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Brainstem development requires
galactosylceramidase and is critical for
pathogenesis in a model of Krabbe disease
Nadav I. Weinstock1,2, Conlan Kreher 1,2, Jacob Favret1,2,3, Duc Nguyen4, Ernesto R. Bongarzone4,

Lawrence Wrabetz1,2,5,6, M. Laura Feltri 1,2,5,6 & Daesung Shin 1,2,3,6✉

Krabbe disease (KD) is caused by a deficiency of galactosylceramidase (GALC), which

induces demyelination and neurodegeneration due to accumulation of cytotoxic psychosine.

Hematopoietic stem cell transplantation (HSCT) improves clinical outcomes in KD patients

only if delivered pre-symptomatically. Here, we hypothesize that the restricted temporal

efficacy of HSCT reflects a requirement for GALC in early brain development. Using a novel

Galc floxed allele, we induce ubiquitous GALC ablation (Galc-iKO) at various postnatal

timepoints and identify a critical period of vulnerability to GALC ablation between P4-6 in

mice. Early Galc-iKO induction causes a worse KD phenotype, higher psychosine levels in the

rodent brainstem and spinal cord, and a significantly shorter life-span of the mice. Intrigu-

ingly, GALC expression peaks during this critical developmental period in mice. Further

analysis of this mouse model reveals a cell autonomous role for GALC in the development

and maturation of immature T-box-brain-1 positive brainstem neurons. These data identify a

perinatal developmental period, in which neuronal GALC expression influences brainstem

development that is critical for KD pathogenesis.
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Krabbe disease (KD) is a demyelinating and neurodegen-
erative lysosomal storage disorder (LSD), often fatal in
infancy1. KD is caused by mutations in GALC, a galacto-

lipid hydrolase that must be trafficked to the lysosome for proper
functioning2. GALC is involved in the normal turnover of myelin
by hydrolyzing galactosylceramide, a major sphingolipid con-
stituent of myelin which is important in myelin compaction3.
Unlike other LSDs, the primary substrate of GALC, galacto-
sylceramide, does not accumulate broadly in KD tissues. Instead,
a minor substrate of GALC, psychosine (galactosylsphingosine),
accumulates to toxic levels, causing extensive demyelination and
the bulk of KD pathological findings (psychosine hypothesis4). In
support of this hypothesis, in vitro studies show that treating cells
with psychosine increases proapoptotic factors and kills oligo-
dendrocytes (OL)5, Schwann cells6,7, and neurons8. The long-
held assumptions of the psychosine hypothesis were recently
confirmed, in vivo, demonstrating that the abnormal accumula-
tion of psychosine is toxic and is generated catabolically through
the deacylation of galactosylceramide by acid ceramidase9.

More than 85% of KD patients exhibit the rapidly progressive
infantile-onset form of disease, which leads to death by 2 years of
age. Although there is no cure for KD, hematopoietic stem cell
therapy (HSCT) attenuates neurologic deterioration and improves
developmental gains10. These benefits are particularly sensitive to
the severity of disease at transplantation, and are only beneficial if
delivered at a clinically defined presymptomatic timepoint10.
Intriguingly, pre-clinical gene therapy trials in twitcher mice are
also time-sensitive, and have been shown to be more efficacious if
delivered shortly after birth11. These data therefore suggest a
presymptomatic therapeutic window, in which treatment of KD
with HSCT or gene therapy is more efficacious. Why treatment
must occur so early remains unknown. While GALC should
intuitively be required during myelination, many of these tem-
poral events seem to precede the bulk of CNS myelination. Fur-
thermore, patients diagnosed in utero, and treated within the first
few weeks of life, do better than patients treated at 1–2 months
old12,13. These findings underlie the necessity for properly defin-
ing the precise timepoint in which GALC is first required.

