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The identification of new biomarkers is essential to predict responsiveness to vaccines.
We investigated the whole-blood transcriptome and microbiome prior to immunization, in
order to assess their involvement in induction of humoral responses two months later. We
based our analyses on stool and skin microbiota, and blood transcriptome prior to
immunization, in a randomized clinical study in which participants were vaccinated with
the MVA-HIV clade B vaccine (MVA-B). We found that the levels of neutralizing antibody
responses were correlated with abundance of Eubacterium in stool and Prevotella in skin.
In addition, genus diversity and bacterial species abundance were also correlated with the
expression of genes involved in B cell development prior to immunization and forecast
strong responders to MVA-B. To our knowledge, this is the first study integrating host
blood gene expression and microbiota that might open an avenue of research in this field
and to optimize vaccination strategies and predict responsiveness to vaccines.

Keywords: biomarkers, vaccination, transcriptomic, microbiota, neutralizing antibodies, systems biology
INTRODUCTION

The largest fraction of immune cells is found at sites colonized by microorganisms, such as the skin
or the gastrointestinal (GI) tract (1). The gut microbiome is essential for the development,
maturation, and adequate functioning of the immune system (1, 2). The human skin is colonized
during the postnatal period by microorganisms that prevent the invasion of external pathogens.
Crosstalk between these commensals and the immune system is necessary to trigger innate and
adaptive immune responses. Increased attention to the relation between the gut commensal bacteria
and host immune responses has led scientists to question whether these microorganisms affect the
efficacy of vaccines (3, 4). Moreover, although the composition of fecal microbiota may be one of the
multiple factors that modulate host responses to external immunization, little is known about its
role in the interindividual disparity in vaccine efficacy.
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The first observation of a potential link between the
microbiome and vaccines occurred in an oral vaccination
model that used a heat-labile enterotoxin from Escherichia coli
as an adjuvant (5, 6). In that situation, depletion of the intestinal
microbiota was associated with a profound depression of
antigen-specific Th1 and Th17 lymphocytes. Similarly, high
antibody responses to the seasonal trivalent influenza vaccine
(TIV) and polio vaccine (IPOL) require the presence of intestinal
commensals (7). Inversely, impaired in microbiota composition
and diversity have been reported to attenuate immune responses
to vaccines (8). Interestingly, in human infants receiving
hepatitis B, diphtheria, tetanus, and Haemophilus influenza
type B vaccines, a randomized placebo-controlled double-blind
trial demonstrated that vaccine-specific immune responses were
enhanced by probiotics (9, 10). Recently described cross-
reactivity between gut microbiota antigens and naive and
memory CD4+ T and B cells (11) suggests that the antibody
response to HIV-1 immunization may be shaped by intestinal B
cells stimulated by host commensals (12). The microbiota is
known to be required for a mature B-cell compartment (13). For
example, germ-free mice have abnormalities in their B-cell
systems and lower IgA levels than colonized animals of the
same genotype (14). Microbial antigens and microbial
metabolites, such as short-chain fatty acids, strongly promote
plasma cell differentiation at mucosal and systemic sites (15).
These microbial metabolites promote IgA production by
regulating the metabolism and gene expression in B cells in
mice models and in in vitro study of human B cells (15, 16). This
IgA appears to orchestrate the beneficial mutualism established
between the host and gut commensal microbiome by interacting
directly with microbiota species.

Presentation of microbial antigens by the different MHC
genotypes also contributes to modifying the IgA repertoires,
which in turn modulate the composition of the microbiota in the
gut (17). Accordingly, the depletion of anti-inflammatory
microbial species and an expansion of proinflammatory species
have been observed in human selective IgA deficiency (18). A
lack of intestinal microbial stimulation results in fewer IgA+

plasma cells in the gut and a lower abundance of IgA in mouse
models (19–21). Thus the diversity of IgA on the mammalian
intestinal surface matches the intestinal taxa diversity (22). For
these reasons, host microbial profiling during vaccine
administration to might help optimize the vaccine responses
and improve the tolerability of multiple antipathogen treatments.
The microbiota, after all, constitutes a constant source of natural
adjuvants capable of activating a multitude of pathways that
control innate and adaptive immunity (23).

Systems biology has been successfully used to investigate the
fundamental innate immune mechanisms orchestrating
protective adaptive responses after the perturbation of
vaccination against yellow fever (24, 25), HIV (26), Ebola (27),
and influenza (28). An important challenge, however, is to
analyze individual baseline human health characteristics to
help identify those at higher risk of infection despite
vaccination. Until now, only a few studies have looked for
candidate traits associated with vaccine responsiveness and
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partially predicting the humoral response to vaccination
against influenza (29–32). No study has examined the
interrelations between each individual’s immunological state,
their microbiota at baseline, and the impact of both on their
vaccine-induced immune responses. As the most successful
vaccines act through the production of antibodies (33),
identifying specific individual characteristics at baseline should
enhance our ability for dividing vaccines into “high responders”
or “low responders” (34). Such predictive markers might serve as
a potential diagnostic tool that assists vaccine development by
taking into account the interindividual heterogeneity of
immune responses.

