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Background: MRI-guided radiotherapy planning (MRIgRT) may be superior to CT-guided planning in
some instances owing to its improved soft tissue contrast. However, MR images do not communicate
tissue electron density information necessary for dose calculation and therefore must either be
co-registered to CT or algorithmically converted to synthetic CT. No robust quality assessment of
commercially available MR-CT registration algorithms is yet available; thus we sought to quantify
MR-CT registration formally.
Methods: Head and neck non-contrast CT and T2MRI scans acquiredwith standard treatment immobiliza-
tion techniques were prospectively acquired from 15 patients. Per scan, 35 anatomic regions of interest
(ROIs)weremanually segmented.MRIswere registered to CT rigidly (RIR) and by three commercially avail-
able deformable registration algorithms (DIR). Dice similarity coefficient (DSC), Hausdorff distance mean
(HDmean) and Hausdorff distance max (HDmax) metrics were calculated to assess concordance between
MRI and CT segmentations. Each DIR algorithm was compared to DIR using the nonparametric Steel test
with control for individual ROIs (n = 105 tests) and for all ROIs in aggregate (n = 3 tests). The influence
of tissue type on registration fidelity was assessed using nonparametric Wilcoxon pairwise tests between
ROIs grouped by tissue type (n = 12 tests). Bonferroni corrections were applied for multiple comparisons.
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Results: NoDIR algorithm improved the segmentation quality over RIR for any ROI nor all ROIs in aggregate
(all p values >0.05). Muscle and gland ROIs were significantly more concordant than vessel and bone, but
DIR remained non-different from RIR.
Conclusions: For MR-CT co-registration, our results question the utility and applicability of commercially
available DIR over RIR alone. The poor overall performance also questions the feasibility of translating tis-
sue electron density information toMRI by CT registration, rather than addressing this needwith synthetic
CT generation or bulk-density assignment.
� 2019 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

MRI-guided radiotherapy planning (MRgRT) has attractive
advantages over CT for its potential to deliver more personalized
treatment. First, MRI has superior visualization of soft tissue anat-
omy for more accurate definition of target volumes and organs at
risk (OARs). Second, emerging novel devices such as MR-Linear
accelerators (MRL) create an opportunity to use MRI rather than
CT as a tool for online target and OAR visualization and for adaptive
re-planning during treatment course [1]. Third, functional MRI
sequences may leverage tissue-specific contrast agents, as well as
uncover biomarkers that may predict treatment outcomes [2,3].

MRgRT has been established in many cancer subsites, including
brain, spine, liver and pancreas, prostate, and nasopharyngeal can-
cers [2,3]. This landscape is expanding. For example, an MRgRT sys-
tem (ViewRay, 0.35 Tesla, OH, USA) [4] was operational in 2014 at
the Washington University in St. Louis, and in the intervening four-
and-a-half years has changed their practice for abdominal and
breast cancers [1,5]. There is reason to hope that these develop-
ments herald new indications for MRI, especially as improved sys-
tems with more precise targeting and steeper gradient drop-offs
are grandfathered into practice. At our institution, we successfully
treated the first patient in the United States using a recently FDA-
approved high-field Elekta-Philips Unity MRL (Elekta AB, 1.5 T,
Stockholm, Sweden; Philips, Amsterdam, Netherlands) [6,7].