In a previous study, we used a global metabolomic analysis of
twitcher hindbrains to detect the earliest biochemical changes that
occur in KD pathogenesis14. While we saw many metabolic
changes at an early symptomatic stage of disease (P22), we were
surprised to find a number of biochemical processes that were
also significantly altered at a presymptomatic timepoint (P15).
These changes, though subtle, reflected diverse neuro-metabolic
functions relating to glycolysis, the pentose phosphate pathway,
hypoxanthine metabolism, and mannose-6-phosphate, an
important residue involved in lysosomal enzyme trafficking14.
These findings, along with the observed presymptomatic ther-
apeutic window, led us to hypothesize that GALC has important
and specific functions in the early brain development.

Several ubiquitous Galc mutant mice have been used to study
KD, including twitcher15, twi-5J16, humanized GALC trans-
genic17, GALC-Gly270Asp18, Galc-His168Cys knock-in19, and
Saposin A knockout (KO) mice20. Although these models were
instrumental in the characterization of KD and the development
of various therapeutic strategies, none of them could identify the
temporal effect of GALC deficiency on the progression of KD. We
therefore engineered a conditional Galc floxed mouse by gene
targeting, which provided us with the opportunity to directly ask
at which age is Galc required. Both constitutive Galc-KOs and
induced Galc-KOs (iKO) generated from the conditional floxed
allele recapitulated a range of neurologic features seen in KD
patients. Our study revealed a key developmental process that
requires GALC in the perinatal period. Induced deletion of Galc
prior to P4 resulted in severe neurodevelopmental defects that

were particularly profound in the brainstem. Conversely, deletion
of Galc after P6 resulted in prolongued survival and attenuated
pathology. This study demonstrates that temporal GALC
expression is likely a major contributor to brainstem develop-
ment. Augmenting GALC levels at, or prior to, this newly defined
perinatal period would likely improve the efficacy of therapeutic
interventions for KD.

Results
The Galc knockout mouse is an authentic model of KD. To
understand the temporal requirements of GALC, and its rela-
tionship to the progression of KD, we developed a conditional
Galc floxed mouse (Supplementary Fig. 1a), maintained on a
congenic C57BL/6 background. To determine if these mice could
be used to accurately model KD, global Galc-KO mice derived
from the Galc floxed allele were directly compared to the well-
studied twitcher (GalcW339X) mice15. Galc-KO mice were gener-
ated by crossing Galc floxed mice to CMV-Cre, in which Cre is
expressed ubiquitously21. PCR analysis of total brain genomic
DNA revealed that the Galc gene was efficiently deleted (Fig. 1a).
Northern blot analysis of total brain RNA from twitcher
(Galctwi/twi), Galc-KO (Galc−/−), and wild-type (WT) littermates
(Galc+/+) showed that Galc transcripts were entirely removed
from the Galc-KO brain (Fig. 1b). Like twitcher, homozygous
Galc-KO had no GALC activity (Fig. 1c) and developed the same
phenotype as twitcher22,23, namely severe motor coordination
defects, a reduced life span of ~45 days and attenuated growth
beginning at P21 (Fig. 1d–g). Both Galc-KO and twitcher mice
had an increase in markers of brain inflammation, such as toll-
like receptor 2 (TLR2), CD68/CD163, Iba1 (all detect micro-
gliosis), and glial fibrillary acidic protein (GFAP; astrogliosis;
Fig. 1h, i). Taken together, the novel Galc-KO model has a KD-
like phenotype similar to twitcher and is a true GALC-null allele.