This study used a systems biology approach to investigate the
volunteers’ immune predisposition to respond to MVA-B
vaccination, assessed by their blood transcriptome profile;
specifically, that related to their B cell differentiation stages,
and its conditioning by the human microbiota before
vaccination. That is, we investigated the host gene expression
in blood by a microarray approach and the skin and stool
microbiota by using 16S ribosomal RNA sequencing both
before vaccination. The objective was to examine their
potential involvement in an effective MVA-B neutralizing
antibody (Nabs) response during the CUTHIVAC 03
randomized phase Ib clinical study. As published in a previous
work (35), CUTHIVAC 03 clinical study included 10 HIV
seronegative subjects aged from 18 to 45 years by the
intramuscular route with MVA-HIV clade B vaccine. We
analyzed their baseline transcriptomic signature and baseline
bacterial species abundance and diversity in skin and stool to
assess their potential association with the intensity of the
Nabs response.
MATERIALS AND METHODS

Clinical Study
The CUTHIVAC-003 phase Ib randomized clinical study
enrolled 20 volunteers aged 18–45 years at low risk of HIV
infection, from October 15, 2014, to November 19, 2015 (35).
The participants received HIV-1 MVA Clade B vaccine by either
t.c. or i.m. administration (1:1 ratio) after randomization for
allocation at the Clinical trial unit (CTU) of the Asociacion Civil
Impacta Salud y Educacion (IMPACTA) in Peru (35). The
volunteers received vaccine on week (w) 0 by the allocated
route of administration to assess its safety and immunogenicity
against the MVA vector alone and against MVA-B. In this paper
we focused our analyses on the 10 volunteers vaccinated by i.m.
route and the MVA-specific neutralizing antibody responses.
The MVA-B vaccine encodes a multi-HIV antigen, specifically a
synthetic fusion protein comprising nearly complete protein
sequences from the Gag, Pol, and Nef genes of the HIV-1 IIIB
strain and the nearly complete protein encoding sequence from
the Env gene obtained from the HIV BX08 strain (36). The group
received 1 x 1.0 mL of the MVA-B preparation at 1 x 108 PFUs
(Plaque-Forming Units) by needle injection to the muscle of the
deltoid region of the nondominant arm. The MVA-HIV Clade B
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vaccine has been used in several clinical studies (36–39), and
CUTHIVAC-003 was the fifth human experiment with this
MVA vector expressing HIV-B antigens. The amplitude of the
humoral response was assessed by measuring neutralizing
antibodies specific to the MVA vector in serum (NAb).
Exploratory analyses used whole blood to study baseline
gene expression.

Ethics and Community Involvement
The study was conducted in accordance with the Declaration of
Helsinki and the International Conference on Harmonization
Good Clinical Practice guidelines and approved by the relevant
regulatory and independent ethics committees. Each participant
provided written informed consent before study entry. The study
was registered and approved by the Peru regulatory authorities
(IMPACTA IRB 0037-2014-CE; Peru NIH 396-2014-OG-
OGITT-OPE/INS).

Skin and Feces Sampling
For each individual, skin swab samples from the deltoid muscle
region (~5-20 cm below the vaccine administration site) were
collected before the vaccination (w0). Skin samples were
collected with Catch-All™ Sample Collection Swab kits
moistened with SCF-1 solution. The skin surface was sampled
for 30 seconds by firmly swabbing the cotton tip back and forth
~50 times. The cotton tip was stored in sterile tubes with MoBio
solution at -80°C until DNA extraction. Fecal samples for each
participant were collected in sterile fecal collection tubes the day
before the vaccination, matching the skin sample time points. All
samples were stored at 4–5°C until their reception at the
IMPACTA clinical trial site, where they were cryopreserved at
-80°C. All samples were shipped on dry ice to the IrsiCaixa AIDS
Research Institute for DNA extraction, amplification,
and sequencing.

DNA Extraction and Amplicon Sequencing
From Skin and Fecal Samples
DNA extraction was performed with the DNA Extraction kit
from Epicentre Technologies© (Madison, WI, USA). Six aliquots
of buffer solution from the DNA extraction kit were used as
negative controls. To amplify the variable V3-V4 region from the
16S rRNA gene, we used the primer pair described in the
MiSeq™ rRNA Amplicon Sequencing protocol, which already
has the Illumina adapter overhang nucleotide sequences added to
the 16S rRNA V3-V4-specific primers, i.e., 16S_F 5’-(TCG GCA
GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN
GGC WGC AG)-3’ and 16S_R 5’-(GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT
CTA ATC C) -3’. Amplifications were performed in triplicate 25-
mL reactions, each containing 2.5 mL of non-diluted DNA
template, 12.5 mL of KAPA HiFi HotStart Ready Mix
(containing KAPA HiFi HotStart DNA Polymerase, buffer,
MgCl2, and dNTPs, KAPA Biosystems Inc., Wilmington, MA,
USA), and 5 mL of each primer at 1 mM. Thermal cycling
conditions consisted of an initial denaturation step (3 minutes
at 95°C), followed by 30 cycles of denaturation (30 seconds at
95°C), annealing (30 seconds at 55°C), and extension (30 seconds
Frontiers in Immunology | www.frontiersin.org 3
at 72°C). These were followed by a final extension step of 10
minutes at 72°C. Once the desired amplicon was confirmed in
1% agarose gel electrophoresis, all three replicates were pooled
and stored at -30°C until the sequencing library was prepared.
After amplified DNA templates were cleaned up for non-DNA
molecules and Illumina sequencing adapters and dual indices
attached with the Nextera XT Index Kit (Illumina, Inc., San
Diego, USA), the corresponding PCR amplification program was
run, as described in the MiSeq 16S rRNA Amplicon Sequencing
protocol. After a second round of cleanup, amplicons were
quantified with the Quant-iT™ PicoGreen® dsDNA Assay Kit
(Invitrogen, Carlsbad, MA, USA) and diluted in equimolar
concentrations (4 nM) for further pooling. Sequencing was
performed on an Illumina MiSeq™ platform (Illumina, Inc.,
San Diego, USA) according to the manufacturer’s specifications
to generate a median of 30,644 paired-end sequences of ~300 bp
length in each direction (~61,289 reads per sample).

