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Moth-eye shaped on-demand 
broadband and switchable perfect 
absorbers based on vanadium 
dioxide
trevon Badloe1, inki Kim1 & Junsuk Rho1,2*

two biomimetic, moth-eye structure, perfect absorbers in the visible and near infrared regions are 
introduced and investigated. the moth-eye structure is made up of vanadium oxide (Vo2), which is a 
phase change material that changes from an insulator state to a metallic state at around 85 °C. The VO2 
structure sits on top of a sapphire (Al2o3) dielectric spacer layer, above a gold (Au) back reflector. Two 
perfect absorbers are designed, one with perfect absorption over an ultra-broadband range between 
400 and 1,600 nm, for both the insulating and metallic phases, while the second can switch between 
being a perfect absorber or not in the range 1,000 and 1,600 nm. The absorption profiles and electric and 
magnetic fields are examined and discussed to provide insight into how absorbers function in the four 
different situations.

Metamaterials made of subwavelength structures that interact with light in ways that cannot be found in nature 
have been investigated widely in recent years. In particular, absorption has been studied for various applications 
such as, solar photovoltaics1, infrared camouflage2 and radiative cooling3. There are various designs of perfect 
absorbers that can create either broadband or narrowband responses, each of which have their own pros and 
cons for any given application. The materials are often structured and designed in a way to cause resonances 
between the structures and the incoming electromagnetic field, thereby confining and absorbing it4. Techniques 
to achieve this include using nanoantenna5,6, multilayer Fabry-Perot resonator thin films7 and nanostructured 
metasurfaces8–11.

The eyes of moths are made up of an array of antireflective structures. They contain parabolic nano-hemispheres  
with dimensions smaller than that of visible light that act as a region of graded refractive index between the 
ambient medium and the interface. This natural feature is helpful for the moths as a mechanism to avoid any 
unwanted reflection of light and detection from predators. Moths eyes have been studied theoretically and fab-
ricated experimentally to display their antireflective properties, and we previously designed an ultra-broadband 
perfect absorber based on this shape using a range of different transition metals12. The biggest downside of cur-
rent metamaterials is that after a device has been designed and fabricated, it can only work in a given range or for 
the one specific use it was designed for. To develop metamaterials into real-life, functional devices, research into 
active metamaterials has recently started. Some examples of active metamaterials use liquid crystals to change 
the refractive index of the surrounding medium13, flexible substrates to manipulate the resonances between 
meta-atoms14, and phase change materials such as Ge2Sb2Te5 (GST) and Sb2S3

15–19 that give different responses in 
different phases.

Phase change materials (PCM) have extremely useful characteristics for active nanophotonics. An external 
stimulus such as heat, light or stress causes a PCM to change phase, from a crystalline to amorphous state, or 
from a metallic to an insulating state, and vice versa. The switching between phases is usually fast and stable over 
numerous changes and has the advantage of reversibility between the two states. They have been employed in 
applications such as, radiative cooling20, data storage21,22, and even in textiles23.

Here, we use vanadium dioxide (VO2) as the material for moth-eye structures due to its interesting temper-
ature dependent phase transition between an insulator and a metal that occurs at around 85 °C. VO2 is a more 
practical material as it is a ‘volatile’ PCM, whereas GST and Sb2S3 are ‘non-volatile’. That is to say, the phase of 
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VO2 depends entirely on if the external stimulus is being applied or not, whereas the others state is maintained 
even after the stimulus has been removed. This allows the phase of VO2 to be controlled simply by its temperature, 
without having to apply some form of rapid heating or cooling to change its state.