Survival of CAG-Cre/ERT driven Galc-iKO mice is dependent
on the timing of Galc deletion. To determine the age by which
Galc must be deleted to trigger KD pathogenesis, we crossed Galc
floxed mice with inducible ubiquitous Cre mice (CAG-Cre/ERT)24

to generate Galc-iKO (Fig. 2a). To maximize the efficiency of Galc
ablation, we used haplodeficient Galcflox/null(−) mice. Galc-iKO
mice were induced between P0 and P10. As expected, perinatal
induction of Galc ablation (occurring on the day of birth, post-
natal day 0) produced significant neurologic impairments that
closely mirrored the Galc-KO. These mice developed robust
neurologic symptoms by P35, including irritability, tremors,
wasting, hindlimb paralysis, and ultimately death by P60 (Fig. 2b,
c). Galc-iKO mice induced between P1 and P4 (hereafter Galc-
iKO ≤ P4) exhibited a similar clinical phenotype and also survived
to 60 days. Surprisingly, when Galc deletion was initiated between
P6 and P10 (hereafter Galc-iKO ≥ P6), the mice developed a sig-
nificantly protracted clinical course and survived until P90
(Fig. 2b, c). Galc-iKO ≥ P6 had no obvious neurological phenotype
or somatic growth defects until around P60 (Fig. 2c; iKO P8).
Compared to Galc-iKO ≤ P4, Galc-iKO ≥ P6 had significantly less
KD pathology at P60, including fewer inflammatory globoid cells
(Fig. 2d–f). These data suggest that Galc ablation at an early
developmental timepoint dramatically influences the clinical
course of KD and overall degree of pathology produced.

The CAG-Cre/ERT transgene recombines efficiently with
tamoxifen, regardless of induction time. We were concerned
that the differential survival of Galc-iKO mice could be due to
technical limitations of our inducible system caused by temporal
variability in recombination efficiencies. To quantitatively deter-
mine the temporal recombination efficiency of our inducible
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system, we used a tdTomato Cre reporter25. We began by
crossing the tdTomato transgene with the CAG-Cre/ERT allele
and induced recombination with tamoxifen at P3 (Galc-iKO ≤
P4) or P8 (Galc-iKO ≥ P6). Both timepoints showed an equal
number of tdTomato-positive cells and tdTomato protein levels
in brain (Fig. 3a–c), suggesting similar recombination efficiencies.
Furthermore, GALC enzymatic activity was similarly absent from
the brains of Galc-iKO mice induced early and late (Fig. 3d), with
only 2% of WT GALC activity remaining. This finding was
likewise confirmed by immunofluorescence for GALC expression
before and after induction of early and late timepoints (Fig. 3e, f).
Similarly, peripheral tissues including sciatic nerve, liver, and
spleen had only 6%, 1–4%, and 5–7% of WT GALC activity
remaining, respectively (Supplementary Fig. 2a, c). We also
considered that GALC protein could be particularly stable, and
could theoretically exist well beyond the induction of Galc DNA
ablation. We therefore determined the half-life of GALC protein,
in vitro, and found it to be ~3 h (Fig. 3g), fitting well with the near
total reduction in GALC activity seen at both timepoints, in vivo
(Fig. 3d). These data collectively suggest that technical issues
regarding differences in inducing recombination likely do not
explain the altered survival and clinical course surrounding
temporal GALC ablation.

Finally, we asked if the reduction in GALC activity persisted
equally when induced early or late. While there was no significant
difference in the residual GALC activities in the brains of animals
induced at different times, we were surprised to find that ~20% of
GALC activity eventually returned in all late-stage, moribund
Galc-iKO brains (Fig. 3h). A similar increase of GALC activity
was also observed in the sciatic nerve (12–14%) and marginally in
the liver (5–9%), but not at all in the spleen (3–7%;
Supplementary Fig. 2b, d). Cre/ERT is only active as long as
tamoxifen persists26; suggesting that a small portion of residual
WT cells escaped Cre recombination and were able to proliferate
and restore some levels of GALC activity. This return of GALC
activity is particularly intriguing as these levels were surprisingly
not sufficient to prevent or rescue KD pathology. We theorize
that the lack of rescue may be explained by GALC levels that are
too low, expressed in the wrong cell type, or present at the wrong
time period. Furthermore, cross-correction of GALC27 (and other
lysosomal hydrolases28) may not be very efficient in vivo, and
therefore, the function of GALC may be restricted to the subset of
cells that directly express it. A similar correlate exists regarding
refractory moribund pathology observed in HSCT-treated
twitcher and KD patients despite the detection of substantial
GALC activity29–32. Together, these observations further

