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Abstract: Breast cancer is the most frequent cause of cancer-related deaths among women worldwide.
It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup
of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack
of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most
aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of
patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular
biology of breast cancer has recently changed the decision-making process regarding the course
of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing,
proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and
metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on
evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to
another as well as in different ethnic groups. This review provides a comprehensive and updated
information on the genomics profile alterations associated with TNBC pathogenesis associated with
different ethnic backgrounds.

Keywords: breast cancer; triple negative breast cancer; biomarkers; microarray; gene expression
profiling; miRNA

1. Introduction

Breast cancer is the most frequently diagnosed cancer in women worldwide [1]. In 2012, breast
cancer accounted for 25% of the prevalent cancer cases worldwide [2]. In developing countries, it is the
most common cause of death (14.3%), whereas in developed countries it is the second leading cause of
cancer mortality (15.4%) [1].

Various environmental factors contribute to a woman′s risk of developing breast cancer. Increasing
age, menarche, high hormonal levels, null-parity, tobacco use, and obesity [3–9] are risk factors and
account for 47% of the breast cancer (BC) cases [10]. Approximately 5–10% of the cases are attributed
to genetic factors that include BRCA (BRCA1 and BRCA2) mutations [11–13]. BRCA1/2 are autosomal
dominant and tumor suppressor genes present on chromosomes 17 and 13, respectively, and are
mutated in approximately 30–40% of familial BC cases [14].

On the other hand, oncogenes and tumor suppressor genes are involved in the tumorigenesis of
sporadic BC [15]. While most of cancer-related deaths are a result of complications from its metastatic
form [16,17]; however, the mechanisms underlying malignant progression in BC are yet to be elucidated.
Research has identified numerous genetic changes in malignant tumors, although the frequency of
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different gene alterations is quite low [18]. Recently, “significantly mutated genes” (SMGs) were
identified in the onset of malignant transformation [19] and few of them encode for proteins interacting
with BRCA1/2, while others act through different pathways including TP53, PTEN, CHEK2, ATM and
PALB2 [20]. Mutations in these genes are suspected to elevate the risk of BC development.

Various prognostic and predictive factors are studied in BC, including estrogen/progesterone
receptors (ER/PR) status and HER-2/neu gene amplification [21,22]. Steroid receptor status, HER-2/neu
status, nodal status, tumor size, and grade have been used for several years [23], however, none of
these factors are reliable predictors of disease outcome.

Gene expression profiling in BC started in the mid-1990s, this technique allowed classification
of BC into subtypes via hierarchical clustering of several gene expression profiles of human breast
tumors [24–26]. BC was first classified into its intrinsic molecular subtypes luminal, Her2, basal-like
and normal breast using cDNA microarrays by Perou and colleagues (2000) [27]. Following this
study, another study differentiated molecular subtypes linked with different prognosis and further
subdivided the luminal group into luminal A and luminal B [28]. Analysis between the subtypes
showed the basal-like and the Her2+ subtypes have the shortest overall survival times and relapse-free
survival in comparison with the estrogen-receptor positive groups [29]. The study showed that the
basal-like subtype potentially represented a different clinical entity linked with shorter survival and a
high frequency of TP53 mutations. Genome-wide expression arrays of tumors demonstrated the tumor
biology; range in patterns reflected the biological diversity [29]. Based on these subtypes, an Expert
Consensus established four clinic-pathological definitions, recommending therapeutic strategies for
each group [30]. Further research revealed additional subtypes such as a claudin-low BC, a subtype
of basal-like BC [31]. However, a larger cohort of breast tumors needs to be assessed along with
comprehensive clinical information to identify clinical phenotypes including resistance and sensitivity
to specific therapies, invasiveness, or metastatic potential [29].

In this review, we will focus on the role of microarray molecular profiling (genes and microRNAs)
as a prognostic, diagnostic as well as a therapeutic tool for the most aggressive BC phenotype in
different ethnic groups, which is triple negative BC.

2. Triple Negative Breast Cancer (TNBC)

Triple negative breast cancer (TNBC) is a subgroup of BC, representing 12–17% of all BCs [32].
TNBCs have a comparatively lower expression of the three receptors: ER, PR and HER-2/neu in
comparison with normal tissue as well as other types of BC. It affects more frequently young patients,
and is represented by advanced stage, higher proliferative index (measured by mitotic account or Ki-67
proliferative index), higher histologic grade, and significantly higher metastatic rates [33–36].

TNBCs have a higher prevalence in a distinct group or population [13]; for example, in
African-American women the prevalence of TNBCs is very high [37]. TNBC was found to be prevalent
in young women of African descent [38]. Environmental as well as genetic factors are known to impact
the age of onset and subtype frequency in different populations [38]. In TNBCs, metastatic rates are
high to visceral organs [39,40]; in addition, cerebral metastasis is more common [17,41–43]. De-novo
metastasis plays a key role in cancer mortality with racial/ethnic disparities in the site, frequency,
and associated survival [44]. Racial/ethnic differences in BC can partially be due to variations in the
biological aggressiveness of TNBC in African women as compared with other racial/ethnic groups [45].
Recent studies in BC patients showed that non-Hispanic blacks largely had metastasis to the bone,
brain, or liver, while Hispanics were less likely to have metastasis to the liver in comparison to the
non-Hispanic Whites [44].

Sub-classification of TNBCs have been attempted based on several biomarkers including
epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), c-kit and
basal cytokeratins (e.g., CK5/6, CK14, CK17), TP53, TOP-2A, Ki67, Cox-2 and heat shock protein
90 [36]. Nevertheless, all TNBCs have a poor clinical prognosis and special pathological characteristics
compared to other subtypes of BC. The overall 5-year survival rate for TNBC is 50–60% [37,46,47], with
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a lower likelihood of developing recurrent tumor over the following 5-years in these patients [37,48].
TNBCs are associated with a higher rate of local recurrence during the first three years after treatment
and a high five-year mortality rate compared with other subtypes of BC [49].

