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Privacy and security concerns restrict access to original training datasets, posing significant challenges 
for model compression. Data-Free Knowledge Distillation (DFKD) emerges as a solution, aiming 
to transfer knowledge from teacher to student networks without accessing original data. Existing 
DFKD methods struggle to generate high-quality synthetic samples that capture the complexities 
of real-world data, leading to suboptimal knowledge transfer. Moreover, these approaches often fail 
to preserve the spatial attributes of the teacher network, resulting in shortcut learning and limited 
generalization.To address these issues, a novel DFKD strategy is proposed with three innovations: (1) 
an enhanced DCGAN generator with an attention module for synthesizing samples with improved 
micro-discriminative features; (2) a Multi-Scale Spatial Activation Region Consistency (MSARC) 
mechanism to accurately replicate the teacher’s spatial attributes; and (3) an adversarial learning 
framework that creates a dynamic competitive environment between the generative and distillation 
phases. Rigorous evaluation of the method on several benchmark datasets, including CIFAR-10, 
CIFAR-100, Tiny-ImageNet, and medical imaging datasets such as PathMNIST, BloodMNIST, and 
PneumoniaMNIST, demonstrates superior performance compared to existing DFKD methods. 
Specifically, on CIFAR-100, the student network attains an accuracy of 77.85%, surpassing previous 
methods like CMI and SpaceshipNet. On BloodMNIST, the method achieves an accuracy of 80.50%, 
outperforming the next best method by over 5%.
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The paradigm shift towards innovative model compression techniques has been significantly catalyzed by 
breakthroughs in knowledge distillation, which has witnessed a flurry of activity and advancement1,2. Knowledge 
distillation transcends the traditional boundaries of model compression by facilitating knowledge transfer from 
a larger, complex teacher network to a smaller, more efficient student network. This process not only reduces 
the model size but also retains or even enhances the performance of the compressed model, making it a highly 
sought-after technique for model compression. However, the conventional approach to knowledge distillation 
often requires direct access to the original, often large and privacy-sensitive, datasets used to train the teacher 
model. This prerequisite poses significant challenges in sectors where data privacy and security are paramount, 
such as healthcare, finance, and personal services, where regulatory and ethical considerations demand strict 
confidentiality of data3–5. The sensitivity of data in these domains has propelled the exploration of Data-Free 
Knowledge Distillation (DFKD), an innovative subset of knowledge distillation that seeks to mitigate privacy 
concerns by obviating the need for original training data in the knowledge transfer process. DFKD represents 
a paradigm shift, offering a promising pathway to model compression that harmonizes with the rigorous data 
privacy standards of sensitive sectors, thereby unlocking new possibilities for the deployment of advanced neural 
networks in privacy-centric applications6–11.
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However, this shift towards DFKD introduces its own set of challenges, particularly in synthesizing high-
quality training data and effectively transferring complex knowledge from the teacher to the student network12–16. 
Conventional DFKD techniques typically utilize generators that produce synthetic images lacking critical micro-
discriminative features, leading to subpar student network training, particularly in tasks requiring high-level 
feature discrimination17,18. Additionally, these methods often fall short in enabling the student network to 
accurately replicate the complex spatial features of the teacher network19. This shortfall will result in shortcut 
learning, where the student network fails to fully comprehend the data, thus hindering its ability to generalize 
to new, unseen data19.

To address these shortcomings, this research addresses these gaps by introducing a refined DFKD approach 
that harnesses an improved DCGAN generator with an attention module, a Multi-Scale Spatial Activation Region 
Consistency (MSARC) mechanism, and an adversarial learning framework to overcome these challenges. The 
principal contributions of this investigation are delineated herein:

•	 A DCGAN generator with an attention module is employed to produce high-quality synthetic samples. These 
samples exhibit micro-discriminative features that mimic real images, facilitating effective knowledge trans-
fer.

•	 The Multi-Scale Spatial Activation Region Consistency (MSARC) mechanism is proposed to ensure accurate 
capture of the teacher network’s spatial features, addressing shortcut learning and enhancing generalization 
to unseen data.

•	 An adversarial learning framework is integrated, creating a dynamic interplay between synthetic data gener-
ation and knowledge distillation. This produces challenging samples that encourage deeper learning by the 
student network.

•	 The method is validated on diverse natural and medical image datasets, demonstrating versatility and effec-
tiveness across various classification tasks.

Related work
Data-free knowledge distillation
DFKD has emerged as a pivotal approach to address the unavailability of original training datasets, especially in 
scenarios where data privacy and security are of paramount concern. Early DFKD techniques mainly focused 
on approximating the original dataset distribution using various statistical methods19. Notable among these are 
approaches that utilize the activation patterns of the teacher network to generate synthetic samples. To address 
the dependency on original data during the training process20, proposed a strategy of storing some metadata 
during training and reconstructing training samples in the distillation phase. On the other hand21, proposed 
a method of using Data Impressions (DI), created from random noise images, as substitute training data. In 
their study, the softmax space is modeled as a Dirichlet distribution and random noise images are optimized to 
generate data for training. Yin et al.22 developed DeepInversion, a method to synthesize realistic images from a 
network’s training distribution without needing original data, using a fixed teacher model and optimizing inputs 
with batch normalization.