Sequence Quality Control and
Microbiota Analysis
The quality of MiSeq raw sequences was assessed with the FastQC
software (40) (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Sequences were trimmed with Trimmomatic
(41), with a cutoff value of Q30 for both ends, a minimum mean
threshold of Q20 for 30-bp-sliding window across sequences, and
a minimum read length of 250 bp (Supplemental Figures 1A, B).
After quality control, 28 samples including controls (n = 8) and
volunteers (n = 10, 5 women and 5 men) for skin and stools, were
further analyzed. Mothur pipeline (42) was used to bin 16S rDNA
sequences into operational taxonomic units (OTUs) with a
threshold of 97% sequence similarity. OTUs present in only a
single sample were discarded. Rarefaction curves were
represented by defining the maximum subsampling size as the
number of sequences of the sample with the fewest sequences
(2751 sequences for skin samples, and 1059 sequences for stool
samples) (Supplemental Figure 1C). Richness and diversity
indexes were estimated by using the summary. Single module
implemented in mother. For taxonomical analysis, 16S rDNA
sequences were classified according to the GreenGenes database
(43) version 13.5.99.

MVA-GFP Neutralizing Antibody Assay
Anti-MVA neutralizing activities were evaluated in serum
collected at week 8 (w8) with an assay based on GFP detection
by flow cytometry (44, 45). It used HeLa cells as targets and a
recombinant strain of MVA expressing the enhanced Aequoriae
GFP (36). Serial 2-fold dilutions of heat inactivated serum were
performed in 96-well round-bottom tissue culture plates (TPP,
Zurich, Switzerland) containing DMEM (Gibco, Invitrogen,
Waltham, Massachusetts, USA) supplemented with 2% fetal
calf serum (PAA, Laboratories GmbH, Pashing, Austria).
MVAeGFP was then added to each well at a MOI of 0.25. The
plate was then incubated for 1 hour at 37°C until the addition of
1 × 105 HeLa cells. The incubation then continued for an
additional 16 hours at 37°C, 0.5% CO2. After trypsinization,
the cells were washed with PBS supplemented with 0.5% fetal calf
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serum and 2 mM EDTA and fixed with 2% formaldehyde. GFP
expression was analyzed with FACSCanto II and Diva software
(BD Biosciences, San Jose, CA, USA). The percentage of
neutralization was defined as the ratio of the reduction in the
number of GFP-expressing cells to the number of GFP-
expressing cells in untreated control wells.

RNA Extraction and Data Preprocessing
for Transcriptomic Analysis
Whole blood samples of 2.5 mL were collected in PAXgene RNA
tubes (PreAnalytix) twice from each volunteer two weeks before
(w-2) and the day of the vaccination (w0). These tubes enable the
preservation and stabilization of RNA (storage at -80°C). Total RNA
was extracted from whole blood according to the instructions in the
handbook accompanying the PAXgene blood RNA Kit
(PreAnalytiX, Hombrechtikon, Switzerland). RNA purity and
integrity were assessed on the Agilent 2100 Bioanalyzer with the
RNA 6000 Nano LabChip reagent set (Agilent, Palo Alto, CA,
USA). Samples for microarray hybridization were prepared as
described in the Affymetrix GeneChip WT PLUS Reagent Kit
User Manual (Affymetrix, Inc., Santa Clara, CA, USA). For
hybridization (to Affymetrix Human Gene 2.1 ST Array Plates),
washing, staining, and scanning took place in an Affymetrix
GeneTitan system, controlled by the Affymetrix GeneChip
Command Console software w4.2. Background signal correction
was performed by applying the background. Correct function from
the limma package on the perfect match (PM) signals with R
Software 3.3.1. The underlying model is the normal-exponential
convolution model from RMA (chip intensity: addition of a signal
exponentially distributed, chip noise: follows Gaussian distribution)
(46). The variance stabilizing transformation algorithm (justvsn
function from the vsn package (47) was applied to the background
corrected signal (monotonic transformation), and the signal then
transformed back to its usual scale by exponentiation (base 2). To
make the chips comparable, a quantile normalization (48)
(normalize function from the affy package) was then applied to
the variance-stabilized signal. The probe signals for replicated arrays
were averaged and a quantile normalization performed anew
(Altrabio, Lyon, France). In all, 24,768 probes were analyzed.

Statistical Analysis
Microbiome samples were clustered according to their genus
composition by a nonmetric multidimensional scaling (NMDS)
approach based on ecological distance matrices calculated by Bray-
Curtis dissimilarities, as implemented in R (Vegan, metaMDS, and
ggplot2 packages). NMDS ellipses were drawn based on a
confidence interval (CI) of 0.95. To determine significant factors
that describe the community structure better, we used a
multivariate ADONIS test with terms added sequentially. The
associations between baseline genus abundance or genus
diversity, blood gene expression, and MVA-Nab response were
evaluated by using the Spearman rank correlation test with
significance defined by a P-value <0.05. The heatmap was
performed with values row-centered and scaled, Pearson
correlation as the distance method and a dendrogram computed
and reordered based on row means. The heatmap, logistic
Frontiers in Immunology | www.frontiersin.org 4
regression analyses, and ROC curves were performed and
generated with R. Ingenuity® pathway analysis (IPA, Qiagen,
Redwood City, CA, USA) was used to perform functional
enrichment analyses and identify new targets or candidate
biomarkers within the context of biological systems. It provided
the canonical pathways, molecular/cellular functions, and networks
that were statistically overrepresented in the gene signatures.