Systemic treatment for breast cancer includes the use of cytotoxic, hormonal, and
immunotherapeutic agents. To date, cytotoxic chemotherapy is the only approved treatment option
for TNBC [36,50,51]. Systemic agents are effective at the beginning of therapy in the majority (90%)
of primary and approximately half of metastatic breast cancer cases [52]. However, after a period
of time, tumor progression occurs; resistance to therapy is common leading to treatment failure
and death in more than 90% of patients with advanced/metastatic disease [52]. Metastasis is a
multifarious process in which a primary solid tumor plagues the adjacent tissue and then spreads to
the neighboring as well as distant parts of the body [53]. During tumor progression, the cells undergo
epithelial-to-mesenchymal transition (EMT), thus enhancing cell invasion and commencing the process
of metastasis, one of the hallmarks of cancer [54] (Figure 1).
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Figure 1. Schematic outline showing normal and abnormal genes and miRNA profiles of normal
mammary and breast cancer. It is evident that there are variations in gene expressions and miRNA
profiles from normal to non-invasive and invasive cancer, in which epithelial-mesenchymal transition
(EMT) is the main hallmark. Thus, combined gene and miRNA profiles can be used as novel Biomarkers
and therapy targets for each step of cancer progression. However, it is important to highlight that Gene
and miRNA profiles can differ from one geographic location to another as well as between different
ethnic groups.

Generally, breast cancer cells metastasize to the bone, liver, lung and brain [16]. However, there is
no efficient targeted therapy available presently for the treatment of patients with TNBCs, especially
in its metastatic form [55].

Knowledge of molecular biology in breast cancer has recently introduced new-targeted therapies
using cDNA microarray, proteomics, next-generation sequencing (NGS) and miRNA technologies.
Among the novel treatment agents for breast cancer are poly (ADP-ribose) polymerase (PARP)
inhibitors, angiogenesis inhibitors, EGFR-targeted agents, and src kinase inhibitors [56]. Other
favorable molecular targets include the androgen receptor (AR), insulin-like growth factor receptor
(IGFR), protein kinase B (AKT), mTOR [57], PI3K [58] and cyclin-dependent kinases [59].

The following sections will present a comprehensive review about gene expression profiling
performed on TNBC to identify potential biomarkers related to cancer progression and metastasis in
TNBC patients.
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3. Gene Expression Profiling of TNBC

Microarray technologies have transformed research, allowing high-throughput whole-genome
expression profiling and helped cancer scientists including oncologist to provide insight in a single
assay about several diseases as well as create a molecular profile of tumor progression [24,25].

Although on a morphological level TNBC and basal-like breast cancer (BLBC) are comparatively
similar in relation to large tumor size, high histologic grade, and substantial metastatic potential [60,61],
gene expression profiling classified around 70% of TNBC samples as basal-like [62].

Molecular heterogeneity of TNBC has been recently well characterized at gene expression profiling
level. An earlier investigation identified six molecular subtypes of TNBC including basal-like 1,
basal-like 2, immunomodulatory, mesenchymal-like, mesenchymal stem-like, and luminal androgen
receptor (LAR) subtype [63]. Nevertheless, molecular subtyping of TNBC by gene expression profiling
revealed three subtypes, namely luminal androgen receptor, basal-like with low immune response
and high M2-like macrophages and, basal-enriched with high immune response and low M2-like
macrophages) [64]; which could provide insight for treatment of TNBC.

Both basal-like subtypes (basal-like 1 and basal-like 2) are affected by molecular alterations in
cell-cycle, DNA machinery, cell proliferation, glycolysis and gluconeogenesis. These TNBC subtypes
were found to be sensitive to cisplatin and PARP inhibitors. However, while, the basal-like 1 subtype
displays elevated levels of Ki-67 as well as genes involved in cell division and DNA-damage (ATR,
BRCA, Myc, NRAS), basal-like 2 subtype is characterized by high levels of EGFR, MET, EPHA2 and
TP53 genes [57].

On the other hand, the immunomodulatory subtype was shown to overexpress genes involved in
regulating immune cell signaling such as JAK1/2, STAT1/4, IRF1/7/8 and TNF. Recently, research showed
stimulation of the immune signaling pathways including TNF enhanced PD-L1 expression [65]. PD-L1
overexpression is common in basal breast cancers and is linked with high T-cell cytotoxic immune
response, better survival and response to chemotherapy [65,66]. The gene expression profile of this
subtype was found to be similar to medullary breast cancer [67,68], indicating a good prognosis and a
favorable response to both adjuvant and neoadjuvant therapy [69].

Gene expression profile of the other two subtypes (mesenchymal and mesenchymal stem-like)
resemble the chemo-resistant metaplastic breast cancer. The mesenchymal subtype shows elevated
levels of genes involved in EMT, cell motility, cellular proliferation and differentiation (Wnt,
ALK, TGF-β). On the other hand, the mesenchymal stem-like subtype expresses genes involved
in angiogenesis, growth factor pathways along with those regulating cellular proliferation and
differentiation (EGFR, PDGFR, ERK1/2, VEGFR2) [57]. Moreover, the mesenchymal stem-like subtype
shows low-levels of claudins-3,4,7; a characteristic similar to the claudin-low subtype [31]. Furthermore,
both subtypes (mesenchymal and mesenchymal stem-like) may respond well to PI3K/mTOR inhibitors
as well as abl/src inhibitor (dasatinib) [57].

The last known subtype, luminal androgen receptor (LAR), is found to overlap with the molecular
apocrine group (“molecular apocrine breast cancer”/MABC) and is enriched in genes regulating
hormone signaling, in particular androgen signaling and synthesis (AR, FOXA1, KRT18, XBP1) [70].
This subtype displays shorter relapse-free survival and plausible therapeutic targets include flutamide,
enzalutamide, bicalutamide [71]. However, the LAR/MABC may not be equivalent to invasive
apocrine carcinoma as defined by cancer morphology and steroid receptor profile [72].