We place the VO2 moth-eye structures on top of a sapphire (Al2O3) spacer layer, above a gold (Au) back 
reflector to construct a broadband perfect absorber, a schematic is shown in Fig. 1a. By optimising the periodicity 
(P) of the unit cell of a hexagonal lattice, the height (h) and the radius of curvature (c), we designed two types of 
broadband perfect absorbers. The first, an ultra-broadband perfect absorber with ~99.6% absorption from 400 to 
1,600 nm in both the metallic and insulator phases, and the second, a switchable broadband absorber in the near 
infrared (NIR) range, that can switch between an almost perfect absorber with absorption of ~98.7%, to a poor 
absorber of ~40% when switching from the metallic to insulating phase. As VO2 undergoes its phase transition 
from an insulating phase at low temperatures, to a metallic phase at higher temperatures, its properties in the 
visible regime are largely unchanged, whereas the imaginary part of its refractive index, i.e. absorption, at near 
infrared wavelengths increases dramatically. The VO2 film samples were prepared using the sputtering method, 
followed by an annealing process. This allows us to produce a very stable VO2 film that can does not oxidise 
instantly. We produced samples on both a silicon (Si), and an Al2O3 substrate. Their temperature dependent 
refractive index was measured with a temperature-controlled ellipsometer. The refractive index of the VO2 is 
very similar regardless of substrate, owing to the sputtering method used to grow the film. This allows us to pro-
duce a VO2 film that has a consistent refractive index, regardless of the substrate or thin film it is grown on. The 
measured refractive indexes are shown in Fig. 1b, and the simulations in this manuscript were performed using 
the refractive index from the VO2 on an Al2O3 substrate. The phase switching properties of VO2 have been used 
previously to design switchable absorbers by several other research groups, but these devices usually operate in 
the THz regime24–26, or are polarisation dependent27,28. Our design operates in the ultra-broadband region from 
visible to NIR (400–1,600 nm) and is largely polarisation independent. The devices designed here are suitable 
for applications where the operating temperature plays a role in if we want absorption, or where the operating 
temperature can be manually controlled. This near perfect absorption is essentially incident angle insensitive for 
up to 60 degrees, for both TE and TM mode illumination. The influences of the metal reflector, dielectric spacer 
thickness, and the working mechanisms of the broadband perfect absorbers are explored and discussed below.

Results and Discussion
We define the surface of the parabolic moth-eye shape by S rc
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2
= . The values c = 1/R, and = +r x y2 2 2 are the 

inverse of the radius of curvature and the position on the surface respectively. The periodicity of the hexagonal 
unit cell is defined as P, while the height of the moth-eye structure is given as h and the thickness of the dielectric 
spacer layer is tspacer.

Ultra-broadband perfect absorber. The first design produces an ultra-broadband perfect absorber from 
400 to 1,600 nm, with a periodicity, P, of 600 nm, height, h, of 700 nm, dielectric spacer layer thickness, tspacer, of 
100 nm, and radius of curvature, R, of 56 nm. At low temperatures, i.e. when the VO2 is in the insulator phase, 
the moth-eye structured absorber achieves an average of 97.9% absorption across the ultra-broadband range. At 
higher temperatures, when the VO2 has changed to its metal phase, the absorption increases slightly to an average 
of 99.0% over the same span, as shown in Fig. 2.

The plot shows that the perfect absorber has a very similar response in the visible regime, from 400 to around 
800 nm, for both phases of VO2. In this region, the refractive index and extinction coefficients of both states are 
comparable. Meanwhile. in the near IR region, we can see some differences due to the metallic phase VO2 having 
an increased absorption coefficient and a lower refractive index. Despite this, the designed structure still exhibits 
perfect absorption over the same, ultra-broadband range. To investigate the absorption mechanisms, we plot the 
normalised calculated electric and magnetic fields, and the absorbed power distributions in Fig. 3.

Figure 1. (a) A schematic of the parabolic VO2 moth-eye structures on an Al2O3 spacer, over an Au back 
reflector. (b) The measured refractive index (real (n) and imaginary (k) parts) for the metallic and insulating 
phases of VO2. Solid lines represent VO2 sputtered on an Al2O3 substrate, while dashed lines represent VO2 
sputtered on an Si substrate.
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As we can see from the field profiles in Fig. 3, at visible wavelengths, the moth-eye absorber produces very 
similar profiles for both phases of VO2. At 1,000 nm, the electric field for the insulating phase starts to be confined 
in the dielectric layer between the structure and back reflector, while the magnetic field starts to form dipole res-
onances inside the structures. In the case of the metallic phase, the electric cannot penetrate the structure, so it is 
confined between the structures, while the magnetic fields form resonances between the tops of the structures and 
the back reflector, then at longer wavelengths the magnetic field gets strongly confined between the gaps in the 
structures. We can see that in the insulating phase, at infrared wavelengths, the power is mostly absorbed inside 
the structure in the magnetic field, which can be attributed to Mie-like resonances since the wavelength inside the 
structures is comparable to IR wavelengths. Meanwhile in the metallic phase, the power is lost in the gaps between 
the structures, above the dielectric spacer layer. This can be attributed to the excitation of localised surface plas-
mons in the small gaps. These small gaps are an indicative feature of designing moth-eye structure absorbers29, 
as the anti-reflective performance is increased since there is less area with an abrupt refractive index change. The 
dielectric spacer layer thickness plays no role in these mechanisms, so it has little effect on the ultra-broadband 
absorption for this design.