Sequence and Data Availability
The normalized microarray data that support the finding of this
study have been deposited inArrayExpresswith the accession codeE-
MTAB-9642. Raw Illumina MiSeq sequences and study metadata
were deposited in the National Center for Biotechnology
Information - NCBI repository (Bioproject accession:
PRJNA691892, Samples accessions: SAMN17307480 to
SAMN17307549). The sequence of the identified biomarkers may
be found with the NCBI Reference, for IGLV8-61: NG_000002 and
NC_000022 (Reference GRCh38.p13 Primary Assembly); for BLK:
NM_001715/NM_001330465 (isoform 1 and isoform 2) and
NP_001317394/NP_001706 (isoform 1 and isoform 2) and for
EBF1: NM_001290360 and NP_001277289 (isoform 1)/
NM_024007 and NP_076870 (isoform 2)/NM_182708 and
NP_874367 (isoform 3)/NM_001324101 and NP_001311030
(isoform 4)/NM_001324103 and NP_001311032 (isoform 5)/
NM_001324106 and NP_001311035 (isoform 6)/NM_001324107
and NP_001311036 ((isoform 7)/NM_001324108 and
NP_001311037 (isoform 8)/NM_001324109 and NP_001311038
(isoform 9)/NM_001324111 and NP_001311040 (isoform 10)/
NM_001364155 and NP_001351084 (isoform 11)/NM_001364156
and NP_001351085 ( i so fo rm 13) /NM_001364157
and NP_001351086 (isoform 14)/NM_001364158 and
NP_001351087 (isoform 15)/10 NM_001364159 and
NP_001351088 (isoform 16).
RESULTS

Study of Host Microbiota Before
Vaccination and Relation to Post-
Vaccination Humoral Responses
The study included five men and five women (18-45 years old)
vaccinated by the intramuscular route to assess the safety and
immunogenicity of MVA-HIV clade B (MVA-B), results reported
elsewhere (35). Exploratory analysis of whole blood samples at two
distinct time-points before vaccination (w-2 andw0) studied the gene
expression profile and the skin and stool samples for microbiome
analysis (w0) at baseline. As expected, the microbial composition
differed between the skin and stool samples (Figures 1A–C). In
addition, the stool samples showed dissimilarities between men
and women, but this comparison did not reach statistically
significant differences (P < 0.097) (Figure 1A). The predominant
microbial families relatively abundant in skin samples
were Moraxellaceae, Staphylococcaceae and Pseudomonadaceae,
whereas Ruminococcaceae, Lachnospiraceae, Prevotellaceae, and
Bacteroidaceae were predominant in stool samples (Figures 1B, C).
The 16S RNA sequencing generated several metrics: richness
May 2021 | Volume 12 | Article 657162
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(sobs: number of observedOTUs; chao: Chao1 richness estimate; ace:
Abundance-based coverage estimation) and diversity (Shannon:
Shannon diversity index; sd_invsimpson: inverse Simpson
diversity index).

The amplitude of the humoral response was defined by the
MVA-specific IgG neutralizing antibodies measured in serum at
w8 post-vaccination (35). We observed no correlation between
the MVA-Nab response and the baseline indexes of diversity and
richness in either skin or stool (data not shown). We did however
find significant positive correlations between the abundance of
both skin Prevotella (r = 0.76, P = 0.0159) (Figure 2A) and fecal
Frontiers in Immunology | www.frontiersin.org 5
Eubacterium (r = 0.68, P = 0.0351) (Figure 2B) at baseline with
MVA-Nab response.
Whole Blood Gene Expression and Host
Microbiota Before Vaccination Are
Associated With Post-Vaccination
Humoral Responses
To improve our understanding of host molecular mechanisms
potentially associated with skin and gut microbiota that may be
involved in vaccine immunogenicity, we counted the number of
A

B C

FIGURE 1 | Microbial composition of fecal and skin samples. (A) Nonmetric multidimensional scaling plot based on Bray-Curtis microbiome distances showing different
configurations between skin and stool samples. Ellipses represent 95% confidence intervals. (B) Abundance of genera with a median abundance >5% across skin (upper
part) and stool (lower part) samples. The lowtax taxa corresponds to the collection of those genera that have a median abundance <0.5%. Unc, unclassified. (C)Microbial
families with a median abundance >5% across skin (upper part) and stool (lower part) samples are ranked according to their median abundance.
May 2021 | Volume 12 | Article 657162
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genes at baselines that were correlated with the MVA-Nab
response at w8. We confirmed that gene expression of the
baseline samples did not differ between w-2 and w0 using
hierarchal clustering analysis (data not shown). Out of all
samples, we found 154 significant genes correlated with the
MVA-Nab response (adjusted P < 0.05; r < -0.6 and r > 0.6)
(Figure 3A). However, no correlation was observed between
genus diversity and MVA-Nab response.