However, the integration of MRI with radiotherapy planning on
a broader landscape faces many challenges including those related
to MRI acquisition, geometric distortion, and onerous MR-CT regis-
tration techniques [2,8,9]. At our institution, we already estab-
lished that an MRI acquisition technique for simulation (i.e. in
the treatment position) using RT planning immobilization devices
improved performance over diagnostic (i.e. non-immobilized) MR
acquisition for radiotherapy planning. This method demonstrated
superior image quality, decreased geometric distortion, and better
MR-CT co-registration [10,11]. Prior work to ours has also con-
firmed the feasibility of MR acquisition in the treatment position
[12]. Nevertheless, we still lack a rigorous quantification of the
quality of deformable and rigid MR-CT co-registration techniques
and their anatomic fidelity when both MR and CT are acquired in
the treatment position. MR-CT co-registration is potentially useful
since MRI does not provide tissue electron-density information
needed to calculate radiation dose. Prior studies suggest that
deformable image registration (DIR) techniques may offer an
advantage over conventional rigid image registration (RIR) for head
and neck cancer (HNC) patients [13–17]. Nevertheless, not all these
studies evaluated the quality of DIR across a robust number of ana-
tomic regions of interest (ROIs), and some used MRIs acquired
using standard diagnostic acquisition techniques. To this end, we
assessed the quality of MR-CT co-registration using commercially
available image registration software for images acquired using
strict RT immobilization techniques for both MRIs and CTs in
HNC cancer patients receiving definitive IMRT. The specific aims
are: 1) Assess whether the use of DIR software provides an advan-
tage over the conventional RIR, and 2) Determine the quality of
MR-CT registration tools for HNC using overlap and surface dis-
tance metrics.
2. Methods

2.1. Study population

Eligible patients for this study had biopsy-proven intact squa-
mous cell carcinoma of the head and neck, treatment with
curative-intent intensity-modulated radiation therapy, no
chemotherapy between CT and MRI scans, and not greater than
4 weeks between CT and MRI acquisition to avoid conflating our
results with anatomic changes attributable to disease progression
or treatment. For patients that met the criteria, nonenhanced sim-
ulation CT and nonenhanced simulation T2-weighted (T2w) MRI
Digital Imaging and Communications in Medicine (DICOM) scans
were prospectively acquired from the University of Texas MD
Anderson Cancer Center clinical databases in agreement with an
IRB protocol designed to evaluate imaging parameters for MR sim-
ulation. Anonymized scans are made available online at https://fig-
share.com/s/a5e09113f5c07b3047df.
2.2. Immobilization technique

For both CT and MRI, patients were immobilized in the treat-
ment position using a customized head, neck, and shoulder ther-
moplastic masks, mold head support, and dental stent. For
further details we refer the reader to the MRI immobilization pro-
tocol we have previously validated [11].
2.3. Imaging properties

Non-contrast enhanced simulation CT scans were acquired on
one of four machine models (LightSpeed RT16, GE Medical Sys-
tems, Waukesha, WI, USA; Brilliance 64 or Brilliance Big Bore, Phi-
lips Healthcare, Cambridge, MA, USA; SOMATOM Definition Edge,
Siemens, Washington D.C., USA) using x-ray tube currents between
208 and 434 mA at 120 kVp. All scans had slice thicknesses of
either 2.5 or 3 mm, with 2.5 or 3 mm of space between slices. Sec-
tions were displayed in 512 � 512 pixel matrices and recon-
structed in diameters between 500 and 600 mm. Non-contrast
enhanced simulation T2w MRI scans were acquired in one of two
machine models (Discovery MR750, GE Medical Systems, Wauke-
sha, WI, USA; Ingenia, Philips Healthcare, Cambridge, MA, USA)
in 3 Tesla magnetic fields with echo times between 97.72 and
101.82 ms. All scans were acquired with slice thicknesses of
2.5 mm, with 2.5 or 4 mm of space between slices. Sections were
displayed in 512 � 512 pixel matrices and reconstructed in
256 mm diameters. The median time between CT and MRI acquisi-
tion was 8 days (range 1–16 days).
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Fig. 2. Illustration of metrics. The DSC is computed as DSC ¼ 2 A\Bð Þ
AþB and may take

values from 0 to 1. A larger number indicates better volume overlap. Hausdorff
Distances are the minimum distances from every point in A to any point in B (e.g.
red lines) and from B to A (e.g. blue lines). The maximum and mean of these
distances are the HD max and HD mean. Smaller numbers indicate less extreme
deviations between contour surfaces. HD max is more sensitive to projection-like
deviations than DSC. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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2.4. Manual segmentation of ROIs

