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Carcinogenesis Following �-Irradiation
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Abstract
This commentary highlights the published data on the metabolic processes that lead to the development of cancer following
intakes of asbestos and chemical agents. Following exposure to both, the key initiating event is cell injury leading to cell death that
may further lead to inflammation, fibrosis, and cancer. Since a-particle transits also kill cells, it is suggested that cell death and
inflammation will also trigger carcinogenesis within tissues irradiated by these particles. Such an explanation would be consistent
with the inflammation and fibrosis seen in tumor-bearing tissues irradiated by radon-222, radium-226, thorium-232, plutonium-
239, and other a-emitting radionuclides. It would also provide an explanation for dose-related changes in latency and in the similar
dose–responses for the same tissue in differently sized species.
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Commentary

It is commonly claimed that the effects of radiation, including

cancer, result from direct random damage to DNA, produced

by radiation-induced ions and free radicals, within individual,

sensitive cells—the target theory of cancer induction by radia-

tion.1 It is also widely believed that at low g-radiation dose

rates, and following low cumulative doses, damage in cells

could be repaired. In this case, the shape of the resulting

induced disease response versus dose could be curvilinear, with

the effect per unit dose failing to increase as expected until

DNA repair processes in the cell are overwhelmed. Additional

effects would then become a linear function of dose up to the

point where radiation doses become sufficiently high to result

in significant levels of cell death. In this way, many dose–

response deviations from linearity, such as those that are found

in the extensive radiation toxicity database, could be explained

for low-LET radiations (X- and g-) and target theory would not

have to be rejected because of nonlinearity.

However, for high-LET radiations, including a-particles,

the situation is different. a-Particles that are produced during

the radioactive decay of isotopes, such as the medical isotope

radium-223 (223Ra) and industrially important isotopes includ-

ing plutonium-239 (239Pu), and uranium-235 (235U), have high

energy, a short range in tissues and deposit potentially lethal

ionizations and free radicals along a linear track that may

extend only few tens of mm away from the source radionuclide

atom that decayed. Because of the high energy of a-particles, at

very low-tissue doses only a small proportion of the cells

within a tissue will be irradiated, and most of these cells will

be impacted by a single track—giving a high dose to the cell.2

Under these conditions, the range of doses received by various

irradiated cells will be independent of tissue dose. All will have

the same potential for genomic repair (or cell death). For

a-radiation, cellular DNA repair processes cannot, therefore,

be used to explain deviations from linearity at low-tissue doses

and linearity would be expected. Indeed, some cell assays (eg,

transformation assays and assays of cell survival/viability)

show dose–responses that are consistent with a linear,

no-threshold shape. Deviation away from a linear, no-

threshold dose–response for cancer would, therefore, indicate

that mechanisms other than damage to DNA caused by the

radiation either cause or modify the dose–response. Such
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deviations have been long suggested—particularly for osteo-

sarcoma in radium dial painters (the radium girls).3,4

In addition to the above, it is not clear how target theory can

be used to explain the decreases in time between irradiation and

overt tumor identification or death (the latency period) that

occur as radiation doses/dose rates increase. While Guess and

Hoel5 felt able to attribute observed decreases to a simple

mathematical consequence of the decrease in cancer incidence

rate with increasing dose, it is not clear such an explanation is

convincing when changes in latency are very large. For exam-

ple, the latency period for osteosarcoma in dogs following

plutonium administration can vary from 1000 to 3500 days

depending upon dose rate.6 Next (consistent with the Peto par-

adox, where it was observed that cancer does not increase in

large animals despite their larger number of cells),7 considera-

tions of the number of cells within a tissue (approximately

proportional to the mass of the tissue) suggest, for example,

that the similar responses per unit tissue dose seen for lung

irradiations in rats and man by plutonium (excess tumor fre-

quency equals 6.4 times dose in rats8 and 9.5 times dose in

Mayak workers)9 can only be explained if either rat lung cells

are orders of magnitude more sensitive to cancer-inducing

DNA damage than those of man or that the DNA repair

mechanisms in man are orders of magnitude more efficient

than those in the rat. Neither would seem likely. Similarly, the

mortality rate ratios for lung cancer in beagle dogs that inhaled

plutonium oxide and Mayak plutonium workers are similar

over a wide range of average lung doses, spanning 0.1 to >10

Gy.10 Such observations would suggest that it is average tissue

dose, resulting in tissue damage, not damage within individual

cells in the tissue, that is important for cancer induction and

that the probability of random, transforming DNA damage pro-

duced directly by a-radiation traversing the cell nucleus in

individual cells is unimportant.