More innovations in DFKD have explored the use of generative models, such as Generative Adversarial 
Networks (GANs), to create more realistic synthetic datasets6,23–25. FastDFKD15, a method that accelerates DFKD 
by up to 100 times through a novel meta-synthesizer for efficient data synthesis, maintaining performance on 
CIFAR, NYUv2, and ImageNet. Chen et al.24 introduced Data-Free Multi-Student Coevolved Distillation (DF-
MSCD), an approach to improve Data-Free Knowledge Distillation by simultaneously distilling knowledge to 
multiple heterogeneous student models. This method addresses class imbalance, enhances interactions between 
teacher-student pairs and peer students, and employs multiple generators for diverse sample synthesis. CDFKD-
MFS26, a collaborative Data-Free Knowledge Distillation framework that compresses multiple teacher models into 
a compact student model without original data, demonstrated superior accuracy across various datasets. Despite 
advancements, producing synthetic data that mirrors real-world complexity remains a challenge for effectively 
training student networks in data-free environments. Inspired by the fine-grained visual classification27, we 
integrated an attention module into the generator, aiming to capture the diversity and intricacy of real datasets 
more effectively.

Feature-level knowledge distillation
Feature-level knowledge distillation emerged as an area of significant interest, focusing on the transfer of rich, 
intermediate representations from the teacher to the student network28,29. This approach extended beyond 
traditional output-level knowledge transfer, enabling a deeper mimicry of the teacher network’s behavior30. 
Techniques such as attention transfer and feature map matching proved effective in capturing the nuanced 
knowledge embedded in the intermediate layers of deep neural networks5. An efficient knowledge distillation29 
method that leveraged an attention-based meta-network to autonomously evaluate and utilize the relative 
similarities across all feature levels between teacher and student networks, facilitating optimal feature distillation 
without manual link selection. Chen et al.

31 proposed a novel approach to knowledge distillation that introduced cross-stage connection paths 
between teacher and student networks, emphasizing the importance of the connection path across levels. This 
knowledge review mechanism was both effective and structurally efficient, leading to superior performance 
across diverse tasks. FAKD32, which employed feature-level augmentations and novel surrogate loss functions 
for knowledge distillation in semantic segmentation, leading to improved performance on various benchmarks 
without substantial overhead. However, optimizing these feature-level distillation techniques to work efficiently 
in data-free environments presented unique challenges, particularly in maintaining the balance between transfer 
efficiency and model complexity. In light of these developments, this research aimed to contribute to the field of 
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DFKD by addressing the challenges in synthetic data generation and feature-level knowledge transfer. Inspired 
by SpaceshipNet33, the proposed method combined an advanced generative model with sophisticated feature-
level distillation techniques to enhance the effectiveness of knowledge transfer in data-free settings.

DFKD applications in medical imaging
The application of Data-Free Knowledge Distillation (DFKD) within the realm of medical imaging represents a 
critical frontier in the advancement of healthcare technologies34. Medical images, such as X-rays, MRIs, and CT 
scans, are pivotal in diagnosing and monitoring a wide array of conditions, yet they pose significant challenges 
related to data privacy, accessibility, and the need for high-fidelity analysis35,36. The sensitivity of medical data 
and the ethical implications of its use necessitate innovative approaches that can circumvent these challenges 
while maintaining or enhancing the diagnostic capabilities of deep learning models37–42. The primary challenge 
in applying DFKD to medical imaging is the generation of synthetic images that faithfully replicate the complex, 
varied, and highly nuanced features of real medical images. These images must not only preserve the pathological 
features critical for diagnosis but also adhere to the diversity found across different patients, conditions, and 
imaging modalities. Recent advancements have showcased the potential of DFKD in generating synthetic images 
that can be used for training deep learning models without compromising patient privacy or data security23. For 
instance, generative adversarial networks (GANs) have been tailored to produce high-quality synthetic medical 
images that mimic the distribution of real datasets43,44. These synthetic datasets enable the training of robust 
diagnostic models without direct access to sensitive or proprietary medical data. The implications of DFKD in 
medical imaging are profound. It enables the development and refinement of diagnostic models in environments 
where access to large-scale medical datasets is impractical or impossible. This is particularly relevant for rare 
diseases, where available data is scarce, or in low-resource settings where data collection faces logistical and 
ethical hurdles.

Proposed method
Problem formulation
In the domain of DFKD, a critical question arises: How can we effectively transfer intricate knowledge from 
a complex teacher network to a student network without access to the original training data? This transfer is 
challenging due to the absence of real data that typically guides the student network’s learning process.

To formalize this, let’s consider a teacher network T that has been trained on a dataset D with samples x ∈ X  
and labels y ∈ Y . The goal of traditional knowledge distillation is to train a student network S to approximate 
the function learned by T. The process involves minimizing a loss function that measures the difference between 
the outputs of S and T. This is commonly represented as the minimization of the distillation loss, as defined as:

	 LKD = L(S(x), T (x)),� (1)

where L typically denotes a loss function, such as the Kullback-Leibler divergence or Mean Squared Error, 
measuring the discrepancy between the outputs of the student network S(x) and the teacher network T(x).

However, in DFKD, D is unavailable. In this study, one instead has a generator G that synthesizes data x̂ = G(z)
, where z is a random noise vector. The challenge now is to optimize G alongside S such that the synthetic data x̂ 
is effective for distilling knowledge from T to S. This optimization problem can be represented as:

	
min
G,S

LKD(S(G(z)), T (G(z))) + LG,� (2)

where LKD is a knowledge distillation loss, and LG is a loss term that ensures the fidelity of the generated 
samples G(z) to real data characteristics.

The proposed framework addresses this question by enhancing the capability of G through an advanced DCGAN 
generator with an integrated attention module and optimizing S using a novel Multi-Scale Spatial Activation 
Region Consistency (MSARC) mechanism. This approach aims to produce high-quality synthetic samples that 
capture the necessary features for effective knowledge transfer, thereby facilitating efficient and robust learning 
in the student network, even in the absence of real training data. The overall architecture of the proposed method 
is illustrated in Fig. 1.