+/f f/f f/f f/- -/- (bp)
1128 (f)
908 (+)

401 (-)

Genomic PCR
(P1+P2)

WT
Galc (twi/twi)
Galc (-/-)

WT
Galc (twi/twi)
Galc (-/-)

16

12

8

4
10 15 20 25 30 35

Age (days) Age (days)

W
ei

g
h

t 
(g

)

100

50

0S
u

rv
iv

al
 (

%
)

0 20 40 60
(kDa)
50

100
75

50

Galc
 +
/+

Galc
 t
wi/tw

i

Galc
 +
/+

Galc
 -
/-

GFAP

TLR2

β-tubulin

Galc(-/-)

Galc(twi/twi)

Galc(+/+)

P40

28S
(4.7 kb)

18S
(1.9 kb)

Northern blot
(probe: exon5-7)

�-actin

Galc

G
al

c 
+

/+

G
al

c 
+

/+

G
al

c 
-/

-

G
al

c 
tw

i-t
w

i

WT
Galc (twi/twi)
Galc (-/-)

12
10
8
6
4
2
0

-2
0 10 20 30 40

Age (days)

G
A

L
C

 a
ct

iv
it

y
(n

m
o

l/h
r/

m
g

)

300

200

100

0

L
at

en
cy

 t
o

 F
al

l (
se

co
n

d
s)

Trial 1 Trial 2 Trial 3 Trial 4
WT
Galc (-/-)
Galc (twi/twi)

Rotarod at P35

n.s. n.s. n.s. n.s.

Galc (+/+) Galc (twi/twi) Galc (-/-)

G
FA

P
C

D
16

3
Ib

al
C

D
68

a b c d

ige

f

h

1 cm

Fig. 1 The Galc-KO (Galc−/−) is an authentic murine model of KD, analogous to twitcher (Galctwi/twi). a PCR-based genotyping of mice (wild-type (WT)
(+), conditional (f), and KO (−)) using the P1–P2 primer pair in Supplementary Fig. 1a. Galc-KO was generated by mating the Galc conditional allele (f) to a
ubiquitous Cre (CMV-Cre). The floxed locus is efficiently recombined. b Northern blot analysis of total brain RNAs from P30 twitcher (Galctwi/twi), Galc-KO
(Galc−/−), and WT littermate (Galc+/+). The probe spanning exons 5–7 of Galc cDNA showed that Galc transcripts were successfully removed from the
Galc-KO, similar to the situation in the twitcher. The experiment was repeated twice with samples from different animals. c There were no remaining GALC
activities in the brains of both the twitcher and homozygous Galc-KO; n= 4. Data are presented as mean values ± SEM. d Rotarod analysis of P35 animals
showed that both twitcher and Galc-KO had the same poor performance. n= 25 for WT, 7 for KO, and 5 for twitcher. One-way ANOVA with Bonferroni post
hoc multiple comparison test was used. Data are presented as mean values ± SEM; ***p= 0.000001. e Both mice showed a reduced growth curve after
P21. n= 10 each genotype (f) Galc−/− survived ~45 days, like Galctwi/twi; n= 10. Data are presented as mean values ± SD; *p < 0.05, **p < 0.01, and ***p <
0.001; ns not significant. g Body size of moribund Galc-KO and twitcher mice was much smaller than WT. h Western blot analysis revealed dramatic
increases in the markers of astrocytosis (glial fibrillary acidic protein; GFAP) and activated microglia (toll-like receptor 2; TLR2) in the brain of Galc−/− as
Galctwi/twi compared to WT Galc+/+. Asterisk (*) is a nonspecific band. i Immunohistochemistry on cryosections of cerebellum white matter showed
activated astrogliosis (GFAP) and activated microglia (IbaI, CD68, and CD163), in the brains of both Galc−/− and Galctwi/twi. Scale bar= 100 µm. DAPI is
blue colored. The experiment was repeated three times with samples from different animals. Animals in g–i were P40.
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emphasize the nuance of providing sufficient GALC to specific
cell types at an appropriate temporal period.