Next, we looked for a correlation between the microbiota
diversity index and the genes (n = 154) correlated at baseline
with MVA-Nab responses. We found 22 genes for skin and 19
for stool that were correlated with at least one diversity index
(Shannon or sd_invsimpson) (Figure 3A and Tables 1, 2),
including 10 common genes to the skin and stool samples.
Among these genes, we observed one gene cluster positively
correlated with MVA-Nab response and another negatively
correlated with humoral response (Figure 2A). According to
the IPA analysis, the negatively correlated genes appear to be
involved in protein transmembrane transport, translation and
transcription regulation, cell division, migration, proliferation,
and differentiation, as well as in the oxidation reduction and
metabolic processes (Table 2). The positively correlated genes,
on the other hand, appeared involved in cell homeostasis and
migration, cell growth, proliferation, regulation of gene
expression, the apoptotic process, exocytosis, and intracellular
signal transduction (Table 2).

Interestingly, among the 10 common genes to the skin and
stool samples we found the IGLV8-61, BLK, and EBF1 genes
which are involved in antigen recognition, B cell development,
proliferation, and differentiation, and in the positive regulation
of transcription in B cell and B cell receptor signaling (Figure
3A). Surprisingly these three significant genes involved in B cell
development stages were negatively correlated with the baseline
abundance of Prevotella and Eubacterium, respectively for skin
and stool (Figure 3B). To assess the predictive power of this
signature of three genes and each of the two microbial genera, we
ran logistic regression models (Figure 3C). Use of the expression
of the three genes and Prevotella abundance in the skin
microbiota has an 85.42% chance, assessed by its area under
Frontiers in Immunology | www.frontiersin.org 6
the curve, of correctly predicting MVA-Nab responders, while
with the three-gene signature and Eubacterium abundance in the
stool microbiota there is an 89.58% chance of correctly
predicting MVA-Nab responders (Figure 3C). These results
suggest that advanced B lymphocyte differentiation before
vaccination, potentially signaled by high expression of these
three genes, and associated with low abundance of Prevotella
or Eubacterium, is associated with poor MVA-Nab response.
DISCUSSION

To our knowledge, this work is the first to investigate the
potential relationship between pre-vaccination host gene
expression in blood cells, skin and stool microbiota and their
association with the intensity of ensuing post-vaccination Nab
responses. The data may provide important guidance for future
design and refinement of vaccine strategies aiming at the
induction of neutralizing antibody-mediated immunity. The
limitation of this study is the small number of individuals
included. However, the strength of our work is the availability
of two sets of gene expression data collected at baseline (w-2, w0)
that is often absent in other studies. It is intriguing to discover
three genes, all involved in B cell differentiation and proliferation
correlated with humoral responses 2 months later. Further
validation studies are necessary in the future.

First, we observed that the abundance of particular skin or stool
bacterial species were associated with the MVA-Nab response.
Abundant Prevotella in the skin at baseline was positively
correlated with MVA-Nab response. Prevotella is known to
promote mucosal inflammation and to stimulate production of
epithelial cell cytokines (49). Prevotella is also found in larger
numbers in the skin of women aged 60-76 years than in that of
women in their 20s and 30s and was enriched in all of the skin sites
of the older group compared to the younger ones (50). In stool, we
found that Eubacterium abundance at baseline was positively
correlated with the MVA-Nab response. This family of bacteria
is known to be associated with gut health (51–53), and several of its
species are higher in centenarians than in either young or elderly
A B

FIGURE 2 | Microbial abundance before vaccination is correlated with MVA-Nab responses. (A) Abundance of Prevotella in skin and (B) abundance of Eubacterium
in stool are correlated with MVA-specific neutralizing antibody titers at w8 (log(EC50)). Spearman rank sum test was applied with a P-value < 0.05. All genera were
filtered by a minimum median abundance of 0.1% across the samples.
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adults (54). The potential impact of the gut microbiota on vaccine
immunogenicity has been already investigated with systemic
vaccines (55) and with oral vaccines including those of rotavirus
(RVV), polio, and cholera, mainly in infants/children living in low-
income countries (56, 57). For example, bacterial species related to
Streptococcus bovis species were more abundant before vaccination
Frontiers in Immunology | www.frontiersin.org 7
in Ghanaian vaccine-responders than non-responders and were
positively associated with RVV efficacy, whereas Bacteroides and
Prevotella species were more common in the microbiome of
nonresponders and correlated with a lack of RVV response (58).
In Bangladeshi infants, the pre-vaccination presence of
Bifidobacterium was positively associated with some adaptive
A B

C

FIGURE 3 | Blood gene expression combined with host microbiota before vaccination shapes MVA-B responses (A) Investigation of the blood gene expression
(w-2, w0) correlated with MVA-Nab response (w8) and host genus diversity (w0), for skin (purple) and stool (green). The Spearman correlation test was applied with
an adjusted P < 0.05 (r < -0.6 and r > 0.6) defined as statistically significant. The heatmap shows the expression profile of the 22 (purple) and 19 (green) genes
correlated respectively with skin and stool, according to MVA-Nab response intensity from highest to lowest responders. The 10 common genes are colored in red.
The color-gradient from green (-2, low) to red (2, high) indicates the intensity of gene expression. Among the genes correlated with both skin and stool, three genes
are underlined because they are involved in B cell functions. (B) Table shows the significant correlation coefficients and P-values for each of the three genes with the
abundance of the genus correlated with MVA-Nab response. (C) ROC curves show the specificity and the sensitivity of the logistic regression models, i.e., the
proportion of correctly predicted responders and nonresponders, respectively. The logistic regression is based on the expression of the minimal gene signature
(IGLV8, EBF1, and BLK) and the abundance of Eubacterium and Prevotella, respectively, in stool and skin.
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immunological responses, such as CD4+ and CD8+ T-cell
proliferative responses to BCG and tetanus toxoid vaccinations as
well as specific IgG responses to tetanus toxoid and hepatitis B
vaccines, whereas high levels of enteric pathogens such as
Enterobacteriales and Pseudomonadales were associated with
neutrophilia and poorer vaccine responses (55).