Enhanced generator with attention
The approach innovates upon the standard Deep Convolutional Generative Adversarial Network (DCGAN) 
architecture, focusing on the synthesis of discriminative features essential for effective Data-Free Knowledge 
Distillation. The integration of an attention module within the DCGAN framework plays a pivotal role in this 
enhancement.

Architecture and feature enhancement
The architecture of DCGAN is divided into distinct blocks, each equipped with a specially designed attention 
module. This configuration allows for a targeted approach to feature synthesis at different layers of the generator. 
The primary objective is to generate synthetic samples x̂ from a noise vector z, which can be described as:

	 x̂ = G (z; ΘG) ,� (3)
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where G represents the generator with parameters ΘG. Spatial attention mechanism (as shown in Fig. 2): the 
attention mechanism employed in this model is akin to an encoder-decoder structure, focusing on the contextual 
interplay within the features. Each attention module processes the input feature map Fg ∈ RC×H×W  to produce 
an attention map As. The process is defined as:

	

Ad = Conv1×1(Fg)

Ψ = ReLU(BN(Conv3×3(Ad)))

Γ = ReLU(BN(Conv3×3(MP(Ψ)))),
� (4)

where Conv1×1 and Conv3×3 are convolution operations with kernel sizes 1× 1 and 3× 3, respectively, MP is the 
max-pooling operation, and BN represents batch normalization.

Attention map generation and fusion
 The attention map As is obtained through up-sampling and convolutional operations applied to Γ:

	

Ψ′ = MUP(ReLU(BN(DC3×3(Γ))))

As = Conv1×1(ReLU(BN(DC3×3(Ψ′)))),
� (5)

where DC3×3 represents a 3× 3 kernel deconvolution, and MUP denotes max unpooling. The synthetic features 
are then refined by fusing As with Fg :

Fig. 2.  Spatial attention module of the enhanced DCGAN generator. In this diagram, the symbol ⊗ denotes 
element-wise multiplication, and ⊕ represents element-wise addition.

 

Fig. 1.  Schematic of the proposed data-free knowledge distillation (DFKD) framework. The architecture 
integrates adversarial distillation at the output layer with feature-level knowledge transfer through Class 
Activation Maps (CAM) at intermediate layers. The discriminator differentiates between the teacher (T) 
and student (S) network outputs, while CAMs guide the distillation process by aligning intermediate 
representations. The generator (G) employs attention mechanisms and spectral normalization to synthesize 
high-quality data for training the student network. The MSARC gradient, ∇LmSARC , optimizes the alignment 
of spatial activation regions, enhancing the fidelity of knowledge transfer.
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	 F ′
g = λ · (Softmax (As)⊗ Fg) + Fg,� (6)

where λ is a hyperparameter that balances the influence of the attention map. Through this advanced architecture 
and attention-based feature enhancement, the DCGAN generator produces synthetic samples that effectively 
embody the intricate characteristics necessary for distilling knowledge from a teacher network in data-free 
scenarios.

To enhance the capability of the generator within the DCGAN architecture, the proposed method has integrated 
a meta-learning optimization strategy15. This innovative approach enables the generator to rapidly adapt to new 
tasks or data distributions, significantly improving the synthesis of discriminative features essential for effective 
Data-Free Knowledge Distillation.

Meta-learning strategy
The essence of the meta-learning implementation lies in optimizing the generator’s parameters ΘG in a way 
that facilitates quick adaptation. Specifically, the proposed method employs a model-agnostic meta-learning 
(MAML) approach, which is designed to prepare the generator for fast learning with a minimal number of 
gradient updates. This is achieved by training the generator not only to perform well on a given task but also to 
ensure that its parameters are positioned in a part of the parameter space where the model has high learning 
adaptability. The optimization can be formalized as follows:

	
Θ∗

G = argmin
ΘG

∑
Ti∼p(T )

LTi
(
fΘG

)
+ γ · Ω(ΘG),� (7)

where Ti represents tasks sampled from a distribution of tasks p(T ), LTi is the loss function associated with task 
Ti, Ω(ΘG) denotes a regularization term, and γ is a weighting coefficient.

Adaptation phase
During the adaptation phase, the generator undergoes a rapid fine-tuning process, leveraging a small set of 
examples from a new task. This process consists of one or more gradient updates to the parameters, starting from 
the meta-learned initial parameters Θ∗

G. The update rule is given by:

	
Θ′

G = Θ∗
G − η∇Θ∗

G
LTnew

(
fΘ∗

G

)
,� (8)

where Tnew is the new task, LTnew is the loss on this new task, and η is the learning rate for adaptation.

Through the integration of meta-learning, the generator not only becomes capable of producing high-quality 
synthetic samples but also acquires the flexibility to quickly adjust to new and unseen tasks. This dual capability 
is crucial for deploying the DCGAN framework in Data-Free Knowledge Distillation scenarios, where the ability 
to generate task-specific synthetic data can significantly enhance the distillation process.

Multi-scale spatial activation region consistency
The Multi-Scale Spatial Activation Region Consistency (MSARC) mechanism is a key element of the proposed 
framework, designed to enhance the student network’s replication of the teacher network’s spatial features. This 
is particularly crucial when both networks are trained on synthetic data, ensuring the preservation of spatial 
hierarchies and contextual details in the distillation process.