Anatomic ROIs included the C1-C4 vertebrae, mandible, spinal
cord, thyroid cartilage, genioglossus, geniohyoid, hyoglossus, soft
palate, tongue, and bilateral mastoids, submandibular and parotid
glands, anterior digastrics, myelohyoids, masseters, medial and lat-
eral pterygoids, sternocleidomastoids, internal jugular veins and
common carotid arteries. These were contoured on CT and T2-
MRI images independently by four radiation oncologists (M.A.M,
M.K.J., S.P.N., H.E.) with at least five years of experience in head
and neck radiotherapy (including residency) and approved by the
principal investigator (C.D.F). All CT and MRI scans were acquired
between 11/21/2013 and 06/09/2016. Each patient’s CT and MRI
pair was contoured by the same radiation oncologist to evade
interobserver variability per patient.

2.5. Image registration

Three DIR algorithms (Admire version 1.13.5, a commercial
research tool, Elekta, Stockholm, Sweden; Pinnacle v. 9.1, Philips
Radiation Oncology Systems, Madison, WI, USA; and Velocity-
deformable, Velocity AI, version 3.0.1, Atlanta, GA, USA) and one
RIR algorithm (Velocity-rigid, Velocity AI, version 3.0.1, Atlanta,
GA, USA) were used in this study. RT planning CT scan for each
patient was used as the primary (i.e. fixed) image set and the
T2-MRI was the secondary (i.e. mobile) image. Following the
co-registration, we evaluated overlap and surface distance metrics
for the 35 ROIs in all patients. Fig. 1 summarizes the studyworkflow.

2.6. Statistical analysis and visualization

Statistical analyses were performed in JMP Pro version 14.0
software (SAS institute, Cary, NC). Three performance metrics were
calculated on 525 ROIs (1575 total measurements): Dice similarity
coefficient (DSC) [18], Hausdorff maximum distance (HD max), and
Hausdorff mean distance (HD mean) [19]. The DSC is calculated as
two times the overlap volume (or area) between two contour vol-
umes (or areas) A and B divided by the sum A and B. DSC values
CT MRI

Fig. 1. Illustration of study workflow. T2-weighted MRI and non-contrast simulation C
contoured on each scan by an expert radiation oncologist. MRI was then registered to CT
for the alignment of MRI contours and CT contours.
range from 0 to 1 where 0 indicates no overlap and 1 indicates per-
fect overlap (Fig. 2). Hausdorff distances are calculated in the fol-
lowing way: the distances between every point on contour A and
its nearest point on contour B, and between every point on B and
its nearest point on A, are noted. The HDmax and mean are respec-
tively the maximum and mean of these distances. Smaller HD max
and mean values signify more similar contours. The results were
assessed visually in histograms and were tested with Shapiro-
Wilks [20] to determine that the null hypotheses (that the distribu-
tion is normal) were in every case rejected (p values <0.0001).
Therefore, nonparametric statistical tests were employed since
they make no assumptions about the normality of their underlying
distributions. Median metrics for each DIR algorithm were pitted
against DIR for all ROIs using the Steel method with control
(n = 105 tests) [21]. On a per-metric basis, DIR algorithms were
compared to RIR for all ROIs in aggregate (n = 3 tests). Data were
aggregated by tissue type (muscle, bone, vessel, spinal cord, and
gland), and median metrics per tissue type were evaluated against
RIR

DIR

T scans were both acquired in the standard RT position and thirty-five ROIs were
by one of three DIR algorithms or by RIR, and performance metrics were calculated



Table 1
Summary of patient characteristics.