Secondly, we examined the pre-vaccination host blood genes
that were correlated with MVA-Nab intensity. We then
investigated microbiota abundance to decipher a minimal gene
signature predictive of MVA-Nab responsiveness. Interestingly,
within this signature we find BLK, IGLV8-61 and EBF1 involved
in B cell development, proliferation and differentiation and in the
Frontiers in Immunology | www.frontiersin.org 8
positive regulation of transcription in B cells and B cell receptor
signaling. The BLK gene belongs to the family of protein tyrosine
kinases src, and the B cells activation induces BLK gene product
phosphorylation playing a key role in transmitting signals through
surface immunoglobulins which supports the pro-B to pre-B
transition and the signaling for growth arrest and apoptosis
downstream of B-cell receptor (59). BLK also plays a role in the
development, differentiation, and activation of B cells and in the
intracellular signaling pathway. BLK is detected in pro-B cells and
persists in mature B cells but is absent in plasma cells. Triple
protein tyrosine kinase (SFK)-deficient mice — BLK, LYN, and
FYN — have impaired NFkB signaling and B cell development
TABLE 1 | Skin and stool genus diversity correlations with blood gene expression.

STOOL Genus diversity sd_invsimpson Genus diversity shannon

Genes r* P-value r* P-value

AHDC1 -0.47 0.0361 ns ns
BLK -0.66 0.0015 -0.64 0.0024
EBF1 -0.46 0.0418 ns ns
EIF4E2 -0.57 0.0090 -0.54 0.0145
EMX2 -0.48 0.0322 ns ns
FAM149B1 0.52 0.0182 0.47 0.0375
FLT1 0.49 0.0264 0.44 0.0500
FOXD4L3 0.52 0.0181 0.47 0.0361
IGLV8-61 -0.85 2.7116 e-06 -0.81 1.3721 e-05
MEI4 0.48 0.0335 ns ns
MIR3677 0.47 0.0375 ns ns
NDUFC1 0.44 0.0500 ns ns
OSER1 ns ns -0.44 0.0500
SNAPC2 -0.63 0.0027 -0.56 0.0100
TMEM17 0.56 0.0105 0.48 0.0322
TOMM70 0.61 0.0043 0.52 0.0182
TRBJ2 -0.45 0.0466 ns ns
TRIP11 0.46 0.0434 ns ns
ZDHHC2 0.50 0.0254 0.45 0.0450

SKIN Genus diversity sd_invsimpson Genus diversity shannon

Genes r* P-value r* P-value

AHDC1 -0.46 0.0389 -0.55 0.0121
AQP2 -0.4679 0.0375 -0.52 0.0174
BAIAP3 -0.48 0.0335 -0.46 0.0403
BLK -0.67 0.0011 -0.60 0.0048
DAAM1 ns ns -0.5102 0.0215
EBF1 -0.55 0.0127 -0.53 0.0166
FAM149B1 ns ns 0.46 0.0418
GPC6 ns ns -0.50 0.0254
HMGA2 0.47 0.0375 0.59 0.0067
IGLV8-61 -0.56 0.0095 -0.54 0.0133
LOC1001311655 -0.47 0.0348 ns ns
MCMBP 0.49 0.0264 0.4679 0.0375
RPL34 0.51 0.0225 0.58 0.0078
SLC46A3 0.50 0.0234 0.5253 0.0174
SNAPC2 -0.49 0.0275 -0.53 0.0152
SPHK2 ns ns -0.51 0.0215
TMEM17 0.60 0.0051 0.68 0.0009
TOMM70 0.50 0.0234 0.57 0.0082
TRBJ2 -0.49 0.0286 ns ns
TRBV7 ns ns -0.44 0.0500
UGT2A1 0.50 0.0244 0.55 0.0121
ZDHHC2 ns ns 0.48 0.0310
May 2021 | Volume 12 |
*Correlation coefficient and P-value for the relations between genus diversity (shannon: diversity shannon index, sd_invsimpson: inverss simpson diversity index) and the genes correlated
with MVA-Nab response in skin and stool conditions. Three genes involved in B cell function and correlated in both skin and stool are highlighted in bold. ns, not significant.
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TABLE 2 | Description of the genes from the minimal signatures for skin and stool conditions.

Symbol Entrez Gene
Name

Molecular Function Canonical
Pathway

Description Biological process

AHDC1 AT-hook DNA
binding motif
containing 1

DNA binding _ Gene mutations: Xia-Gibbs syndrome _

AQP2 Aquaporin 2 Actin binding; channel activity;
glycerol transmembrane
transporter activity

Apelin
endothelial
signaling
pathway;
eNOS
signaling

Water chanel protein from kidney collecting
tubule.