Research showed that the basal-like 2 subtype has worst survival, whereas, LAR has the best
survival rates. Although, molecular subtypes of TNBC are associated with differences in survival
and can potentially contribute in treatment selection, the association of patient race or ethnicity with
subtypes of TNBC and clinical outcome still lie nascent. A recent study showed that more than half
(53%) of Hispanic women had a significantly higher proportion of basal-like 2 subtype, whereas
Asians had a lower proportion (19%) and a higher proportion of LAR (38%) compared to the average
proportion across all groups [73]. On the other hand, Asian women had a better overall survival
compared to other ethnic groups [73]. These variations across racial and ethnic groups in the subtypes
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may explain differences in their outcomes. Determining TNBC subtypes can help in understanding
the heterogeneity of TNBCs and can pave the way for developing subtype-specific therapies and better
predictors of TNBC prognosis for all races and ethnicities.

The Cancer Genome Atlas Research Network (TCGA) used genomic DNA copy number arrays,
exome sequencing, mRNA arrays and miRNA sequencing in 76 TNBC patients and identified several
mutated genes, the most common being TP53 (80%), PIK3CA (9%), MLL3 (5%), AFF2 (4%), RB1 (4%),
and PTEN (1%) [58]. Whole genome sequencing analysis of 65 TNBC cases detected six SMGs, of which
TP53 was the most frequently mutated gene. Moreover, clonal frequency analysis identified somatic
mutations in TP53, PIK3CA and PTEN dominant in the majority of TNBCs [74]. Several other studies
have also confirmed that TP53 gene as the most commonly mutated gene (65–80%) in TNBC [58,74];
these mutations result in genetic instability and cytogenetic alterations [75]. Research showed that
a loss of TP53 resulted in enhanced metastasis and worse overall survival [76]. Furthermore, the
presence of mutations in TP53 can be a predictor of chemo-resistance in breast cancer [77,78] including
neoadjuvant chemotherapy; however, larger prospective studies are needed to further analyze its role
as a potential therapeutic target in breast cancer as well as other cancers [79]. The other most common
gene involved in breast cancer including TNBC is BRCA1/2; more than half of the hereditary TNBC
cases (80%) carry mutation in BRCA1, while germ-line mutation in BRCA1 occurs in 15% of TNBC
cases [80,81]. Patients lacking BRCA1/2 function are sensitive to platinum derivatives as well as PARP
inhibitors [56]. Several investigations have identified and validated potential biomarkers of genomic
instability as a response to platinum-based therapy in TNBC [82].

Recently, a tissue microarray study on African-American women displayed a significant link
between TNBC and loss of PTEN gene, a negative regulator of the PI3K pathway [83]. They also
showed that a loss of PTEN activates the mTOR pathway resulting in a high cellular proliferation
leading to a more aggressive cancer phenotype and progression [83]. The study implied mTOR
inhibitors as potential therapeutic agents. Similar results were found using tissue microarray in Middle
Eastern population, where loss of PTEN occurred at high frequency in TNBC and was associated
with poor prognosis [84]; thus it can be used as a predictive factor for a poor clinical response of
neoadjuvant chemotherapy in TNBC [85].

Moreover, African-American women with breast cancer showed increased expression of p53,
BRCA1, Aurora A, Aurora B and polo-like kinase signaling networks in comparison with European
women [38,86]. Additionally, incidence of germline BRCA1 mutations is relatively low in comparison
with women of European descent [38]. Furthermore, compared with African Americans, non-Hispanic,
non-Jewish [87,88] and the Ashkenazi-Jewish women [87] had higher rates of deleterious BRCA1
mutations. Similarly, less than 20% of African-American women had germline mutations in comparison
with Caucasian non-Ashkenazi-Jewish women with TNBC who had at least 50% rate of germline
BRCA1 mutations [89], thus, indicating other underlying mechanisms for the onset of TNBC in
African-American women. Genes involved in the WNT–β-catenin pathway were significantly
deregulated in women of African origin compared with women of European descent, suggesting
stimulation of the WNT–β-catenin pathway in the development of the more aggressive phenotype of
TNBC in women of African origin [38,90].

Furthermore, phosphatase INPP4B, a negative regulator of the PI3K pathway, was found to
be lost in TNBC. Loss of INPP4B was linked with advanced tumor grade, larger tumor size, a loss
of hormone receptors and aggressive tumors. Alterations in PIK3CA enhance the PI3K pathway
and are present in around 10% of TNBC cases [91]. This data indicates frequent alterations in the
PI3K/AKT/mTOR pathway in TNBC and are considered as potential therapeutic targets. INPP4B is a
distinctive marker for human basal-like carcinoma and can be a potential candidate for treatment using
PI3K pathway inhibitors [92]. Nevertheless, initial clinical data from phase I trials using inhibitors
did not show any substantial response rates when used as a single agent therapy [93]. A phase 2
clinical trial demonstrated that ipatasertib, an AKT inhibitor, improved the outcomes in a subset
of patients with metastatic TNBC when combined with paclitaxel [94]. In addition, development
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of novel compounds with distinctive specificity and potency targeting different PI3K/AKT/mTOR
components and related molecules are under process as they can provide a huge range of toxic
profiles and immediate efficiency [94]. Research is now focusing on analyzing possible inhibitors of
PI3K/AKT/mTOR for treating TNBC alone or in combination with other drugs [95]. Moreover, drugs
targeting other components of the pathway are being developed and include PDK1 inhibitors, SHIP
agonists, and heat shock protein inhibitors [93].