Mechanism overview
The MSARC mechanism aligns Class Activation Maps (CAMs) from the teacher network T with those from 
the student network S, using synthetically generated data as input. This alignment ensures that the student 
network learns and mimics the spatial feature distributions of the teacher across multiple scales. The alignment 
is mathematically expressed as:

	
LMSARC =

L∑
l=1

αl · MSE(CAMl
S(x̂),CAMl

T (x̂)),� (9)

where L is the total number of layers selected for alignment, CAMl
S  and CAMl

T  are the CAMs at layer l for the 
student and teacher networks, respectively, and αl are weighted for each layer’s contribution to the loss.

CAM extraction
For both the teacher (T) and student (S) networks, CAMs are computed from synthetic input samples x̂. As 
shown in Fig. 3, the method varies based on the layer depth33:

Deep layers (final convolutional layer before pooling). CAM for class c at layer l is:

	
CAMc

l (x̂) =
∑
p

wc
p · f l

p(x̂),� (10)
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where f l
p(x̂) is the feature map of channel p at layer l, and wc

p is the class-specific weight from the fully-connected 
layer.

Shallow layers (earlier convolutional layers). CAM for class c at layer l uses Grad-CAM inspired method:

	
CAMc

l (x̂) =
∑
p

αc
p · f l

p(x̂),� (11)

where αc
p is the gradient-based importance weight for class c with respect to feature maps f l

p.

To provide a more detailed understanding of the Grad-CAM process used in shallow layers, we present the step-
by-step computation and visualization procedure: 

	1.	� For a given class c and layer l, we first calculate the gradient of the score for class c with respect to the feature 
maps of layer l: 

	
αc
p =

∂yc

∂f l
p
� (12)

 where yc is the score for class c, and f l
p is the feature map of channel p in layer l.

	2.	� These gradients are then global average pooled to obtain the importance weights for each channel: 

	
αc
p =

1

Z

∑
i

∑
j

∂yc

,
∂f l

ij � (13)

 where Z is the total number of pixels in the feature map.

	3.	� Finally, we compute the CAM for class c by taking a weighted sum of the feature maps: 

	
CAMc

l (x̂) = ReLU

(∑
p

αc
p · f l

p(x̂)

)
� (14)

Fig. 3.  Comparative visualization of Class Activation Mapping (CAM) techniques for deep and shallow 
network layers, as illustrated in the schematic diagram. For shallow layers, Grad-CAM is utilized where 
gradients and activations produce CAMs through backpropagation, as shown on the left. In contrast, for 
deep layers, CAMs are derived from the final convolutional layer’s feature maps weighted by class-specific 
parameters from the fully-connected layer, depicted on the right.
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	4.	� For visualization, the CAM is upsampled to the size of the original image and overlaid on it, typically dis-
played as a heatmap. The highlighted areas in the heatmap indicate regions of the image that contribute 
significantly to the prediction of the given class.This method allows us to effectively visualize class-specific 
activation regions even in the shallow layers of the network, thereby achieving spatial activation region con-
sistency across multiple scales.

This approach ensures accurate CAM computation across different network layers, reflecting the feature 
importance for classification tasks.

Scale-wise consistency
The Mean Squared Error (MSE) is used to measure the similarity between the CAMs of the teacher and student 
networks. The consistency loss at each layer l is calculated as:

	
MSE(CAMl

S,CAMl
T ) =

1

N

N∑
i=1

(CAMl
Si
− CAMl

Ti
)2,� (15)

where N is the number of spatial elements in the CAMs. By implementing the MSARC mechanism, the approach 
ensures that the student network learns a spatially consistent representation from the teacher network, thereby 
improving performance in complex classification tasks and enhancing generalization capability, particularly 
with synthetic data training.

Adversarial distillation and training objectives
The optimization process involves two primary components: the generator G and the student network S, each 
with its distinct objective function. Their training is conducted in an adversarial distillation manner.

Generator optimization
The initial phase is concentrated on optimizing the generator G to synthesize more realistic and diverse samples. 
The objective function for the generator combines two essential loss terms: LBN , to ensure the quality and 
diversity of the synthetic data, and Lcls, a cross-entropy loss that encourages the generated images x̂ = G(z) 
to be classified into specific categories by the teacher network T. In formulating this optimization goal, the 
proposed method also considered the potential impact of a meta-learning strategy, which aims to enhance the 
generator’s adaptability to new tasks and data distributions through subtle adjustments in its training process. 
The optimization objective for the generator is expressed as:

	
min
G

κ (LBN + Lcls)− LKD,� (16)

where LKD is the knowledge distillation loss, and κ is a hyperparameter that balances these components.

Student network optimization
After the generation of synthetic data, the next phase involves training S using these samples. The total objective 
for the student network is:

	
min
S

LKD + βLmSARC,� (17)

where LKD is the knowledge distillation loss, LmSARC  is the Multi-Scale Spatial Activation Region Consistency 
loss, and β is a hyperparameter for balancing these losses.

Adversarial distillation approach
The training utilizes an adversarial distillation strategy, where both the generator and the student network are 
iteratively optimized. This approach enables a dynamic adaptation of the synthetic data and the student network’s 
learning process, ensuring an effective transfer of knowledge from the teacher network.

By alternating between optimizing G for improved data synthesis and S for enhanced knowledge absorption, 
the algorithm strikes a balance between data realism and learning efficacy. This approach effectively addresses 
the challenges of Data-Free Knowledge Distillation, leading to a student network that is both robust and capable 
of generalizing well.