Actin filament
depolymerization; apoptotic
process; excretion; cell
homeostatis; glycerol
transport

BAIAP3 BAI1 associated
protein 3

Calcium ion binding;
phospholipid binding; protein
binding; syntaxin binding

_ P53-target gene encodes brain-specific
angiogenesis inhibitor. Two C2 domains from
proteins involved in signal transduction or
membrane trafficking

exocytosis; G-protein
coupled receptor signaling
pathway; regulation of
synaptic transmission;
retrograde transport

BLK BLK proto-
oncogene, Src
family tyrosine
kinase

ATP-binding; kinase activity;
protein binding; transferase
activity

PI3K
Signaling in B
lymphocytes;
Tec kinase
signaling

Involved in b cell proliferation and
differentiation and has a role in B-cell
receptor signaling and B-cell development

B cell receptor signaling
pathway; cell
differentiation and
proliferation; innate
immune response

DAAM1 Dishevelled
associated
activator of
morphogenesis 1

Actin binding; identical protein
binding; protein binding; Rho
GTPase binding

PCP pathway;
Role of
macrophages;
Fibroblasts
and Endothelial
Cells

Involved in cell motility, adhesion, cytokinesis,
reorganization of the actin cytoskeleton, cell
polarity and movement

Actin cytoskeleton
organization; Wnt receptor
signaling pathway

EBF1 Early B cell
factor 1

RNA polymerase II core
promoter proximal region
sequence-specific DNA
binding; transcription factor
involved in positive
regulation of transcription
activity; DNA binding

B cell
receptor
signaling; IL-
17 Signaling
pathway

Transcriptional activator which recognizes
variations of the palindromic sequence 5-
ATTCCCNNGGAATT-3. Named
Transcription factor COE1 and activates
target genes

Multicellular organismal
development; positive
regulation of
transcription; DNA-
dependent; positive
regulation of transcription
from RNA polymerase II
promoter

EIF4E2 Eukaryotic
translation
initiation factor 4E
family member 2

RNA binding; translation
initiation factor activity; ubiquitin
protein ligase binding

_ Recognizes and binds the 7-methylguanosine-
containing mRNA cap during an early step in
the initiation. Acts as a repressor of translation
initiation

Negative regulation of
translation

EMX2 Empty spiracles
homeobox 2

Sequence-specific DNA
binding RNA polymerase II
transcription factor activity

_ Known expressed in three human tissues:
dorsal telencephalon, olfactory
neuroepithelium, and epithelial urogenital
system

Brain development; Neuron
differentiation; regulation of
gene expression

FAM149B1 Family with
sequence
similarity 149
member B1

_ _ _ _

FLT1 Fms related
tyrosine kinase 1

ATP binding; vascular
endothelial growth factor-
activated receptor activity;
kinase activity; transferase
activity; protein binding;
transmembrane signaling
receptor activity

eNOS
signaling; IL-8
signaling; NF-
kB signaling;
STAT3
pathway

Binds to VEGFR-1, VEGFR-B and placental
growth factor and plays an important role in
angiogenesis and vasculogenesis. Expression
of this receptor is found in vascular endothelial
cells and peripheral blood monocytes

Cell differentiation; cell
migration; cell proliferation;
factor stimulus; monocyte
chemotaxis;

FOXD4L3 Forhead box D4
like 6

protein binding; sequence-
specific DNA binding;
sequence-sequence DNA
binding RNA polymerase II
transcription factor activity

_ _ anatomical structure
morphogenesis; cell
differentiation; regulation of
transcription from RNA
polymerase II promoter

GPC6 Glypican 6 heparin sulfate proteoglycan
binding; protein binding

_ The glypicans comprise a family of
glycosylphosphatidylinositol-anchored heparin
sulfate proteoglycans, are implicated in the
control of cell growth and cell division. Putative
cell surface coreceptor for growth factors,

cell migration;
glycosaminoglycan
biosynthetic process;
regulation of signal
transduction; retinoid

(Continued)
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TABLE 2 | Continued

Symbol Entrez Gene
Name

Molecular Function Canonical
Pathway

Description Biological process

extracellular matrix proteins, proteases and
anti-proteases.

metabolic process; Wnt
receptor signaling pathway

HMGA2 High mobility
group AT-hook 2

5’-deoxyribose-5-phosphate
lyase activity; AT DNA binding;
C2H2 zinc finger domain
binding; cAMP response
element binding; DNA-
dependent protein kinase
activity; MH1 domain binding;
transcription regulation

Regulation of
the Epithelial-
Mesenchymal
Transition
Pathway

Belongs to the non-histone chromosomal high
mobility group (HMG) protein family, as
architectural factors and are essential
components of the enhancesome.

Cell division; chromatin
organization; DNA damage
response; negative regulation
of retroviral genome
replication; negative
regulation of apoptotic
process

IGLV8-61 Immunoglobulin
lambda variable
8-61

Antigen binding _ Participates in the antigen recognition.
Membrane-bound antibodies or secreted
glycoproteins produced by B
lymphocytes. Trigger the clonal expansion
and differentiation of B lymphocytes into
immunoglobulins-secreting plasma cells.

adaptive immune
response; immunoglobulin
production

LOC100131655 Uncharacterized _ _ _ _
MCMBP Mini-chromosome

maintenance
complex binding
protein

chromatin binding; protein
binding

_ Encodes a protein which is a component of
the hexameric minichromosome maintenance
(MCM) complex which regulates initiation and
elongation of DNA

cell cycle; cell division; DNA-
dependent DNA replication

MEI4 Meiotic double-
stranded break
formation protein
4

Protein binding _ Required for DNA double-strand breaks
formation in unsynapsed regions during
meiotic recombination

DNA recombination; meiotic
cell cycle; meiotic DNA
double-strand break
formation, synapsis

MIR3677 microRNA 3677 _ _ Non-coding RNAs involved in post-
transcriptional regulation of gene expression in
multicellular organisms by affecting both the
stability and translation of mRNAs

_

NDUFC1 NADH:
ubiquinone
oxidoreductase
subunit C1

NADH dehydrogenase
(ubiquinone) activity

_ Subunit of the NADH: ubiquinone
oxidoreductase, the first enzyme complex in
the electron transport chain located in the inner
mitochondrial membrane