Another study identified six differentially expressed genes (IL32, PTX3, GATA3, TMEM158, ETS1
and MYBL1) in TNBC, which differentiated a subset of TNBC-25 (25 TNBC samples) from other TNBCs,
as well as TNBC from normal-like, luminal A, luminal B and HER2 patient samples [96]. In TNBC
patients in Mexico, a gene signature with 9 over-expressed genes (PRKX/PRKY, UGT8, HMGA1,
LPIN1, HAPLN3, FAM171A1, BCL141A, FOXC1 and ANKRD11) and 1 down-regulated gene (ANX9)
involved in metabolism was discovered using microarray gene expression profiling, however, further
research needs to be conducted in different populations and geographical areas [97]. In parallel, gene
expression analysis along with the Gene Set Enrichment Analysis (GSEA) was used to identify the Yin
(upregulated pathway in cancer) and Yang (down-regulated pathway in cancer) in TNBC samples.
The analysis showed that while, FOXM1 was upregulated, PPARα was downregulated in TNBC; the
Yin and Yang pathways allowed categorization of TNBC further into six sub-groups (C1–C6) each
having different clinical outcomes, thus providing insight into TNBC heterogeneity; however, further
validation for prognosis and treatment is required [98]. Blocking of FOXM1 induces apoptosis and
reduces invasiveness and VEGF expression of TNBC cells; impeding FOXM1 along with cisplatin
treatment shows synergistic effect. FOXM1 can serve as a potential target for anticancer activity as
well as overcoming cisplatin resistance in TNBC [99,100]. Another transcription factor, FOXA1 can
play a role in cellular differentiation; thus, overexpression of FOXA1 is associated with a favorable
prognosis [101].

Gene expression analysis along with pathway enrichment analysis identified pathways and genes
(SOX8, AR, C9orf152, NRK and RAB30) involved in the onset of TNBC that could be developed as
potential therapeutic targets [102]. Two-step genetic screening in TNBC showed loss of ADNP, AP2B1,
TOMM70A and ZNF326 in nude mice, of which further research on ZNF326, showed that it regulated
tumor cell growth through effects on RNA splicing, epithelial-mesenchymal transition, and cancer
stem-cell self-renewal. This study identified novel tumor suppressors in TNBC that can be used as
potential targets for therapeutic approach [103]. Loss of expression of these genes lead to cellular
migration and invasion (Table 2) and is associated with patient survival [103].

In a Japanese study conducted by Komatsu et al., DNA microarray identified 104 genes that
were significantly over-expressed in TNBC and included cancer specific kinases (NEK2, PBK and
MELK) as well as genes involved in mitosis (ASPM and CENPK), which can be developed as molecular
targets [104]. Deregulation of ASPM, CENPK, MELK, NEK2, PBK genes play a role in tumorigenesis
and cell cycle regulation; since they induce programmed cell death, therefore, they can be targeted
as novel treatment in TNBCs [104]. On the other hand, androgen receptor (AR) regulates cellular
proliferation and differentiation; its presence can indicate a good prognosis [105]. Treatment of both
LAR and non-LAR TNBC subtypes using AR inhibitors enzalutamide and bicalutamide in in-vitro and
xenograft models showed elevated apoptotic rate and loss of proliferation, anchorage-independent
growth, migration, and invasion [106,107]. While, the TBCRC011 study, using bicalutamide in
AR-positive patients showed a relatively weak response, with a 6-month clinical benefit rate of
19% [108], a MDV3100-11 study using enzalutamide showed higher clinical activity, with a 6-month
clinical benefit rate of 28% [109]. Further research aims on explicating the underlying mechanisms
of AR therapy resistance and how to classify patients based on the outcome. Further investigations
involve use of CYP17 inhibitors or a combination of AR inhibitors with CDK4/CDK6 inhibitors,
PI3K inhibitors or neoadjuvant chemotherapy [110]. AR is an easily detectable marker and can aid
in classifying TNBC patients who will derive the least clinical benefit from standard chemotherapy.
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AR-dependent TNBC patients could gain from targeted therapy based on AR antagonists alone or in
combination with other chemotherapeutic agents [111].

Furthermore, in China, potential biomarkers (HORMAD1, ELF5, KLK6, GABRP, AGR2, AGR3,
ANKRD30A, NME5 and CYP4Z3P) were identified using gene microarray to characterize TNBC [112].
Anterior Gradient (AGR)-2 and -3 are involved in cellular migration, transformation, metastasis and
apoptosis. While overexpression of AGR2 indicates bad prognosis, overexpression of AGR3 can be
used as a serum-based biomarker for detecting cancer at early stages [113]. In another study in China,
microarray analysis revealed differential gene expression profiles between breast cancer subtypes
among which COL4A2, BMF, DUSP1, FOXA1 and MLPH were identified as potential candidate
gene targets in TNBCs [114]. Another major study using transcriptome microarrays established a
combined mRNA-long non-coding (lnc) RNA signature based on the mRNA species for FCGR1A,
RSAD2, CHRDL1 and the lncRNA species for HIF1A-AS2 and AK124454. They further demonstrated
that HIF1A-AS2 and AK124454 enhanced cellular growth and invasion in TNBC cells and contributed
to a paclitaxel resistance [115]. Another gene expression analysis study was performed to identify
prognostic markers for TNBC; the study found that overexpression of EOMES, RASGRP1 and SOD2
were associated with better overall survival, while, loss of FA2H and GSPT1 were linked with better
overall survival in TNBC [116].

Furthermore, based on a microarray study, other little-known genes in TNBC were identified; two
upregulated (PROM1 and KLK6) and seven downregulated (KRT18, GPR160, CMBL, AGR3, CREB3L4,
CRIP1 and SDR16C5) genes that could serve as plausible biomarkers [112]. Moreover, KRT18 is used
to determine poor response to chemotherapy [112].

Bioinformatics analysis in TNBC showed the presence of genes (AURKA, BIRC5, BUB1B, BUB1,
CCNB1, CDK1, KIF11, MAD2L1, NDC80 and PLK1) involved in cellular proliferation; CCNB1 displayed
overexpression and was significantly associated with poor prognosis in TNBC [117]. Although these
studies were carried out in South Asian population, different genes were found to be involved in the
pathogenesis of TNBC and these could be used as promising therapeutic targets.

Table 1 summarizes list of genes identified in TNBC by gene expression profiling in different
geographic regions and Table 2 gives a brief overview of the biological functions of some identified
genes in BC.

Table 1. List of Genes involved in Progression of Triple-Negative Breast Cancer Identified by Gene
Expression Profiling.

