of within-household 
time-varying factors, leading to considerable bias.

Multiple conditions

Sometimes there are multiple conditions under which a long-
term average is desired. This is most likely to occur in crossover 
or stepped-wedge designs where each household has differing 
stove assignments at different times. In this case, a mixed model 
corresponding to (1) is fit. The predicted long-term average is 
as follows:

ˆ ( , ) ˆ ˆ ˆ
| |

( ) ˆ ˆµ β β η θi i ir rr

p
r r itk kk

K

t
a z h t ww T
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1
∈∈∑ T 

.
 
(9)

The time period of interest T  may differ for each condition 
or it may include multiple conditions to be averaged over. For 
example, in a study investigating exposure–response relation-
ships with a crossover of stove type, it may be of interest to esti-
mate the long-term exposure for the first year under one stove 
type and the second year under the other stove type. On the 
contrary, for an accountability study, it may be of interest to 
estimate the counterfactual of long-term exposure for the full 
2-year period under each stove type.

The household average approach could also be used in this 
case, with separate averages calculated for each observed condi-
tion. However, this requires many more observations to achieve 
the same magnitude of uncertainty, because each condition has 
fewer measurements. For example, in a study with two measure-
ments per household under each of two conditions, there are 
four total measurements per household but the RMSE of each 
condition-specific sample mean is σE

2 2/ and not σE
2 4/ . 

Furthermore, the household average would still be less efficient 
than using a mixed model fit to the same data.

If there are large differences in concentrations between condi-
tions, such as when comparing households with biomass-burn-
ing stoves to households with electric appliances, then it may be 
necessary to allow for the variance estimates to vary by condi-
tion. However, this would primarily impact inference on model 
parameters and not the point estimates used to predict long-
term averages. Additional explorations of the role of condi-
tion-specific variance terms are beyond the scope of this article.

Comparison via simulation
To demonstrate the reductions in error offered by different mod-
eling choices in different contexts, we conducted a series of sim-
ulations. Each simulation considered a two-group comparison 
(representing two stove types), but with different sampling strat-
egies (Table 1) and different assumed temporal trends (Figure 1, 
eTable 1; http://links.lww.com/EE/A169). Designs 1 through 5 

http://links.lww.com/EE/A169
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represent sampling strategies for parallel trials, whereas designs 
6 and 7 correspond to stepped-wedge trials. These were struc-
tured to represent sampling strategies employed in recent and 
ongoing studies4,6 for both adult and perinatal health outcomes. 
The trends considered included flat (trend A) and decreasing 
(trend C) linear functions, large-scale seasonal variation with an 
annual peak and trough (trends B and D), and smaller-scale sea-
sonal variation with multiple distinct seasons (trends E and F). 
All simulations had the same sample size (n=200 in each arm), 
stove effect ( , . ),β = 1 2 7corresponding to a -fold difference  and 
variances ( σA

2 0 5= . , σE
2 1= ) and each was repeated 100 times. 

The stove effect and variance values were chosen to correspond 
to the magnitude of values observed in log-transformed PM2.5 
measurements of several studies.24,27 In each setting, we calcu-
lated the RMSE of predicted long-term averages using the house-
hold average approach, a mixed model with no adjustment for 
stove group or time, a mixed model with adjustment for stove 
group but not time, and a mixed model with adjustment for stove 
group and temporal trend using natural splines (with 4 degrees of 
freedom [df] per year). For the parallel designs, the target period 
was the time from study entry until last visit for each unit. For 
stepped-wedge designs, two long-term averages were calculated 

for each unit: one under each stove type, averaged over the times 
the unit was assigned to that stove group. Simulations were con-
ducted in R, version 4.0 (R Core Team, Vienna, Austria).

Figure  2 shows the RMSE for the different models under 
Design 1 (measurements every 3 months, all households on the 
same monthly schedule) and Trend A (no time effect), for stud-
ies with different numbers of repeated measures (and thus dif-
ferent study lengths). The benefit of the mixed model over the 
household average approach is evident in the smaller RMSE. 
When J=2 measurements are made for each household, the 
household average has an RMSE of 0.71, whereas the RMSE 
for predictions from the mixed model with stove adjustment 
is 0.5. The difference of 0.21 in RMSE, corresponds to a 23% 
difference in concentrations (on the nonlogarithmic scale). The 
mixed models with and without time adjustment (not included 
in Figure  2) perform the same because there is no temporal 
trend in the data-generating model. The mixed model that does 
not adjust for stove type has an RMSE of 0.55, which is still 
better than the household average approach but not optimal. 