Mitochondrial electron
transport, NADH to
ubiquinone; mitochondrial
respiratory chain complex I
assembly; oxidation-
reduction process

OSER1-AS1 Oxidative stress
responsive serine
rich 1

_ _ _ Cellular response to
hydrogen peroxide

RPL34-AS1 Ribosomal protein
L34

Cadherin binding; RNA binding;
structural constituent of
ribosome

EIF2 Signaling Component of the 60S subunit belongs to the
L34E family of ribosomal proteins. It is located
in the cytoplasm and overexpression of this
gene has been observed in some cancer cells

Nuclear-transcribed mRNA
catabolic process;
nonsense-mediated decay;
SRP-dependent
cotranslational protein
targeting to membrane;
translation initiation

SLC46A3 Solute carrier
family

_ _ Transmembrane protein, transports small
molecules across membrane. Found in
lysosomal membranes where it transports
catabolites from the lysosomes to the
cytoplasm. Effective transporter of the
cytotoxic drug maytansine

Transmembrane transport

SNAPC2 Small nuclear
RNA activating
complex
polypeptide 2

sequence-specific DNA binding
transcription factor activity

_ Subunit of the snRNA-activating protein
complex associated with the TATA box-
binding protein. Is necessary for RNA
polymerase II and III dependent small-nuclear
RNA gene transcription

regulation of transcription;
DNA-dependent;
transcription from RNA
polymerase III promoter

SPHK2 Sphinganine
kinase

ATP binding; sphinganine
kinase activity; nucleotide
binding; Ras GTPase binding;
sphingosine-1-phosphate
receptor activity; transferase
activity

Ceramide
Signaling;
PDGF
Signaling

One of two sphingosine kinase isozymes,
catalyses the sphingosine phosphorylation into
sphingosine 1-phosphate. It mediates many
cellular processes including migration,
proliferation and apoptosis

cell proliferation; lipid
phosphorylation; metabolic
process; negative regulation
of apoptotic process;
positive regulation of cell
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(60). EBF1, an early B cell factor 1, is one of the transcription
factors essential for orchestrating the development of the B cell
line. Heterozygosity of EBF1 results in the deregulation of at least
eight transcription factors involved in lymphopoiesis and the
deregulation of key proteins that play a crucial role in the
survival, development, and differentiation of pro-B cells (61).
IGLV8 (variable domain) is a glycoprotein produced by B
lymphocytes; its binding of a specific antigen triggers the clonal
expansion and differentiation of B lymphocytes into
immunoglobulin-secreting plasma cells. The link between
microbiota and host blood transcriptome has also been studied
previously by Nakaya et al., who showed that TLR5 expression in
blood 3 days after influenza vaccination was correlated with
antibody response 28 days later (28). This correlation was
significantly lower in TLR5-deficient mice immunized with TIV
compared to wild-type mice. As influenza vaccine does not
stimulate TLR5 directly, however, Oh et al. demonstrated with
germ-free or antibiotic-treatment that the commensal bacteria
were the source of the TLR5 ligands responsible for enhancing
immune response to TIV (7). It should be noted that in our study
the three genes were negatively correlated with MVA-Nab
response and microbial diversity of both skin and stool samples
but also with the abundance of the Prevotella family in skin and
the Eubacterium family in stool. The logistic regression based on
the expression of these three genes and Prevotella and
Eubacterium abundance for, respectively, skin and stool,
Frontiers in Immunology | www.frontiersin.org 11
highlights the predictive power of this signature for the MVA-
Nab immune responses. These results propose that an advanced
differentiation state of B lymphocytes before vaccination,
potentially represented by a high expression of these three genes
and associated with low genus abundance and diversity, might be
associated with poor MVA-Nab response.
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Symbol Entrez Gene
Name

Molecular Function Canonical
Pathway

Description Biological process

proliferation; sphingosine
metabolic process

TMEM17 Transmembrane
protein 17

protein binding _ Transmembrane component of the tectonic-
like complex localized at the transition zone of
primary cilia and acting as a barrier that
prevents diffusion of transmembrane proteins
between the cilia and plasma membrane.
Required for ciliogenesis and sonic hedgehog/
SHH signaling

Cell projection organization;
cilium morphogenesis;
smoothened signaling
pathway

TOMM70 Translocase of
outer
mitochondrial
membrane 70

protein binding; protein
transmembrane transporter
activity

Sirtuin
Signaling
Pathway

Import receptor of the outer mitochondrial
membrane that is part of the translocase of the
outer membrane complex. Involved in the
import of mitochondrial precursor proteins

Negative regulation of cell
growth involved in cardiac
muscle cell development;
protein targeting to
mitochondrion; protein
transmembrane transport;
response to thyroxine
stimulus

TRBJ2-1 T cell receptor
beta joining 2-1

_ _ _ _

TRBV7-3 T cell receptor
beta variable 7-3

_ _ _ _

TRIP11 Thyroid hormone
receptor interactor
11

protein binding; transcription
coactivator activity

Aryl
Hydrocarbon
receptor
signaling

Interaction with thyroid hormone receptor beta.
Associated protein with Golgi apparatus.
Protein N-terminal region binds Golgi
membranes and C-terminal binds the minus
ends of microtubules; thus, the protein is
thought to play a role in assembly and
maintenance of the Golgi ribbon structure
around the centrosome

Bone development; Golgi
organization; intraflagellar
transport involved in cilium
morphogenesis; protein
glycosylation; transcription
from RNA polymerase II
promoter; ventricular septum
development
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