The parabolic shape of moth-eye structures creates a gradient in the refractive index, which creates a broad-
band impedance matching effect30. Since the Au back reflector restricts the transmission to zero, the aforemen-
tioned resonances combined with the broadband impedance matching conditions that limit reflection, allow 
for ultra-broadband absorption. In the view of fabrication, a parabolic shape is fairly difficult to achieve, so we 
investigated four other shapes, namely a cone, square based pyramid, a circular rod, and a square rod, to see how 
the shape of the structure affects the absorption. To do this, we used the same size shape for the base (in the case 
of the cone and rod), while for square based structures we used a square of sides equal to the radius of the circular 
base. The results are presented in Table 1. Since the design was optimised for the moth-eye shape, it unsurpris-
ingly shows the best results. The cone and pyramid shapes show fairly similar performance to the moth-eye 
shape, especially in the metallic phase. While the linearly tapered shape of the cone and pyramid creates a form 
of gradient in the refractive index, the magnetic field confinement inside the structure is ultimately reduced. 
The circular and square rods have a consistent refractive index across their entire structure which inhibits their 
broadband absorption capability in the metallic phase, as the structure does not act as an impedance matching 
anti-reflective layer.

Figure 4 shows the angular dependence of the VO2 moth-eye absorber, for both TE and TM polarisation. It 
is extremely robust to the angle of incidence with absorption over 90% for incident angles of up to 70 degrees, 
and over 95% up to 60 degrees for both polarisations. This absorber is particularly robust for TE polarised light 
in the IR region, and still produces peaks of perfect absorption at large incident angles for TM polarisation. The 
slight differences at higher angles are due to the electric field rotating out of the plane of the moth eye structures, 
thereby limiting the amount of possible confinement.

Switchable absorber. The second absorber that we report here has P = 200 nm, h = 200 nm, tspacer = 100 nm, 
and R = 20 nm. This is considerably smaller than the first design and creates a switchable absorber in the near IR 
region. By switching between the insulator and metallic phases, the average absorption from 1,000 to 1,600 nm 
changes from a non-absorbing 38.9% to almost perfect absorption of 97.9% as shown in Fig. 5.

To understand why the absorption is so drastically different, we investigated the field profiles, as shown in 
Fig. 6. The magnetic field profiles are very different to the first absorber discussed earlier in the manuscript. In 
particular, there are no strongly confined magnetic fields inside the structures for the insulator phase, or in the 
gaps for the metallic phase. In both cases, the magnetic field is mostly confined inside the dielectric layer at IR 
wavelengths. At those wavelengths the size of the structures is sub-wavelength, so the same Mie-like scattering 
cannot take place in the insulating phase, which leads to a large amount of reflection.

As can be seen in the background plot of Fig. 5, there is a large dip in the absorption around 800 nm. This 
relates to a large reflectance peak that can be attributed to a Fabry-Perot cavity resonance caused by the 100 nm 
thick spacer layer creating a metal-insulator-metal structure. This does not occur in the case of the first design, 
since the structure is too thick. The extinction coefficient of VO2 at IR wavelengths in the insulator state is very 
low, however it increases rapidly in the metallic state, giving rise to the high absorption in the metallic phase, but 

Figure 2. Absorption spectra in the metallic and insulating phases for the moth-eye structured perfect 
absorber.
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Figure 3. The normalised field profiles for (a) the electric and (b) magnetic fields, and (c) the absorbed power 
at selected wavelengths, chosen to represent where the fields have interesting and differing features.