Median age
57 (range 45–81)

Gender
Male 12
Female 3

Ethnicity
White 12
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one another using the Wilcoxon method for pairwise comparisons
(n = 12 tests) [22]. The alpha threshold was lowered by a Bonfer-
roni correction to account for multiple comparisons [23]. Results
were represented graphically in the Python programming language
version 3.6.7 (Python Software Foundation, https://www.python.
org) leveraging code housed in the Pandas version 0.23.4 [24], Mat-
plotlib version 3.0.1 [25] and Seaborn version 0.9.0 (Michael Was-
kom, http://seaborn.pydata.org/) libraries.
Hispanic 2
Black 1

Tumor site
Base of tongue 7
Glossopharyngeal sulcus 2
Tonsil 6

Tumor stage
T1 2
T2 8
T3 3
T4 2

Nodal stage
N0 2
N1 1
N2 12
2.7. Interobserver variability

To exclude the influence of interobserver variability, we statis-
tically analyzed our results after stratifying by radiation oncologist.
DIR algorithms were compared to RIR with the Steel Method using
the DSC, HD max, and HD mean metrics on a per-radiation oncol-
ogist, per-tissue type basis (n = 162 comparisons) with an excep-
tion: the ‘‘cord” tissue type results (which consists of only one
ROI, the spinal cord) could not be subjected to this test for two
radiation oncologists because these two radiation oncologists each
contoured the scans of only one patient.
Median dose
70 Gy (range 67.75–70)

Number of fractions
33

Treatment modality
IMRT 7
VMAT 1
IMPT 7

Concurrent chemo
Cetuximab 5
Cisplatin 9
None 1
3. Results

3.1. Patient characteristics

Fifteen patients were identified who met study inclusion crite-
ria. The median patient age was 57 years (range 45–81) and 80%
were males. Primary tumor sites included the tongue base and ton-
sils ranging from T1–T4, and 87% had nodal involvement. In all but
one patient the tumor was found to be HPV positive. Fifty-three
percent of patients were treated with photon-based radiotherapy
modalities, and 47% of patients were treated with protons. The
median final dose was 70 Gy (range 67.75–70 Gy) and all treat-
ments were delivered in 33 fractions. Additionally, 93% of patients
underwent concurrent chemotherapy with either cisplatin or
cetuximab, although chemotherapeutic treatment during the
interval between CT and MRI was an exclusion criterion. Patient
characteristics are summarized in Table 1.
3.2. Comparison of DIR with RIR

Our results could not demonstrate a statistically significant
improvement in any deformable algorithm’s performance over a
rigid registration alone, regardless of ROI assessed or metric used
to make the assessment (Fig. 3). Likewise, no improvement could
be demonstrated between DIRs and RIR when all ROIs were
grouped in one aggregate (p values all >0.05).
3.3. Registration performance by tissue type

Soft tissue ROIs consistently demonstrated superior concor-
dance across all registration methods, including RIR. Selected sta-
tistically significant differences are shown in Fig. 4. Median DSC
and HD metrics are enumerated for all tissue types in Table 2.
The apparent trend is that muscle gland ROIs were superior to ves-
sel and bone. For example, the median DSC was higher for muscle
than for bone (0.66 vs 0.61, p value <0.0001), and the median Haus-
dorff max and mean were lower (respectively 10.23 vs. 12.18, p
value <0.005; 0.94 vs. 1.29, p value <0.0001), indicating superior
performance in muscle than bone. This statistically significant pat-
tern was also observed between gland and bone. Vessel ROIs
(internal jugular veins and common carotid arteries) suffered the
least conformal registration independent of DIR or RIR method,
as well as the most volatile surface distance metrics.
3.4. Comparison between radiation oncologists

In all comparisons of results between radiation oncologists
there was no statistically significant difference between any DIR
algorithm and RIR, with one exception for one radiation oncologist
in one tissue type (+0.07 median DSC conformality for the muscle
tissue type with Admire DIR over RIR, p = 0.027 after Bonferroni
correction). This single result notwithstanding, these results
demonstrate that our data are not confounded by interobserver
variability.
4. Discussion