Theoretical analysis of synthetic data impact
The distillation process involves a loss function, quantifying the difference between the student and teacher 
models. This loss is expressed as:

	
LKD(S, T,G) =

∫

Z
∥S(G(z))− T (G(z))∥2ρ(z)dz,� (18)
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where Z is the domain of the noise vector z and ρ(z) is the probability density function over z. between Data 
Quality and Distillation Loss

To establish the relationship between the quality of synthetic data and the distillation loss, a metric δ (G,G∗) is 
introduced, which quantifies the discrepancy between the actual generator G and the ideal generator G∗. This 
discrepancy is quantified as:

	
δ (G,G∗) = sup

z∈Z
∥G(z)−G∗(z)∥ ,� (19)

representing the maximum deviation between the outputs of G and G∗ across all possible noise vectors z. This 
assumption indicates that the difference between S and T on ideal synthetic data G∗(z) is bounded by a constant 
C, i.e., for all z ∈ Z , it holds that:

	 ∥S (G∗(z))− T (G∗(z))∥ ≤ C.� (20)

For the actual generator G,the following inequality holds:

	

∥S(G(z))− T (G(z))∥
≤ ∥S(G(z))− S (G∗(z))∥ + ∥S (G∗(z))− T (G∗(z))∥
+ ∥T (G∗(z))− T (G(z))∥
≤ ∥S(G(z))− S (G∗(z))∥ + C + ∥T (G∗(z))− T (G(z))∥
≤ ∥S∥Lip · ∥G(z)−G∗(z)∥ + C + ∥T∥Lip · ∥G(z)−G∗(z)∥
= (C + (∥S∥Lip + ∥T∥Lip) · δ (G,G∗)) ,

� (21)

where ∥S∥Lip and ∥T∥Lip are the Lipschitz constants of the student and teacher models, respectively, indicating 
the maximum sensitivity of these models to changes in their inputs. This demonstrates that the upper bound 
on the discrepancy between the outputs of the student and teacher models is determined not only by their 
inherent performance gap C but also by the disparity between the generator G and the ideal generator G∗. When 
incorporating this inequality into the distillation loss expression, the following result is obtained:

	
LKD(S, T,G) ≤

∫

Z
(C + (∥S∥Lip + ∥T∥Lip) · δ (G,G∗))2 ρ(z)dz.� (22)

This reveals a key insight: as the discrepancy δ (G,G∗) diminishes (i.e., as G approaches the ideal), the upper 
bound of the distillation loss LKD(S, T,G) decreases accordingly. Enhancing the quality of synthetic data by 
reducing the difference between G and G∗ effectively lowers the output discrepancy between the student and 
teacher models, thereby potentially improving the performance of the student model.

Experiments
Experimental setting
In the comprehensive evaluation, a diverse range of backbone networks was employed to rigorously assess the 
effectiveness of the proposed method. Specifically, ResNet45, known for its deep residual learning framework, 
VGG46, recognized for its simplicity and depth, and Wide ResNet47, which widens ResNet’s layers to provide a 
different architectural perspective, were utilized. The key hyperparameters in the experiment are shown in Table 
1.

The experiments were methodically conducted across three benchmark classification datasets: CIFAR-1048, 
CIFAR-10048, and Tiny-ImageNet49. CIFAR-10 and CIFAR-100 are staple datasets in machine learning, 
comprising low-resolution images (32 × 32 pixels) across 10 and 100 classes, respectively. They provide a 
controlled environment to evaluate the method’s effectiveness in handling a wide range of classes. Tiny-ImageNet, 

Hyperparameter Value Description

Learning Rate for Generator 0.005 Learning rate for optimizing the generator network parameters

Learning Rate for Noise Vector 0.015 Learning rate for optimizing the noise vector input to the generator

Temperature for Distillation 20.0 Temperature parameter to soften the teacher’s output probabilities

Batch Size 128 Number of samples per batch during training

Attention Module Weight 3× 10−2 Balances the influence of the attention map in the generator

Generator Optimization Steps 2 Number of optimization steps for the generator per iteration

Use of Meta-Learning Enabled Meta-learning is used in the generator’s optimization

Momentum 0.9 Momentum factor used in the optimizer for training

Weight Decay 0.0001 Weight decay (L2 regularization) coefficient used in the optimizer

Table 1.  Key hyperparameters used in the proposed methods.
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a subset of the larger ImageNet dataset, contains 200 classes, offering a more challenging classification task with 
its increased number of classes and slightly higher resolution images (64 × 64 pixels). To further evaluate the 
performance of the proposed method on datasets with higher image resolutions, experiments were extended to 
Imagenette and ImageNet100. Imagenette, a subset of ImageNet, includes a selection of easily classifiable classes 
from ImageNet50, and ImageNet100 is a more compact version of ImageNet with 100 classes. Both these datasets 
present images at a resolution of 224times224, posing a more challenging scenario and allowing us to assess the 
scalability and robustness of the approach in handling high-resolution image data.

The experimental framework leveraged three medical datasets51,52-PathMNIST, BloodMNIST, and 
PneumoniaMNIST-used at their original resolutions (64×64 for PathMNIST and BloodMNIST; 224×224 for 
PneumoniaMNIST), tailored for distinct classification tasks in healthcare: PathMNIST focuses on classifying 
9 types of tissues from colorectal cancer histology images, challenging the model with the complexity of 
histopathological analysis. BloodMNIST comprises images of normal blood cells categorized into 8 classes, 
testing the model’s accuracy in hematological cell classification. PneumoniaMNIST includes pediatric chest 
X-rays for binary classification of pneumonia, assessing the model’s capability in diagnosing conditions from 
radiographic imagery. These datasets underscore the method’s adaptability and potential impact on medical 
diagnostics, showcasing effectiveness across varied medical imaging tasks.