Gene Country Method Reference

PTEN USA, Middle East Tissue microarray [83,84]

PIK3CA USA Reverse phase protein array [91]

ADNP, AP2B1, TOMM70A, ZNF326 USA Two-step genetic screening [103]

ANKRD11, BCL141A, FAM17IAI,
FOXC1, HAPLN3, HMGT8, HMGA1,

LPIN1, PRKX, PRKY, UGT8
Mexico Micro-array gene expression profile [96]

FOXM1, PPAR Canada, United
Kingdom

Gene enrichment analysis (GSEA)
Gene expression analysis [98]

SOX8, AR, C9/F152, EOMES, FA2H,
GSPT1, NPK, RAB30, RASGRP1, SOD2 China Gene enrichment analysis (GSEA)

Gene expression analysis [102,116]

BMF, COL4A2, DUSP1, FOXA1,
FCGR1A, HIF1A-AS2, MLPH China Microarray analysis [114]

RSAD2, AK124454 China Transcriptome microarrays [115]

AGR2, AGR3, ANKRD30A, CMBL,
CREB3L4, CRIP1, CYP4Z3P, ELF5,

GABRP, GPR160, HORMAD1, KLK6,
KRT18, NME5, PROM1, SDR16C5

China Gene microarray [112]

CCNB1 GEO database
China Bio-informatics analysis [117]

ASPM, CENPK, MELK, NEK2, PBK Japan DNA microarray [104]
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Table 2. List of Genes and their role in TNBC.

Biological Functions Genes References

Cell Proliferation

PTEN
INPP4B
PIK3CA
FOXM1

AR
AGR3

DUSP1

[118]
[119]
[120]
[99]

[105]
[121]
[122]

Tumor Metastases and Progression FOXM1
AGR2

[99]
[113,121]

Cell Cycle Regulation
CCNB1

ASPM, CENPK, MELK, NEK2, PBK
FOXM1

[117]
[104]
[99]

Apoptosis DUSP1
AGR3

[122]
[121]

On the other hand, the initial commercial gene expression signature of BC is MammaPrint®

(Agendia, Amsterdam, The Netherlands), measures mRNA of 70 gene expressions as an assay with
prognostic value in breast cancer patients. It has been validated for patients with stages I/II and
negative or either one or three positive lymph nodes. This gene signature stratifies patients into
low-and high-risk groups and identifies patients who can avoid adjuvant chemotherapy [123,124].
Although the stratification is beneficial for ER+ breast cancers, it lacks advantage for ER− cancers,
thus making it limited to a substantial proportion of patients [125]. MammaPrint® has been approved
by the Food and Drug Administration (FDA) and has been recommended by several guidelines such
as St. Gallen′s International Oncology Guidelines for the treatment of early stage breast cancer.

The Oncotype DX® test (Genomic Health, Redwood City, CA, USA) measures 21 gene-expressions
(15 tested genes associated with breast cancer plus 6 reference genes). Oncotype DX® test analyzes
genes associated with the ER status, proliferating genes, Her2-related genes as well as genes
related to cancer invasion. This test provides information whether chemotherapy treatment will be
beneficial [126], measures the recurrence risk and classifies them into low-risk, intermediate risk or high
risk groups (the Recurrence score is given as a number between 0 and 100) [126]. The Oncotype DX®

test may also be utilized for ductal carcinoma in situ (DCIS), the most common form of non-invasive
breast carcinoma. This test did not require the FDA approval but has been recommended by various
authority bodies and guidelines [127].

The Prediction Analysis of Microarray (PAM) algorithm to a 50-gene set (Prosigna®, Stanford, CA,
USA) is a 50-gene signature, with an algorithm for the intrinsic molecular classification of breast cancer.
It was introduced to improve immunohistochemical and microarray classification. The PAM50 groups
breast cancer patients into luminal A, luminal B, HER2 and basal-like [128]. Based on PAM50 score,
a phase II trial in metastatic TNBC treated with platinum monotherapy showed an increased trend
toward objective response rate in basal versus non-basal TNBC, however results were not statistically
significant [129]. Another study had a neoadjuvant setting and involved pretreatment of tumor
samples. The results showed and advantage in the addition of carboplatin in all PAM50 subtypes,
including non-basal TNBCs [130]. These studies indicated the limited use of available PAM50 assay
in managing several TNBC cases. This test is also validated to predict the risk of metastasis for the
postmenopausal patients with ER+, HER2-negative, early breast cancer with negative lymph nodes.

The EndoPredict Test (provided by Myriad Genetics, Inc., Salt Lake City, UT, USA), is another
genomic test utilized for patients with newly diagnosed, early-stage (node negative), ER-positive and
HER2-negative breast cancer. It includes 12 genes: Eight cancer related genes, three RNA reference
genes and one DNA reference gene [131]. EndoPredict calculates a risk score called Endopredict score,
which can be used with well-established clinicopathologic variables in predicting patients’ outcome.
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Although the EndoPredict Test has not been routinely approved by the FDA, some authorities such as
ASCO suggested its use to assist in the decision-making regarding adjuvant chemotherapy treatment
in patients with early-stage, ER–positive, and HER2-negative breast cancer [131].

Breast Cancer Index (provided by BCI, Biotheranostics, Inc., San Diego, CA, USA) is based on the
expression of five proliferation-related genes (molecular grade index (MGI)). It gives the 2-gene ratio
HOXB13:IL17BR (H:I) in a linear model. The BCI was developed for the decision-making of adjuvant
hormonal therapy in postmenopausal women with early stage, ER-positive BC [132].

As indicated, the TNBC subtype is highly heterogeneous and its classification is routinely based
on immunohistochemical biomarkers and limited gene signatures (e.g., PAM50 and Lehmann’s
system) [29,57]. Although, these are vital prognostic tools, they are frequently applicable to the luminal
subtypes and their use as prognostic tools for TNBC has not been validated yet [133]. Hence, there is
an urgent need to develop signatures to aid in the early diagnosis and better treatment stratification of
the TNBC patients. Today, with the advancement of genomic techniques and assays, developing novel
diagnostic and prognostic biomarkers provide further insights into possible therapeutic targets.