Table 1.

Summary of sampling strategies (i.e., designs) in the simulation.

Design Study type Study duration J Description

Design 1 Parallel 4–16 months 2–6 Measurements spaced 3 months apart (i.e., all participants with a visit in each of months 1, 4, 7, etc.). The time for each 
visit is randomly selected within a one-month window

Design 2 Parallel 16–28 months 2–6 Measurements are spaced 3 months apart, but the initial visit is randomly chosen within the first year (therefore, all 
months during the year contain visits). The time for each visit is randomly selected within a 1-month window.

Design 3 Parallel 12 months 4 Measurements were made in months 1, 3, 6, and 12. The time for each visit is randomly selected within a five-week window.
Design 4 Parallel 30 months 4 Measurements made in months 1, 3, 6, and 12, except initial visit for each household is randomly chosen within the first 

18 months. The time for each visit is randomly selected within a five-week window
Design 5 Parallel 36 months 6 Measurements made in months 1, 3, 6, 9, 12, and 18, except initial visit for each household is randomly chosen within the 

first 18 months. The time for each visit is randomly selected within a five-week window
Design 6 Stepped-wedge 16 months 6 Either two or four measurements in each stove group. Measurements made every 3 months (i.e., months 1, 4, 7, 10, 13, 

and 16). The time for each visit is randomly selected within a 1-month window
Design 7 Stepped-wedge 28 months 6 Either two or four measurements in each stove group. Measurements are made every 3 months (i.e., months 1, 4, 7, 10, 

13, and 16), except the initial visit is randomly chosen within the first year. The time for each visit is randomly selected 
within a 1-month window
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Figure 1. Temporal trend functions were used in the simulations. Equations 
for each trend are provided in eTable 1; http://links.lww.com/EE/A169.
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The differences in RMSE between models that do and do not 
adjust for stove group are sensitive to the magnitude of the 
stove effect, but that effect size has minimal impact on the 
relative RMSEs of models that adjust for stove. The relative 
ranking between the approaches persists (although the rela-
tive differences in RMSE diminish) as the number of repeated 
measures J increases (Figure  2) and when there is less with-
in-household variance (eFigure 1; http://links.lww.com/EE/
A169). The benefit of the mixed model approach compared to 
the household average approach persists for all other designs 
and settings.

To elucidate differences between different mixed models, 
Figure  3 shows the relative RMSE comparing predictions 
from mixed models without time to those that include time 
(both include adjustment for stove) for Designs 1 and 2. In 
addition to the different temporal trends, this comparison 
focuses on the difference in timing of the measurements—all 
initial measures starting at the same month for all households 
and repeated at the same 3-month intervals (Design 1) ver-
sus initial measures randomly assigned for each household to 
any month during the year and thereafter repeating every 3 
months on different monthly schedules (Design 2). We see in 
most cases the relative RMSE is either very close to 1, rep-
resenting equal error in the two approaches, or greater than 
1, indicating that the model that adjusts for time performs 
better. The differences are typically larger under Design 2, 
indicating the need for time adjustment in studies where base-
line measurements do not occur simultaneously. The higher 
relative RMSEs for Trends B, D, and E show that adjusting 
for time is most important when there are large temporal 
differences in the concentrations. Although the relative MSE 
goes up and down with the number of repeated measures J,  
the absolute RMSEs always decrease with each additional mea-
surement (eFigures 2 and 3; http://links.lww.com/EE/A169).

Figure 4 shows similar results for Designs 3 through 7, which 
are structured to have a fixed number of repeated measures 
spread out over at least 1 year. For these designs, the differences 
in RMSE are either negligible or favor the model that adjusts for 
time. Because the true temporal trend impacting measurements 

is almost always unknown, these results demonstrate the benefit 
of always including a temporal trend in the mixed model.