To evaluate the performance of the proposed DFKD framework, with a specific focus on classification tasks, 
accuracy is adopted as the primary metric. Accuracy, in the context of classification, is defined in terms of true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), which are derived from the 
confusion matrix. Specifically, accuracy is calculated as the ratio of correctly predicted observations (both true 
positives and true negatives) to the total observations in the dataset. The formula for accuracy is given by:

	
Accuracy =

TP + TN

TP + TN + FP + FN
,� (23)

where: TP (True Positives) are the correctly predicted positive values, which means the predictions that are true 
and classified as true. TN (True Negatives) are the correctly predicted negative values, indicating the predictions 
that are false and classified as false. FP (False Positives) represents the incorrect positive predictions, where the 
predictions are false but classified as true. FN (False Negatives) are the incorrect negative predictions, where the 
predictions are true but classified as false.

This accuracy metric serves as a straightforward measure of the student network’s performance in correctly 
classifying instances as compared to the ground truth. It provides a comprehensive view of how effectively the 
student network, trained through the DFKD framework, has managed to replicate the classification capabilities 
of the teacher network without access to the original training data.

Performance comparison
Table 2 and Fig. 4 show the superior performance of the DFKD method when compared with other contemporary 
strategies such as DAFL25, ZSKT53, ADI22, DFQ14, LS-GDFD54 and CMI17. Conducted under uniform conditions 
with identical teacher networks to ensure fairness, the method showed exemplary performance across all datasets 
tested, including CIFAR-10, CIFAR-100, and Tiny-ImageNet, demonstrating its effectiveness in extracting and 
transferring knowledge from a range of teacher networks.

The proposed technique exhibited strong adaptability and proficiency in CIFAR-10 evaluations, achieving 
competitive results across various teacher-student network configurations, which underscores its versatility in 
handling complex network architectures. In CIFAR-100, the method effectively distilled subtle and intricate 
information necessary for detailed classification tasks. Rigorous testing on the challenging Tiny-ImageNet 
dataset, characterized by higher-resolution images, demonstrated its capability to manage and learn from high-
resolution data, essential for applications requiring precise recognition.

Our Data-Free Knowledge Distillation technique also showcased impressive results on high-resolution 
datasets, particularly Imagenette and ImageNet100, as detailed in Table 3. This performance is especially 
significant given the increased complexity and higher resolution of these datasets. In the Imagenette 
experiments, the method achieved a test accuracy of 79.73%, closely trailing the teacher network’s accuracy of 
80.41%. This outcome is indicative of the efficacy of the approach, as it nearly matches the performance of the 
teacher network, despite the absence of real training data. The results are even more compelling when compared 
with other methods like CMI and DFQ, where the approach surpasses them by a notable margin. Similarly, on 
ImageNet100, the method attained a test accuracy of 62.58%, outperforming the other DFKD techniques.

The effectiveness of the proposed Data-Free Knowledge Distillation approach was rigorously evaluated across 
three medical datasets: PathMNIST, BloodMNIST, and PneumoniaMNIST. The performance metrics, specifically 
test accuracy percentages, are summarized in Table 4, showcasing a comparison between this method and 
other state-of-the-art Data-Free Knowledge Distillation methods, including CMI, DFQ, and SpaceshipNet. The 
teacher model for these experiments was WRN-40-2, and the student model was WRN-40-1. In the PathMNIST 
dataset, the method achieved a test accuracy of 77.09%, closely competing with SpaceshipNet’s 78.91% and 
surpassing both CMI’s 70.81% and DFQ’s 75.60%. This demonstrates strong capability in capturing the nuanced 
features required for effective histological image classification. For BloodMNIST, the approach outperformed 
all compared methods with a test accuracy of 80.50%, significantly higher than SpaceshipNet’s 75.11%, DFQ’s 
73.34%, and CMI’s 67.08%. This highlights superior performance in classifying blood cell images, attesting 
to robustness and efficiency in handling diverse medical imaging tasks. PneumoniaMNIST results further 
validate the effectiveness of this method, achieving a test accuracy of 78.53%. This score is slightly higher than 
SpaceshipNet’s 73.78% and comfortably exceeds the performances of CMI (69.25%). Overall, the experimental 
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outcomes underscore the competitive performance of the Data-Free Knowledge Distillation method across a 
variety of medical imaging tasks. Figure 5 visually illustrates the synthetic images generated by this approach, 
further demonstrating its capability to effectively replicate and synthesize complex medical images for diverse 
datasets.

Ablation study
Impact of meta-learning optimization in the enhanced DCGAN generator
The ablation study (as shown in Table 5) meticulously contrasts the efficacy of the full method, which 
incorporates an Enhanced DCGAN Generator with Meta-Learning Optimization, against variations that omit 
this pivotal enhancement. Notably, when the full method’s performance is juxtaposed with that of employing a 
Standard DCGAN Generator equipped with Meta-Learning Optimization, a discernible decrement in accuracy 
becomes apparent. Specifically, on the CIFAR-10 dataset, accuracy experiences a downturn from 94.91% to 
91.67%, marking a substantial decrease of 3.24 percentage points. This pattern of decline extends across the 
CIFAR-100 and Tiny-ImageNet datasets as well, with reductions of 4.37% and 3.11%, respectively. However, 
a more nuanced examination reveals that the variation featuring the Enhanced DCGAN without Meta-
Learning Optimization yields accuracies of 92.31%, 75.09%, and 62.96% across CIFAR-10, CIFAR-100, and 
Tiny-ImageNet, respectively. This indicates a less pronounced but still significant performance drop compared 
to the full method, underscoring the integral role of Meta-Learning Optimization in conjunction with the 

Dataset Test accuracy (%)

T. CMI DFQ SpaceshipNet Ours

PathMNIST 92.15 70.81 75.60 78.91 77.09

BloodMNIST 96.89 67.08 73.34 75.11 80.50

PneumoniaMNIST 89.25 69.25 76.75 73.78 78.53

Table 4.  Comparison of test accuracy (%) on medical datasets using different data-free knowledge distillation 
methods. The teacher model employed is WRN-40-2, and the student model is WRN-40-1. Our approach 
exhibits competitive performance across PathMNIST, BloodMNIST, and PneumoniaMNIST, highlighting its 
efficacy in data-free distillation within the medical imaging domain.