In conclusion, it is evident that gene profiling of BC including TNBC in a specific population
of different genetic background can play an important role in developing new biomarkers and gene
targets for the management of different types of BC and especially TNBC (Figure 1). In addition, it
is important to note that a recent AJCC TNM also incorporated the genomic assays discussed above
into the current TNM staging system of BC (eighth edition published in 2017) [131]. However, none
of the clinically validated gene expression assays has been approved or recommended for TNBC
and HER2-negative patients but for ER+ breast cancers. Therefore, further efforts should be made to
accomplish this extremely important task and clinically validate gene expression assays for a more
proper management of the patients with these aggressive cancers.

In parallel, it is important to highlight that microRNA profiling can also be essential in the
development and management of BC and especially TBNC (Figure 1) which is the topic of the
following section.

4. MicroRNAs (miRNAs) in TNBC

MicroRNAs (miRNAs) belong to the class of small non-coding RNA, measuring around 25nt in
length. miRNAs have distinct functions at the post-transcriptional level [134,135]. Since miRNAs are
stable in whole blood, plasma, and serum, circulating miRNAs are being studied in healthy controls
and BC patients as a potential diagnostic, predictive and prognostic biomarker for the development of
therapeutic strategies [136].

miR-30 expression is associated with ER and PR expression while miR-213 and miR-203 expression
are linked with tumor stage. In BC, loss of 29 miRNAs was identified when compared with normal
breast tissues [137]. Experimental studies have demonstrated the role of miRNAs in the metastatic
process, where few miRNAs are either significantly upregulated or downregulated [138].

A recent study on four ethnic groups identified differential expression of 9 miRNAs. In Nigerian
patients, significantly higher levels of miR-140-5p, miR-194 and miR-423-5p were seen in BC compared
with other ethnic groups [139]. On the other hand, in Indian patients, miR-101 was overexpressed in
BCs [139]. Furthermore, in-silico analysis of miR-423-5p showed that AC genotype was associated with
Europeans; while, Asians and Africans displayed the CC and AA genotype, respectively [139]. Another
study identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants to be
differentially expressed between African and non-African populations [140]. Furthermore, a 26-miRNA
panel differentiated TNBC between African American and non-Hispanic White women; however,
further validation is needed [141]. A study on Lebanese BC patients showed 21 dysregulated miRNAs
and 4 miRNAs with different expression patterns in comparison with American patients; plausible
cause for these variations could be age of diagnosis or ethnic variation affecting miRNA epigenetic
regulation or sequence of miRNA precursors [142]. Nevertheless, variation in miRNA expression in
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BCs from different ethnic groups can indicate that specific genetic variants in miRNAs may affect
breast cancer risk in these groups.

Various miRNAs were linked with EMT and the development of stem-cell properties. These
miRNAs included upregulated expression of miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373
as well as downregulated expression of miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in
TNBC [143,144]. In this regard, tristetraprolin, a target for miR-29a, regulates EMT and metastasis in
BC [145].

The miR-200 family including miR-200b, suppress cancer cell growth as well as EMT by targeting
ZEB1/2, SIP1, BMI1 proteins and inhibiting PKCα [146–150]. The miR-200 expression was lost in TNBC
cells in comparison with other subtypes of breast cancer resulting in increased cellular migration and
invasion [43,147,148]. In addition, a loss of miR-200 family was observed in mesenchymal-like TNBC
human breast cancer cell lines including MDA-MB-231 [151,152]. The loss of miR-206 in TNBC was
shown to promote angiogenesis and invasion in both cell-lines as well as tissue samples [153]. Recently,
a study in breast cancer cell lines revealed miR-199/miR-214 as a cluster of miRNAs enhancing
cellular motility and aggressiveness via proliferation and EMT [154]. A loss of miR-214 increases the
aggressiveness of TNBC via proliferation and EMT, as well as promotes cell growth by enhancing
the PTEN-PI3K/AKT signaling pathway. Alterations of miR-10b, miR-21, miR-29, miR-145, miR-200
family, miR-203, miR-221/222 were found to be of prognostic value in TNBC patients [143]. A research
study by Kim et al. (2011) analyzed the therapeutic effect of miR-145 against breast cancer and found
that adenoviral construct of miR-145 (Ad-miR-145) had the potential to inhibit cell growth and motility
both in vitro and in vivo [155]. Furthermore, a combined treatment of Ad-miR-145 and 5-FU showed a
remarkable anti-tumor activity when compared to treatment by 5-FU alone [155].

Microarray analysis also revealed deregulation (loss) of miR-205 in cells that undergo EMT in
TNBC in response to TGF-β [151,156]. MicroRNA expression profiling in TNBC samples revealed
low miR-205 indicating its tumor-suppressive role [157]. P53-stimulation leads to loss of miR-205 in
TNBC and its re-expression significantly inhibits cell proliferation, cell cycle progression and tumor
growth in vivo [156]. Research showed E2F1 and LAMC1, known regulators of cell cycle progression,
adhesion, proliferation and migration as experimentally validated targets for miR-205 [156].

Circulating miR-21 distinguished patients with loco-regional disease from those with
metastases [158]. miR-21 promotes metastasis of breast cancer cells by targeting PTEN, TIMP1, TIMP3,
PDCD4 [158] which in turn affects the PI3K/AKT/mTOR pathway [159]. In addition, miR-21 sera
levels are linked with TNBC phenotype and familial breast cancer along with lymph node metastasis
and a higher Ki-67 expression [160,161].

Using qPCR, miR-190a, miR-136-5p, miR-126-5p, miR-135b-5p and miR-182-5p were linked with
the pathogenesis of TNBC. MiR-190a plays a tumor-suppressor role preventing metastasis, growth and
cell invasion by suppressing VEGF-mediated tumor angiogenesis [162]. On the other hand, miR-135b
family plays an oncogenic role regulating the cell cycle, and promoting TNBC cells invasiveness and
migration by targeting TGF-beta, WNT and ERBB pathways [163]. A few common genes under the
regulation of miR-135b include APC, KLF4, MAFB, CASR, PPP2R5C, SMAD5, LZTS1, MID1, MTCH2,
ACVR1B, BMPR2, TGFBR1, IBSP, BGLAP, RUNX2 and, SP7 [162]. MiR-34a/c is a tumor suppressor
and induces apoptosis in TNBC cells [164,165]; loss of miR-34a/c [164] and miR-940 [166] in TNBC
was linked with tumor progression and poor prognosis.