This study did not demonstrate that commercially-available DIR
algorithms confer a better registration than RIR alone for simula-
tion T2-weighted MRI registration to simulation CT in the context
of HNC radiotherapy workflow. Since our primary objective of this
study was to evaluate the quality of registration methods for MRI
applications in radiotherapy planning, treatment, and post-
treatment surveillance, this result is informative. We used rigor-
ous, nonparametric statistical methods to compare between DIR
and RIR, but the statistical rigor may be moot because none of
the registration algorithms – deformable or rigid – achieved
robust, clinically satisfactory fidelity to manually segmented anat-
omy. Across all ROIs, the median DSCs were only 0.65, 0.62, 0.63,
and 0.63 for Admire, Pinnacle, Velocity-deformable, and Velocity-
rigid registrations, respectively. Notably, our conclusions do not
nominally accord with Fortunati et al, who report improvement
in DIR compared to RIR for MR-CT registration (acquired with
patient-specific RT immobilization methods) over 12 segmented
ROIs in 12 patients [13]. However, per ROI, Fortunati et al. report
differences in DSC and HD measurements between DIR and RIR
that were practically indistinguishable even when statistically dis-

https://www.python.org
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Fig. 3. Nonparametric Steel tests with control failed to demonstrate superiority of DIR to RIR. Steel tests were calculated comparing each DIR algorithm to RIR by individual
ROI and performance metric. Resulting p-values are plotted on a heat map. No statistically significant difference exists between DIR and RIR for any ROI.
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tinguishable (refer to Fig. 3 in their paper). The left and right eye
lens ROIs are exceptions, which do show meaningful improve-
ments with DIR of approximately +0.2 DSC, �0.5 mm modified
Hausdorff surface distance, and �2 mm 3-dimensional Hausdorff
surface distance, but this may be explained by that fact that the
eyes are not immobilized, as the authors discuss. Therefore, while
statistically and nominally different, we believe that Fortunati
et al.’s results concord with ours.

Ancillary to the discussion above, we did find that all registra-
tions methods demonstrated superior concordance in soft tissue
ROIs, consistent with the detailed soft tissue visualization intrinsic
to MRI. Vessel ROIs were, as a group, the least concordant tissue
type. This may be due to the difficulty of distinguishing vessels
from surrounding tissue without the aid of contrast. Vessels are
small and serpentine and can be difficult to delineate even for
experienced clinicians. This suggests that for T2-weighted MRI to
non-contrast CT registration, vessels may be the most difficult ana-
tomic structures to faithfully represent for DIR or RIR. These find-
ings suggest that registration algorithms may need the greatest
improvement in head and neck anatomic regions that are not well
visualized in MRI or may benefit from contrast.
In contrast to CT to CT co-registration where several studies
showed the superiority of DIR over RIR in the context of diagnostic
and simulation CTs co-registration [26–29], our CT to MR co-
registration results did not demonstrate the same trend of DIR
superiority. The significant improvement in DIR for diagnostic CT
to simulation CT is mainly attributable to the poor performance
of RIR since the diagnostic CTs are not acquired under any struc-
tured positioning. For example, a previous study done by our group
for CT-CT co-registration quality assurance showed markedly infe-
rior RIR performance compared to the present study, in which both
the CT and MRI were acquired according to RT immobilization pro-
tocols. Judged by DSC and HD metrics, MRI-CT RIR performance is
nearly as good as the best CT-CT DIR for muscle and gland tissue
types in that study, but not for other tissue types, particularly
bone. In sum, DIR currently appears capable of achieving better
overall concordance for diagnostic CT to simulation CT co-
registrations than simulation CT to MRI co-registrations.

To further the integration of MRI in radiotherapy applications,
our results allow for following one of three paths: 1) manage
MRI-CT registration using rigid methods alone, or 2) improve the
performance of existing DIR algorithms, or 3) approach



Fig. 4. Nonparametric pairwise comparisons using the Wilcoxon method demonstrated improved registration fidelity for soft tissues compared to other tissue types. Selected
statistically significant relationships are shown illustrating superior DSC, Hausdorff max, and Hausdorff mean results for muscle and gland ROIs compared to bone, vessel, and
spinal cord ROIs. This trend is generally consistent for all registration methods. Vessel ROIs were the least conformal and exhibited the greatest variance in surface distance
metrics.