A search for alternative mechanisms, that do not require

direct DNA damage to produce the cancer seen, has revealed

several possibilities that link carcinogenesis variously to cell

death, inflammation, tissue repair with fibrosis, and the gener-

ation of reactive oxygen species (ROS). One such mechanism

is that proposed to produce lung tumors following the inhala-

tion of asbestos fibers. In a 2010 publication,11 the following

mechanism was proposed for asbestos-induced lung cancer:

Asbestos causes mesothelial necrotic cell death and the release

of HMGB1 (high-mobility group box 1 protein—a factor that

starts and promotes inflammation), thereby promoting an

inflammatory response. Macrophages and mesothelial cells

release ROS, such as H2O2, and secrete TNF-a;-both amplify

the inflammatory process. Moreover, ROS cause DNA damage

and aneuploidy. TNF-a activates NF-kB, a survival pathway

that allows some mesothelial cells that have undergone

asbestos-induced DNA damage to survive rather than die,

thereby creating a pool of aneuploid mesothelial cells with the

potential to develop into cancer cells. The chronic release of

HMGB1 around areas of asbestos deposits sustains the inflam-

matory process. At the same time, TNF-a and other cytokines

released by inflammatory cells may further promote the divi-

sion of mutation-bearing HM (human mesothelial cells), ulti-

mately leading to the emergence of malignant cell clones.

Necrotic cell death and inflammatory processes also occur

in lungs following the inhalation of a-emitting radionuclides.

Cell necrosis is an inevitable consequence of extensive and

unrepairable cellular damage, including that caused by clus-

tered DNA damage2,12 resulting from the transit of an a-parti-

cle through the cell. It follows that similar responses are likely

to be induced by both a-particles and asbestos in the lung.

Indeed, if “a-particles” is substituted for “asbestos” in the

above description then the text provides a plausible mechanism

for a-induced carcinoma in the lung. It is reasonable to assume,

therefore, that both a-radiation induced- and asbestos induced-

carcinogenesis share common pathways that involve chronic

inflammation. In addition to the above, asbestos intake initiates

an inflammation-induced chronic wound healing process that

results in fibroblast recruitment and activation with extracellu-

lar matrix deposition. This results in fibrosis, which is a char-

acteristic of asbestosis.

Similar pathways to fibrosis following exposure to radio-

therapy doses of external radiation were described by Straub

et al.13 More recently, these have been reviewed by Kim and

Jung.14 The pathway to chemical-induced fibrosis has been

described by Landesmann.15 Her adverse outcome pathway

(AOP), published in Aopwiki by the Organization for Eco-

nomic Co-operation and Development, describes the linkage

between hepatic injury and cell death leading to the formation

of liver fibrosis. Following exposure to protein alkylating che-

micals, hepatocytes may become apoptotic and undergo geno-

mic DNA fragmentation and form apoptotic bodies. When

these are phagocytosed by Kupffer cells (liver macrophages),

the Kupffer cells are activated. The activated cells are the main

source of TGF-b1, which is the most potent profibrogenic

cytokine. In the AOP, TGF-b1 expression, therefore, is consid-

ered a key event that causes hepatic stellate cell activation,

meaning the transdifferentiation from a quiescent vitamin

A-storing cell to a proliferative and contractile myofibroblast,

the central effector in hepatic fibrosis. The excessive accumu-

lation of extracellular matrix proteins progressively affects the

whole organ and alters its normal functioning, resulting in liver

fibrosis—the adverse outcome. However, the AOP also lists 2

further events that play an important role in driving fibrogen-

esis, namely oxidative stress and chronic inflammation. Both

are described as on-going processes that are present throughout

the pathway. The inflammatory response is described as play-

ing an important role in driving fibrogenesis, since persistent

inflammation precedes fibrosis. Inflammatory signaling stems

from injured hepatocytes, activated Kupffer cells, and hepatic

stellate cells. Inflammatory and fibrogenic cells stimulate each

other in amplifying fibrosis. Oxidative stress is also described

as playing a crucial role in liver fibrogenesis by inducing hepa-

tocyte apoptosis, activation of Kupffer cells and hepatic stellate

cells, and fueling inflammation; ROS, contributing to oxidative

stress, are generated by hepatocytes, Kupffer cells, hepatic
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stellate cells, and inflammatory cells. In addition, the author