Case study of Honduras data
To complement the simulation, we compared different modeling 
and sampling strategies in a case study of data from a cook-
stove intervention in Honduras. In this study, a stepped-wedge 
design was used to assess the impact of replacing traditional 
biomass burning stoves with “Justa” biomass-burning stoves 
that included an engineered combustion chamber and chim-
ney.4 Six repeated pollutant measurements were made for each 
household over the course of 3 years, approximately 6 months 
apart (n=230 households, N=1,207 observations). The Justa 
stove was installed after either the second or fourth visit. At 
each visit, each household had a 24-hour kitchen fine partic-
ulate matter (PM2.5) measurement and each study participant 
had a 24-hour personal exposure measurement. The study was 
approved by the Colorado State University Institutional Review 
Board. Complete details of the sampling procedures and data 
collection have been previously described.4,27

The primary model for the Honduras data is a mixed model 
with log-transformed concentration measurements as the out-
come. We include an indicator for stove type, a temporal spline 
(with 6 df to account for two major seasons in each year), and 
random effect for the household. Separate models were fit by 
measurement type (personal or kitchen). There were two condi-
tions of interest: traditional stove and Justa stove, and predic-
tions of long-term average were made for each household for 
each stove type. For the traditional stove, the averaging period 
was from first visit to last visit with the traditional stove, and for 
the Justa stove, the averaging period was from last visit with the 
traditional stove until the final visit.

We evaluated the approximate error in predicting the long-
term average concentrations (on the log scale) under differ-
ent modeling choices and numbers of measurements by fitting 
models that omit the temporal spline and the stove effect and 
by randomly subsampling the data to five, four, two, or one 
observation per household (instead of six). In each case, we 
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Figure 3. Relative root mean squared error (RMSE) of predicted long-term 
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compare the error in the predicted long-term average from 
the subsetted data or alternative model to the predicted long-
term average from the full dataset and primary model. This is 
repeated 500 times and differences are quantified by correla-
tion and RMSE. Both correlation and RMSE are calculated 
on the logarithmic scale. We also conduct a similar analysis 
that is restricted to traditional stoves only. For that analysis, 
all observations use the same stove type so there is no stove 
indicator in the model, but the model still includes a temporal 
spline with 4 df.

A plot of the log-transformed personal measurements 
(Figure  5) shows some evidence of seasonality, although the 
magnitude is much smaller than the overall spread in the data. 
Summary statistics for the measurements and parameter esti-
mates for the primary mixed model are provided in eTables 
2 and 3; http://links.lww.com/EE/A169, respectively, and 
distributions of the predicted long-term averages are plotted 
in eFigure 4; http://links.lww.com/EE/A169. From Table  2, 
we see that the estimated RMSE when using only two mea-
surements per household and a mixed model for prediction 
(RMSE of 0.252, corresponding to approximately 29% dif-
ference on a nonlogarithmic scale) is still better than using 
all six observations per household in the household-average 
approach (RMSE of 0.450, corresponding to approximately 
57% difference on a nonlogarithmic scale). These trends still 
hold when the observations are subset to be in consecutive 
visits instead of randomly excluded (eTable 4; http://links.lww.
com/EE/A169), and when using kitchen measurements instead 
of personal measurements (eTable 5; http://links.lww.com/EE/
A169). The large correlations reflect the impact of the differ-
ence in stove group means, which leads to variability that can 
be explained by the model, even if the number of measure-
ments is small. Similar trends in both mixed model predictions 
and household averages hold when we restrict the data to the 
participants who had four measurements with the traditional 
stove (Table 3).

Tables  2 and 3 demonstrate the necessity of adjusting for 
time. In all models that excluded the temporal spline, the RMSE 
was larger than in the corresponding model that did include 
time.

Discussion
We have presented approaches for predicting long-term average 
household air pollution concentrations from short-term mea-
surements. These predictors, represented in equations 6 and 9, 
combine the effects of time-constant and time-varying predictor 

variables and participant-level random effects from a mixed 
model. We have demonstrated the importance of including 
temporal splines and transient effects in the mixed model while 
averaging over those components in the predictions. Building on 
prior work of McCracken et al,22 who demonstrated the benefit 
of using mixed models for assessing long-term exposure, this 
work advances available methodology by modeling the impact 
of smoothly varying temporal trends (such as seasonality) in the 
concentrations and allowing for different time-varying condi-
tions for each long-term average. This has major implications 
for stepped-wedge designs and other studies with cross-over, as 
well as parallel trials occurring in contexts with strong seasonal 
variation.