Moth-eye Cone Pyramid Circular Rod Square Rod

Insulator Phase 97.9% 89.2% 88.1% 87.7% 83.5%

Metal Phase 99.0% 98.8% 99.0% 84.6% 82.1%

Table 1. The average broadband absorption (from 400–1,600 nm) for different shaped VO2 structures on an 
Al2O3 spacer, on top of an Au back reflector.
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not in the insulator phase. We investigated the effect of the dielectric spacer layer by varying its thickness from 
0 to 400 nm. The results are displayed in Fig. 7. With a spacer thickness of around 50 to 150 nm, we get a high 
absorption for the metal phase as the peak of the Fabry-Perot cavity induced reflection is outside of the 1,000 to 
1,600 nm wavelength range. As the spacer thickness increases, we get multiple reflections from the different lay-
ers, inhibiting the performance of the absorber. At around 100 nm, we are near the peak of the difference between 
the metal and insulator phase absorptions while the metal phase is at a maximum, so that thickness was chosen 
for this study.

conclusions
Two ultra-broadband perfect absorbers made up of arrays of moth-eye structures, using VO2 have been designed 
and investigated. The first, a perfect absorber in both insulating and metallic states from 400 nm to 1,600 nm, 
is very robust to the incident angle for both TE and TM polarisation, with over 95% absorption up to an inci-
dent angle of 60 degrees. The second, a switchable absorber to non-absorber has also been proposed for wave-
lengths from 1,000 to 1,600 nm, utilising the interesting temperature dependent phase shift in VO2. The working 
mechanism is attributed to a combination of the antireflective nature of the nanostructures due to the broad-
band impedance matching created by the tapered shape of a parabolic moth-eye type structure, combined with 
the excitation of localised surface plasmons in the metallic phase and strong confinement of magnetic field by 
Mie-like resonances in the dielectric case. The Au back reflector should be thick enough (over ~30 nm) to block 
all transmitted light. While a dielectric spacer thickness of around 100 nm was found to be optimal to allow for 
ultra-broadband absorption and switchable absorption, with variations in the thickness having negligible impact. 
The shape of the structure does not necessarily need to be a parabola, although it shows the best performance, 

Figure 4. The angular response of the moth-eye broadband absorbers for (a) TM and (b) TE polarised incident 
light.

Figure 5. The absorption profiles of the switchable absorber. At IR wavelengths the response changes from an 
almost perfect absorber to a poorly absorbing structure as the phase changes from a metallic to insulator.
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since simpler to fabricate structures such as cones and pyramids show comparable ultra-broadband perfect or 
switchable absorption.

The transition temperature of VO2 depends on the growth conditions and composition. Here our VO2 sample 
had a switching temperature of 85 °C, whereas different temperatures of the phase change have been reported 
elsewhere. This critical temperature could be controlled and lowered to more reasonable, everyday temperatures 
by doping with other materials31,32. This could open up possibilities of active temperature dependent absorbers or 
tunable color filter33,34, for uses such as in smart windows or solar cells at usable daily temperatures.

Although the device is not fabricated in this paper, it is expected that the device could be realised effectively 
through the nanoimprint method, or even with general electron beam lithography and the corresponding etching 
processes.

Methods
The simulations were all performed using the commercially available FDTD solver, Lumerical FDTD solutions. 
Monitors were placed in the substrate, and behind the source to measure the transmitted and reflected responses 
respectively. Then the absorption was calculated as A = 1 − T − R, with care taken with regards to the sign of the 
response of the monitor, since the recorded response is negative from the transmission monitor. Anti-symmetric 
boundary conditions were used on the x-axis, with symmetric boundary conditions on the y-axis due to the 
symmetry of the design for TM polarised incident light (and vice versa for TE) to help speed up simulations. 
Boundary conditions on the z-axis were set to perfectly matched layers (PML). The mesh around the structures 
was set to 1 nm cells in the x, y and z directions and thorough convergence testing was performed to be sure that 
the small gaps between the nanostructures did not cause any problems.

Data availability
All data generated or analysed during this study is included in this published article.
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Figure 6. The field profiles for (a) the electric and (b) magnetic fields at selected wavelengths.

Figure 7. Al2O3 spacer layer thickness dependence on the absorption for the switchable absorber.
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