(Landesmann, personal communication, JRC-ISPRA, 2019)

has confirmed that she regards cancer as a consecutive out-

come. She plans to expand the AOP such that chronic inflam-

mation and fibrosis leading to a distortion of the hepatic

architecture, cirrhosis,16 and cancer. That is a nonmutagenic

route to carcinogenesis.17 In addition, she is considering

a-particles as an alternative stressor to chemical agents that

could also drive fibrosis and carcinogenesis.

The same author18 is preparing a second AOP that describes

an alternative route to hepatic cell death resulting from the

disruption of macrophages following the phagocytosis of nano-

particles. This provides a second possibility for a-particle car-

cinogenicity as many radionuclides, including 239Pu,

concentrate within the lysosomes of these cells.19

That inflammation produced by cell necrosis, pathogens,

and some chemicals can result in cancer is established.20,21

Also, that intakes of nonsteroidal anti-inflammatory drugs,

such as aspirin, may reduce both inflammatory responses and

the probability of cancer.22,23 Inflammation has been demon-

strated to initiate tumors by blocking the base-excision repair

of damage produced by reactive oxygen and nitrogen species.24

It has been shown to promote cancer by enhancing tumor cell

survival via gene modulation produced by the activation of NF-

kB by inflammatory cytokines such as tumor necrosis factor

a.25 Finally, it may facilitate cancer progression because of the

recruitment of tumor-associated macrophages within the pri-

mary tumor.26 Inflammation also results in the activation of

fibroblasts, and possibly the recruitment of additional cells

by epithelial mesenchymal transition, to “repair” damaged tis-

sues by the production of a fibrotic scar.27 This recruitment

may stimulate the division of either damaged or otherwise

compromised stem cells.28 As suggested by Landesmann, tis-

sue fibrotic processes parallel and interact with those that may

result in cancer such that they commonly occur together.8,29

Moreover, lysyl oxidase-mediated collagen cross-linking

within fibrotic tissues is reported to be responsible for

fibrosis-enhanced tumor metastasis.30

Finally, a-irradiation, leading to cancer in the presence of

tissue fibrosis, is indicated in humans and animals for the irra-

diated lung (pulmonary fibrosis) following the inhalation of

a-emitters,31-34 liver (cirrhosis) following thorium-232

(232Th) colloid administration35,36 and in the skeleton (peritra-

becular fibrosis/osteonecrosis) following intakes of bone-

seeking radionuclides—including americium-241 (241Am)37

and radium-226 (226Ra; first described for 226Ra in man by

Lloyd and Henning38). In dogs injected with 239Pu, the percent-

age of animals with both osteosarcoma and peritrabecular

fibrosis was the same over a wide range of administered doses

and the prevalence of adenocarcinomas and squamous lung

tumors closely matched pulmonary fibrosis.8 Similarly, the

frequency of cirrhosis, as a function of time and administered

dose, in Thorotrast patient populations closely tracks the fre-

quency of liver cancer.39 These observations are consistent

with a common, inflammation-induced causation/trigger for

both fibrosis and cancer.

Although this commentary has focused on the pathway to

carcinogenesis following a-irradiation of tissues, it is recog-

nized that a similar case can be made for some b-induced

cancer—particularly when the b-emitting radionuclide is foca-

lized within a tissue resulting in high local doses. Examples

might include bone cancer following the administration of

strontium-90 (90Sr)39 and lung cancer following intakes of a

variety of b-emitting radionuclides.40

In conclusion, a plausible mechanism for carcinogenesis,

resulting from chronic inflammation and tissue damage follow-

ing a-particle irradiation, is provided. Moreover, if chronic

inflammation is an obligate step in a-induced carcinogenesis,

then it is reasonable to speculate that, following very low levels

of tissue irradiation there might be insufficient tissue damage to

sustain a chronic inflammatory response and no cancer will be

produced. This would provide an explanation for the absence of

bone cancer and nasal sinus tumors in the radium-dial workers

who received the lowest occupational doses of 226Ra and/or
228Ra41-43 and bone tumors in the ankylosing spondylitis who

received the lowest doses of 224Ra.44 Alternatively, the length

of time required to accumulate significant tissue damage will

be too long for the observation of overt cancer during the life-

span of the individual. These would result in an effective

threshold for cancer in the dose–response relationship and, in

the case of the latter, a decrease in latency with increasing

tissue dose.
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27. López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance

towards organ fibrosis and cancer progression. EMBO Mol Med.