A panel of several miRNAs were also significantly altered in TNBC, indicating their role as
useful prognostic and therapeutic factors in TNBC [167–170]. While miR-135b, miR-105/93-3p,
miR-21, miR-17-5p, miR-27a, miR-95-3p were attributed to the onset, progression and metastases of
TNBC [163,171–175], another array of miRNAs unraveled to be linked with chemo-
resistance [170,176–178]. Thus, up-regulation of miR-155-5p, miR-21-3p, miR-181a-5p, miR-181b-5p,
miR-183-5p, miR-105/93-3p and loss of miR-181a, miR-10b-5p, miR-451a, miR-125b-5p, miR-31-5p,
miR-195-5p and miR-200c were found to be highly associated with promoting chemo-
resistance [146,174,176,179–182]. MiR-27a plays a role in the onset and progression of tumor cells in
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TNBC and can predict response to radiotherapy and serve as a prognostic marker [175]. Presently,
investigations aim to identify miRNA clusters associated with chemoresistance and to help pave the
way for the development of more efficient therapies.

MiRNA profiling by next-generation sequencing (NGS) in TNBCs revealed different expression
patterns of miRNAs, of which three miRNAs (miR-224-5p, miR-375 and miR-205-5p) can be used to
categorize cancers based on their proliferation, invasion and metastasis. Six miRNAs (high let-7d-3p,
miR-203b-5p and miR-324-5p; low miR-30a-3p, miR-30a-5p and miR-199a-5p) were significantly
related to decreased overall survival while 5 additional miRNAs (high let-7d-3p; low miR-30a-3p,
miR-30a-5p, miR-30c-5p and miR-128-3p) were associated with decreased relapse-free survival [173].
Another study demonstrated that loss of miR-30a in TNBC, which suppresses cell invasion and
metastasis of the tumor by directly targeting ROR1; miR-30a is linked with higher histological grade
and lymph node metastasis [183]. Moreover, sequencing identified that loss of miR-4319 in TNBC
and presence of miR-4319 was shown to reduce malignant potential of TNBC cells as it suppresses
the self-renewal and formation of tumor spheres in TNBC through E2F2 as well as inhibits tumor
initiation and metastasis [184]. Deep sequencing along with hierarchical clustering analysis exhibited
25 miRNAs signature to distinguish TNBC from normal breast tissue [185]. Genome-wide miRNA
profiling showed a panel of 26 miRNAs to help distinguish TNBC in African-American women from
the Non-Hispanic White patients [141].

Lack of miR-603 resulted in high eEF2K expression followed by the onset and progression of
TNBC [186]. Another miRNA, miR-199a-5p, was found to have a tumor suppressive role in TNBC.
High levels of miR-199a-5p in vivo reduced cell motility and invasiveness as well as repressed tumor
cell growth [187]. Tissue microarray analysis showed that loss of miR-493 in TNBC patients can
be linked with poor disease-free survival, depicting its role as a prognostic factor in TNBC [188].
Using miRNA array analysis, miR-211-5p showed to block proliferation, invasion, migration and
metastasis by targeting SETBP1; indicating a tumor suppressive role of miR-211-5p in TNBC; [189].
While, miR-148a [190] and miR-629-3p [191] were identified as promoters of lung metastases; while,
miR-141 was identified as an enhancer of brain metastasis; suggesting their roles as biomarkers and
latent targets of metastases [192].

Studies have also shown presence of upregulated miRNAs in TNBC. The miR-10 family (miR-10a
and miR-10b) is involved in both the progression and metastasis of breast cancer [193]. MiR-10b
is one such group of miRNAs, highly elevated in TNBC cell lines MDA-MB-231 and SUM1315
compared with normal mammary epithelial cells HMECS and MCF10A [194,195]. miR-10b is
significantly upregulated in metastatic breast cancer cells and initiates cell migration and invasion in
murine xenograft model of breast cancer by targeting the HOXD10 gene along with E-cadherin and
Tiam1 [196–198]. MiR-10b controls cell migration and invasion and regulates the expression of
miR-9. MiR-9 is upregulated in TNBC in comparison with the luminal and HER2-enriched breast
cancer subtypes [199] and stimulates cell motility and invasion ability by targeting E-cadherin,
activating the β-catenin pathway and enhancing VEGF levels [195]. In TNBC, miR-9 was linked
with MYC amplification, higher tumor grade, as well as significant metastatic potential leading to
poor outcome [195,200]. Moreover, elevated miR-105/93-3p enhances the Wnt/βcatenin signaling
by downregulation of SFPR1 leading to chemo-resistance and metastasis [174]. MiR-221/222 [201],
miR-761 [202] and miR-373 [165,203,204] are frequently upregulated in TNBC. Research on metastatic
samples showed an inverse correlation between miR-373 and CD44; targeting of CD44 by miR-373/520
increases the migratory and invasive ability, both in vitro and in vivo. Clinical metastasis samples
also showed an inverse correlation between miR-373 and CD44 expression [204]. High levels
of miR-221/222 enhance drug resistance and promote EMT, invasion and cancer cell migration.
Additionally, miR-221/222 were also associated with advanced stage, tumor grade and negative
hormone receptor status [201,205]. Among Indian women with TNBC, a miRNA signature of 6
different miRNAs (miR-21, miR-221, miR-210, miR-195, miR-145 and let-7a) were associated with an
advanced stage, higher tumor grade and negative hormone receptors [205].
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miR-21 is the principal miRNA linked with migration and invasion of breast cancer cells and
hence plays a critical role in tumor progression and metastasis [206,207]. A report by Iorio et al. (2005)
showed that along with miR-125b, miR-145 and miR-155, miR-21 is aberrantly expressed in human
breast cancer [137]. Tropomyosin 1 (TPM1) has been discovered as a plausible target of miR-21 [208].
While, miR-21 is inversely associated with PTEN expression in BC [209], which is directly linked with
TGF-β [210]. Overexpression of miR-21 leads to an aggressive disease status along with higher tumor
grade, negative hormone receptor status and ductal phenotype [210]. A recent investigation conducted
in Saudi Arabia identified miR-195 in the plasma of TNBC patients [211].