 

Dataset Test accuracy (%)

T. CMI DFQ SpaceshipNet Ours

Imagenette 80.41 74.80 75.31 78.86 79.73

ImageNet100 71.62 56.60 54.73 61.57 62.58

Table 3.  The results of the Data-Free Knowledge Distillation technique on higher resolution datasets, 
specifically Imagenette and ImageNet100. These experiments used ResNet-34 as the teacher network and 
ResNet-18 as the student network. T. represents the teacher network.

 

Fig. 4.  Comparison of classification accuracy across CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. The 
chart illustrates the performance of the teacher network, student network, and other Data-free distillation 
methods including CMI, SpaceshipNet, and the proposed method.
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Enhanced DCGAN’s architectural modifications. These findings elucidate the paramount importance of Meta-
Learning Optimization within the Enhanced DCGAN framework. While the architectural enhancements alone 
(without Meta-Learning Optimization) contribute positively to the distillation process-evidenced by a smaller 
performance reduction compared to the Standard DCGAN Generator-the incorporation of Meta-Learning 
Optimization synergistically amplifies the generator’s capability. This optimization enables the generator to 
produce synthetic data that more effectively encapsulates the complex feature distributions necessary for an 
efficient and robust knowledge transfer from the teacher to the student network. In essence, the juxtaposition of 
the Enhanced DCGAN’s performance, with and without Meta-Learning Optimization, alongside the Standard 
DCGAN Generator, provides compelling evidence of the critical role played by Enhanced DCGAN. It not 
only enhances the quality of synthetic data generation but also significantly bolsters the overall efficacy of the 
knowledge distillation process, as substantiated by the observed improvements in accuracy across all evaluated 
datasets.

Role of MSARC mechanism
The exclusion of the MSARC mechanism from the proposed framework starkly highlights its indispensability, as 
evidenced by significant accuracy declines across CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. Without 
MSARC, a marked decrease in accuracy was observed: a decline of 5.09 percentage points for CIFAR-10, 7.26% 
for CIFAR-100, and 7.86% for Tiny-ImageNet, underscoring the mechanism’s pivotal role in enhancing the 
knowledge distillation process. These results underscore MSARC’s critical function in aligning Class Activation 
Maps (CAMs) between the teacher and student networks, facilitating a nuanced and effective transfer of 
spatial knowledge. This alignment is paramount, especially in handling datasets characterized by complex and 
diverse data representations, where grasping the underlying feature distributions is essential for achieving high 
accuracy. The MSARC mechanism acts as a bridge, narrowing the representational gap between teacher and 
student models. It enriches the student model’s learning process, ensuring not only the acquisition of correct 
classifications but also the development of a comprehensive understanding of the feature hierarchies that 

Component CIFAR-10 test accuracy (%) CIFAR-100 test accuracy (%)

Tiny-
ImageNet 
test 
accuracy 
(%)

Full methods (enhanced DCGAN with meta-learning optimization + MSARC + 
adversarial strategy) 94.91 77.85 65.21

Standard DCGAN with meta-learning optimization 91.67 73.48 62.10

Enhanced DCGAN without meta-learning optimization 92.31 75.09 62.96

Without MSARC mechanism 89.82 70.59 57.35

Without adversarial distillation strategy 92.12 75.90 61.75

Table 5.  Ablation study results demonstrating the impact of key components on CIFAR-10, CIFAR-100, and 
Tiny-ImageNet datasets with ResNet-34 as the Teacher Network and ResNet-18 as the Student Network. This 
table compares the performance of the full proposed method with variations where specific components are 
excluded, highlighting the contribution of each component to the overall effectiveness of the method.

 

Fig. 5.  Visualization of synthetic images generated by the proposed approach on three medical datasets. This 
Figure showcases the capability of the Data-Free Knowledge Distillation method to produce high-quality 
synthetic images across diverse medical imaging tasks, including histological images from PathMNIST, blood 
cell images from BloodMNIST, and pediatric chest X-rays from PneumoniaMNIST.
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underpin those classifications. This deeper insight allows the student model to more closely mirror the teacher 
model’s decision-making process, enhancing its generalization capability. In essence, MSARC’s contribution 
to the DFKD framework is transformative, significantly boosting the student model’s learning efficiency and 
accuracy. It ensures that the distillation process meticulously captures and transfers the spatial and contextual 
nuances intrinsic to the teacher model’s representations. The performance degradation observed in its absence 
reaffirms MSARC’s essential role in achieving effective and robust knowledge distillation across challenging 
datasets.

Effectiveness of adversarial distillation strategy
The adversarial distillation strategy’s importance is also evident, with a noticeable performance decline observed 
in its absence. For example, without this strategy, the accuracy of CIFAR-10 falls to 92.12%, indicating a decrease 
of 2.79 percentage points. Similarly, on CIFAR-100 and Tiny-ImageNet, the accuracies reduce by 1.95% and 
3.46%, respectively. This highlights how the adversarial distillation strategy enhances the learning process by 
dynamically adapting the synthetic data and the student network’s learning, making it an integral component of 
the knowledge distillation process. By fostering a competitive yet constructive interaction between the generator 
(producing synthetic data) and the student network, this strategy ensures that the synthetic data evolves in a 
manner that optimally benefits the student’s learning trajectory. This adaptive process is crucial for maintaining 
a high fidelity of knowledge transfer from the teacher to the student network, especially in the absence of real 
training data.