Table 2
Median DSC and HD metrics per tissue type, stratified by registration algorithm and in aggregate.

Median

Bone Cord Gland Muscle Vessel

DSC DIR 1 0.61 0.67 0.75 0.68 0.50
DIR 2 0.60 0.59 0.74 0.64 0.43
DIR 3 0.60 0.67 0.75 0.78 0.60
RIR 0.58 0.63 0.74 0.65 0.50
In aggregate 0.61 0.65 0.75 0.66 0.47

HD max (mm) DIR 1 12.52 6.37 10.42 10.04 15.9
DIR 2 11.78 6.10 10.05 10.12 15.86
DIR 3 12.68 7.75 10.38 10.97 15.78
RIR 12.24 8.39 10.74 10.08 15.53
In aggregate 12.18 7.56 10.42 10.23 15.77

HD mean (mm) DIR 1 1.27 0.71 0.59 0.88 2.06
DIR 2 1.23 0.93 0.60 1.03 2.16
DIR 3 1.26 0.74 0.55 0.93 2.05
RIR 1.39 0.96 0.63 0.94 1.93
In aggregate 1.29 0.84 0.60 0.94 2.05
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MR-guided radiotherapy from MR-only workflows, relying on syn-
thetic CT (sCT) generation and eliminating MR-CT registration alto-
gether. The first path may be unattractive because of the mediocre
performance of RIR already discussed. The second path may be a
preferable alternative to the first, but currently the lack of an
immediately viable DIR stalls the integration of MRI. Moreover,
there is no guarantee when nor if an improved DIR algorithm will
become available. Therefore, MR-only workflow using sCT may be
the best path continuing MRI integration with radiotherapy
applications.

Significant challenges to MR-only radiotherapy exist. Princi-
pally, the best metrics and parameters for quality assessment of
sCT have not yet been established nor standardized, nor have the
optimal methods for generating sCTs been established in large clin-
ical trials [8]. Multiple methods have been developed for generat-
ing sCTs, most of which fall into three groups: 1) voxel-based, 2)
atlas-based, or 3) bulk-override [8,9]. The plurality of methods
are voxel-based and generate sCTs that model dose deposition
with no more than 2.5% error from standard CT. Synthetic CTs have
mean absolute errors (MAE) reported between 40 and 200 Houns-
field Units (HU), depending on body organ [9]. Atlas-based meth-
ods have reported similar efficacies, but can be more
computationally intensive and are challenged by atypical anatomy
[8]. Atlas-based sCT generation requires at least one image regis-
tration (sometimes more), but to an MRI atlas rather than to a
CT. Although the acquisition and evaluation of sCTs lack standard-
ization, the metrics in studies to date (DDose%, DSC, and HU MAE)
seem to sustain the notion that clinically acceptable plans can be
generated from standard MRI sequences, even though ultra-short
echo time sequences improve the delineation of bone and air
[8,9]. At our institution a high field (1.5 Tesla) MRL treated the first
patient in North America in January 2019, following suit behind
University Medical Center Utrecht in the Netherlands, which pio-
neered the first treatment in late 2017 [7].

In summary, we present results evaluating the performance of
DIR and RIR algorithms for T2w simulation MRI to simulation CT
registration. We found the median DSC to be mediocre even for tis-
sue types that best lend themselves to registration, and that DIR
conferred no improvement in registration fidelity over RIR when
images were acquired with standard immobilization protocols.
Together, these results either usher the timely improvement of
existing co-registration methods or else herald the use of sCT over
MRI-CT registration for MR-guided dose deposition modeling in
HNC, thereby signaling the need for standardization of sCT acquisi-
tion methods and evaluation metrics in order to scale MR-guided
radiotherapy applications.
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