In summary, a large group of miRNAs has been reported to be implicated in TNBC initiation,
progression and/or metastasis. These miRNAs can be differentiated based on their functional
characterization in TNBC as tumor suppressors and oncogenes. They may also play both diagnostic
and predictive roles. Therefore, we believe that miRNA represent as an important target in the
management of BC including TNBCs, however, it is important to highlight that genetic backgrounds
of different populations have to be carefully examined in order to identify specific miRNAs associated
with populations of various ethnicities (Figure 1).

Table 3 below summarizes key miRNAs with their expression levels and biological functions
in TNBC.

Table 3. List of miRNAs and their Roles in TNBC.

Biological Functions miRNAs References

Stimulate Inhibit

Cell Proliferation

miR-155-5p, miR-199,
miR-761, miR-27a,

miR-224-5p, miR-375,
miR-205-5p

miR-940, miR-211-5p,
miR-148a [166,173,189,190]

Tumor Metastases and
Progression

miR-21, miR-21-3p,
miR-135b, miR-205-5p,

miR-135b-5p,
miR-224-5p, miR-375,
miR-629-3p, miR-141,

miR-10b,
miR-105/miR-93-3p,
miR-761, miR-181a,

miR-181a-5p,
miR-181b-5p,
miR-183-5p

miR-190a, miR-30a,
miR-4319, miR-200,
miR-214, miR-31-5p,

miR-211-5p, miR-148a,
miR-373

[146–148,151,154,158,160–162,165,166,171,
173,174,176,183,184,189–192,194,196,199,

200,202–204,212]

Cell Cycle Regulation miR-135b, miR-135b-5p [163,213]

Cell Apoptosis miR-31-5p miR-21, miR-23p,
miR-27a [158,160,161,167,171,175,205,212]

Resistance to Therapy
miR-21, miR-21-3p,

miR-155-5p, miR-195-5p,
miR-210, miR-221/222

miR-10b-5p,
miR-125b-5p, miR-35p,

miR-451a, miR-200c
[146,158,160,161,167,171,176,179,201,205]

EMT miR-155, miR-199,
miR-221/222

miR-200, miR-200b,
miR-200c, miR-206,

miR-373
[146–151,157,165,199,203,204]

Despite the array of miRNAs that have been suggested as plausible biomarkers, their use in
clinical practice still remains nascent. One of the major reasons being the challenge in miRNA
expression profiling; miRNAs are tiny molecules in which family members display a high degree of
homology, and absolute miRNA concentrations in body fluids are relatively low [214]. There are several
technological advances for using miRNAs as therapeutic tools for cancers. miRNA expression profiles
are correlated with genetic subtype and isotype [215]. Biology and characteristic features of miRNAs
have been studied among different cancers. Standardizing expression of down-regulated miRNAs
or overexpressed miRNAs can aid to re-balance the expression of genes associated in oncogenesis
and tumor progression; hence, targeting miRNAs may provide an important therapeutic strategy for
human cancer [196,216]. On the other hand, blocking overexpressed miRNAs was accomplished using
anti-miRNA oligonucleotides (AMOs), which are complementary to miRNAs. While, generation of
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down-regulated miRNAs were accomplished using expression systems that use viral or liposomal
delivery systems for the vectors [217,218].

Various miRNAs are validated in preclinical tests and are now under further clinical investigation.
In 2013, The first miRNA replacement therapy with MRX34—a liposome-formulated miR-34 mimic
was carried out. This study underwent human clinical trials for patients with advanced or metastatic
liver cancer by intravenous injection [219]. Moreover, to treat different solid carcinomas including lung
and prostate cancer, let-7 mimic was developed [220,221]. For hepatitis C, an antagonist of miR-122
was used and tested in phase II clinical trials [222]. Moreover, an investigation by Di Martino et al. [223]
proved that either transient expression of miR-34a synthetic mimics or lentivirus-based stable enforced
expression of miR-34a, triggered growth inhibition and apoptosis in MM cells in vitro and in vivo
without systemic toxicity. Blocking of miRNA-21 using antisense oligonucleotides reduced growth
of MCF7 cells by topotecan by around 40% [224]. Similarly, in lung cancer cell lines, inhibition by
AG1478 reduced cellular growth [193,225,226]. Recently, MRG-106, an LNA anti-miR of miRNA-155
entered clinical phase I evaluation. Inhibition of miRNA-155 in lymphoma cells reduced proliferation
in-vitro [214]. However, there are several challenges including suboptimal delivery, low bioavailability
or long-term safety. Research is focusing presently on latent methods including nanoparticles, polymers
and virus-based approaches [227]. Nevertheless, and given the important role of miRNA profiling
in personalized medicine, we believe that more studies are necessary to elucidate miRNA profile
variations in relation with ethnicity.

5. Conclusions

In BC, gene-expression-based-assays and the classification of patients have a robust clinical impact
and help in individualized therapy and personalized cancer management [228]. Therefore, several
gene expression-based assays have been clinically validated and utilized for ER+ but not ER- BCs such
as TNBC.

Differential gene expression using microarray profiling on a subset of BC including TN from
different geographical regions in comparison to a set of normal/benign breast tumors should be
performed to further understand the underlying mechanisms of TNBCs.

Numerous challenges hinder treatment of BC, particularly in TN subtype resulting in a high
cancer mortality. Genetic markers of women from different ancestries that predispose them to TNBC
have not been entirely elucidated. Therefore, biomarkers for TNBC prognosis of specific ethnicities are
urgently needed since they can be used as predictive biomarkers as well as tools for targeted therapy
in these populations. In short, discovering combined gene and miRNA signatures of TNBC in different
populations and ethnicities could help identify new and specific gene targets for this subgroup of
cancers and can be regarded as a fertile ground to accomplish a personalized medicine approach,
which is the main objective of modern cancer treatment.
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