Overall, the ablation study validates the necessity and effectiveness of each component in the method. The 
combined use of the Enhanced DCGAN generator, the MSARC mechanism, and the adversarial distillation 
strategy leads to notable improvements in performance, demonstrating the synergy of these components in our 
Data-Free Knowledge Distillation framework.

Ablation study results for λ
The effect of varying the hyperparameter λ within the Enhanced DCGAN Generator with Attention Module 
was explored. This hyperparameter λ is crucial for balancing the influence of the attention map on the synthetic 
features generated by the model. The attention mechanism, as outlined in the previous section, is vital for 
synthesizing samples that closely resemble real data characteristics, a key requirement for successful Data-Free 
Knowledge Distillation. The results, presented in Table 6, show that λ significantly impacts the accuracy of the 
student network across the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.

The optimal setting for λ is found to be 3e−2, achieving the highest accuracy rates of 94.91% on CIFAR-10, 
77.85% on CIFAR-100, and 65.21% on TinyImageNet. Deviations from this optimal value resulted in a 
noticeable decrease in model performance. This demonstrates the delicate balance required in the attention 
mechanism, where λ must be fine-tuned to enhance the quality of synthetic samples without overwhelming the 
original features of the generated data. These findings underscore the importance of the attention module in the 
Enhanced DCGAN architecture.

Discussions and limitations
This work presents a comprehensive exploration into the realm of Data-Free Knowledge Distillation (DFKD), 
demonstrating the efficacy of the proposed method across a spectrum of datasets and network architectures. 
Rigorous experiments, including an ablation study, validate the significant contributions of the enhanced 
DCGAN generator, the Multi-Scale Spatial Activation Region Consistency (MSARC) mechanism, and an 
adversarial distillation strategy. The method’s adaptability is further highlighted by its performance on high-
resolution datasets and challenging medical imaging tasks, showcasing its potential for wide-ranging applications 
in scenarios where access to original training data is restricted or impossible.

However, the exploration of DFKD also surfaces inherent limitations and challenges. Firstly, while our 
approach excels in generating high-quality synthetic data that closely mimics real data distributions, the 
complexity, and computational overhead associated with the enhanced DCGAN generator and attention 
mechanism cannot be overlooked. These components, though crucial for capturing nuanced data characteristics, 
necessitate substantial computational resources, potentially limiting their applicability in resource-constrained 
environments. Furthermore, the balancing act between the fidelity of generated data and the preservation 
of informative features for distillation, as controlled by the hyperparameter (λ), underscores the sensitivity 
of the method to hyperparameter settings. This necessitates careful tuning to achieve optimal performance, 

λ Value
CIFAR-10
Test Accuracy (%)

CIFAR-100
Test Accuracy (%)

Tiny-ImageNet
Test Accuracy (%)

1e−2 94.68 77.35 64.85

3e−2 94.91 77.85 65.21

5e−2 94.87 77.75 65.15

7e−2 94.82 77.65 65.05

9e−2 94.75 77.50 64.95

Table 6.  Impact of varying hyperparameter (λ) on model accuracy. This table illustrates how different settings 
of λ, a critical parameter in the attention mechanism of the Enhanced DCGAN Generator, affect the accuracy 
of CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.
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introducing challenges in scenarios where such fine-tuning is not feasible due to time or computational 
constraints. Moreover, while the method has shown promising results across diverse datasets, the question of 
its scalability and efficiency in the face of extremely large and complex datasets remains. The ability to generate 
synthetic data that accurately reflects the vast diversity and intricate details of such datasets is critical for the 
success of DFKD methods.

Conclusion
This study introduces a Data-Free Knowledge Distillation methodology that integrates an advanced DCGAN 
generator with an attention mechanism and the Multi-Scale Spatial Activation Region Consistency (MSARC) 
mechanism, demonstrating effective high-quality synthetic sample generation and knowledge transfer across 
a variety of datasets. Through ablation studies, the critical role of each component is underscored, showing 
significant promise for applications requiring high-detail image classification, such as medical imaging, in 
environments where data privacy is paramount. Future efforts will aim to adapt and refine this method for even 
more complex scenarios, addressing the growing challenge of knowledge distillation in the absence of accessible 
data.

Data availability
The datasets used in this study are publicly available and can be accessed as follows: CIFAR-10 and CIFAR-100 
are available at https://www.cs.toronto.edu/~kriz/cifar.html; Tiny-ImageNet can be downloaded from ​h​t​t​​​​p​s​:​​/​​/​g​
i​t​h​​u​b​.​c​​o​m​​/​t​j​​m​o​o​n​0​1​0​4​/​p​y​t​o​r​c​h​-​t​i​n​y​-​i​m​a​g​e​n​e​t​​​​​; Imagenette is accessible via ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​f​a​s​t​a​i​/​i​m​a​g​e​n​e​
t​t​e​​​​​; ImageNet100 is available at https://github.com /danielchyeh/ImageNet-100-Pytorch; and the PathMNIST, 
BloodMNIST, and PneumoniaMNIST datasets can be found at https://medmnist.com/.

Code availability
The code that supports the findings of this study is available from the corresponding authors upon reasonable 
request.
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