Ideally, studies of the health effects of chronic air pollution 
exposure could measure long-term exposure using low-burden, 
low-cost monitoring equipment worn for a long period of time. 
However, current monitors are prone to instrument error, face 
challenges with sustained power requirements, and can place 
considerable burden on individuals wearing them for weeks or 
months at a time. Until low-cost sensors are sufficiently accurate 
to facilitate long-term exposure assessment,30 studies of chronic 
exposure will need to rely on a series of short-term exposure 
measurements. In our evaluation of predicted long-term aver-
age concentrations, we showed how accuracy is affected by the 
number of repeated measures. Making additional measurements 
reduced prediction error, but at a much lower rate when using 
the mixed model compared to a simple sample mean. The exact 
magnitude of this difference depends on the between- and with-
in-household variance terms ( σA

2  and σE
2 ,  respectively), and is 

most apparent when the within-household variance is large.
These results have important implications for study design. 

In particular, the efficiency of the mixed model for predicting 
long-term average concentrations means that a good prediction 
can be obtained often with only a small number of repeated 
measures. This can be beneficial for studies assessing the effect 
of interventions on household air pollution concentrations, 
in addition to studies of health effects of exposure. At a min-
imum, two measurements per household are needed for estimat-
ing household random effects, but the benefit of having more 
than four measurements is small and resources might be better 
allocated to expanding the number of households included in 
the study. However, consideration should also be given to the 
assessment of health outcomes in the study, which might require 
more measurements than is necessary for estimating long-term 
exposure alone.

More accurate long-term average predictions can benefit 
downstream analyses that use the predictions in an exposure–
response analysis with a health outcome. Reduced error in expo-
sure values can reduce attenuation from classical measurement 
error,19 although its exact effect will depend on each particular 
context. However, care should be taken when interpreting the 
impact of long-term average concentrations on health effects 
that occur early in a study, before the end of the averaging 
period.

There are several limitations to this analysis. First, factors 
affecting household air pollution concentrations can vary by 
location, context, instruments, and other factors, so the sim-
ulation and case study results will not perfectly represent the 
relationships in all settings. Nonetheless, they provide strong 
evidence for the use of mixed model predictions in place of 
household average concentrations and for the inclusion of 
temporal adjustment in all analyses. Our simulations were 
limited to a two-group comparison and a sample size of 200 
in each study arm, but the same trends in relative performance 
occur with larger sample sizes and in settings with only one 
stove group. We did not consider multiple measurements made 
in consecutive days, which can reduce variability in short-
term averages but does not always translate to better accu-
racy of long-term averages than randomly sampled days.31 
The simulations and case study also assumed that all relevant 
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time-varying factors are included in the model. The simula-
tions assumed that seasonality followed a periodic pattern, 
whereas in practice, seasonal and annual trends may follow 
nonperiodic patterns. However, nonperiodic patterns are eas-
ily accommodated by the smooth spline term in the model. 
The simulations did not consider simultaneous use of multi-
ple stove types (“stacking”). If stove stacking is known, then 
the different combinations could be modeled as different stove 
types. If stacking is not measured, then the variability in mod-
eled exposures will be increased, although the household-level 
random effect can account for some of the between-household 
differences due to stacking.

It is important to note that the RMSE and correlation in 
the case study are inherently optimistic because the same data 
are used in the comparison model and the “truth.” This means 
that the RMSEs are likely smaller than would be observed 
with external validation data not used in both model fitting 
and model assessment. However, there are not sufficient data 
to split into two subsets. The cross-validation approach used 
by McCracken et al22 split the data into groups of two mea-
surements and considered the household average as “truth.” But 
as discussed above, the household average is not efficient and 
can be biased in the presence of within-household variation due 
to factors such as seasonality. Furthermore, the stepped-wedge 
nature of the Honduras trial means that each household has 
only two measurements for one of the stove types (and four 
measurements for the other), and so a cross-validation approach 

would use just a single measurement as the cross-validation 
“truth.” Although unbiased, this measure of the truth is so vari-
able that comparing against it is of limited use. Although the 
measures presented here are optimistic, they do provide an illus-
tration of the relative impact of different modeling choices and 
study designs.

Predicting long-term average exposure is key to obtaining 
quantitative evidence on the health effects of household air pol-
lution and the benefits of potential interventions. The methods 
that we have outlined here provide accurate predictions in the 
presence of both between-person and within-person variation in 
concentrations and highlight impacts of study design that affect 
predicted exposures.
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