2009;1(6-7):303-314.

28. Richardson RR. Age-specific bone tumour incidence rates are

governed by stem cell exhaustion influencing the supply and

demand of progenitor cells. Mech Ageing Develop. 2014;139:

31-40.

29. van Kaick G, Lieberman D, Lorenz D, et al. Recent results of the

German Thorotrast study - epidemiological results and dose-

effect relationships in Thorotrast patients. Health Physics. 1983;

44:299-306.

30. Cox TR, Bird D, Baker AM, et al. LOX-mediated collagen cross-

linking is responsible for fibrosis-enhanced metastasis. Cancer

Res. 2013;73(6):1721-1732.

31. Dagle GE, Sanders CL. Radionuclide injury to the lung. Environ

Health Perspec. 1984;55:129-137.

32. McAnulty RJ, Moores SR, Talbot RJ, Bishop JE, Mays PK,

Laurent GJ. Long-term changes in mouse lung following inha-

lation of a fibrosis-inducing dose of 239PuO2: changes in col-

lagen synthesis and degradation rates. Int J Radiat Biol. 1991;

59(2):229-238.

33. Muggenburg BA, Gilmette RA, Hahn FF, et al. Radiotoxicity of

inhaled 239PuO2 in dogs. Radiat Res. 2008;170(8):736-757.

34. Park JF, Watson CR, Buschborn RL, Dagle GE, Strom DJ, Weller

RE. Biological effects of inhaled 239PuO2 in beagles. Radiat Res.

2012;178(5):447-467.

35. van Kaick G, Bahner ML, Liebermann D, Wesch H. Thorotrast

induced liver cancer: results of the German thorotrast study [in

German]. Radiologe. 1999;39(8):643-651

36. Brooks AL, Taylor GN, Benjamin S, Wegener K, van Kaick

G, Wesch H. Liver cancer risk from internally-deposited radio-

nuclides. National Council on Radiation Protection and Mea-

surements (NCRP) Report 135. NCRP, Bethesda, MD; 2001:

20814.

37. Priest ND, Freemont A, Humphreys JA, Kathren RL. Histopathol-

ogy and 241Am microdistribution in skeletal USTUR Case 246.

Health Phys. 1995;69(5):330-337.

38. Lloyd E, Henning CB. Cells at risk for the production of bone

tumors in radium exposed individuals: an electron microscope

study. Health Phys. 1983;44(suppl 1):135-148.

39. Raabe OG. Concerning ionizing radiation-induced cancer from

internally depsited radionuclides. Int J Radiat Biol. 2015;

91(10):810-819.

4 Dose-Response: An International Journal

https://aopwiki.org/aops/38
https://aopwiki.org/aops/144


40. Puukila S, Thorne C, Brooks AL, Woloschak G, Boreham DR.

The role of radiation-induced injury on lung cancer. Cancer.

2017;9(1):89-101.

41. Rowland RE. Dose-response relationships for female radium dial

workers: a new look. In: Van Kaick G. Karaoglow A, Kellerer

AM, eds. Health Effects of Internally Deposited Radionuclides.

Singapore: World Scientific Publishing; 1995:135-143.

42. Rowland RE, Stehney AF. Exposure data for radium patients.

Argonne National Laboratory Report, ANL-75-3, Part II. 1974:

177-231.

43. Rowland RE. Presentation at Radiation Research Meeting,

Boston, MA; May 1971. Suppl. To: Rowland, RE., Failla,

PM., Keane, AT. and Stehney, AF. (1970) Some dose-

response relationships for tumor incidence in radium patients.

Argonne National Laboratory Report, ANL-7760 Pt II. 1971:

1-17.

44. Wick RR, Atkinson MJ, Nekolla EA. Incidence of leukaemia and

other malignant diseases following injections of the short-lived

alpha-emitter 224Ra into man. Radiat Environ Biophys. 2009;

48(3):287-294.

Priest 5



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