Induction timing of Galc-iKO affects the differential accu-
mulation of psychosine. While mice induced after P6 survived
longer than those induced earlier, all Galc-iKO mice eventually
developed a rapidly progressive neurologic decline. Morpho-
metric analysis of optic nerves from early and late-induced
moribund Galc-iKO mice exhibited similar degrees of demyeli-
nation and axonal degeneration (Fig. 4a–c). This was also true for
spinal cord tissues, though a more pronounced difference in
axonal pathology occurred between early- and late-induced ani-
mals (Fig. 4d–f). Globoid cells and markers of neuroinflammation
also accumulated in both end-stage Galc-iKO ≤ P4 and Galc-

iKO ≥ P6 brains (Fig. 5a–d), though to a slightly higher degree in
early-induced mice and especially evident in the hindbrain (pons,
cerebellum, and spinal cord). Taken together, moribund Galc-
iKO mice all develop canonical KD pathology that are qualita-
tively similar to each other, regardless of induction time.

To elucidate the cause of pathology in moribund mice, we
measured psychosine levels in the cervical spinal cord of Galc-
iKO mice. Psychosine is a highly cytotoxic lipid, capable of
inducing cell death of myelinating cells and neurons8,33,34;
furthermore its accumulation is correlated with severity and
onset of disease35. High-performance liquid chromatography
tandem mass spectrometry (LC–MS–MS) showed 300–350 pmol
of psychosine accumulated per mg of protein in the moribund
Galc-iKO ≤ P4. This was far higher than the psychosine
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concentration in control spinal cords (5–8 pmol/mg of protein,
Fig. 5e). Although psychosine also accumulated highly in Galc-
iKO ≥ P6 spinal cords (110–150 pmol/mg of protein), these
levels were significantly less than the Galc-iKO ≤ P4. The level
of psychosine in Galc-iKO induced at P5 rested between these
extremes (150–160 pmol/mg of protein), suggesting that the
concentration of psychosine is directly correlated with pathol-
ogy and survival of Galc-iKO mice. Previous studies described
that psychosine accumulates in white matter of the CNS, in a
caudal-to-rostral pattern, parallel to the progression of myelin
development16,36,37. To investigate if the timing of GALC
depletion affects the region-specific accumulation of psycho-
sine, we further analyzed psychosine levels in subanatomic
regions of the CNS, including the cerebral cortex, cerebellum,
and brainstem of both end-stage Galc-iKO ≤ P4 and Galc-
iKO ≥ P6. Interestingly, early-induced mice (P3) had higher
psychosine accumulation in the brainstem and spinal cord vs
the cerebral cortex or cerebellum (Fig. 5f). This region-specific
pattern of psychosine accumulation was not present in the late-
induced brains (P8). Furthermore, the brainstem and spinal
cords of early-induced Galc-iKO (P3) had significantly higher
psychosine levels than late-induced Galc-iKO (P8), though the
cerebral cortex and cerebellum did not (Fig. 5f). These data
suggest that perinatal GALC expression prevents psychosine
accumulation in a brainstem and spinal cord, region-specific
fashion.

GALC expression reaches its highest peak at P5 in the WT
brain. We hypothesized that the differential survival of Galc-iKO
mice induced at presymptomatic perinatal ages may reflect a role
for GALC in early brain development. We began to address this
point by seeking to better understand how Galc expression is
regulated during postnatal brain development. To do so, we
analyzed the mRNA transcripts, protein, and activity of GALC in
WT brains. Interestingly, in situ hybridization and northern blot
analyses showed that Galc transcript levels are low at P0, but
increase and reach their highest peak at P5 in WT brains (Fig. 6a,
b). These peaks correlate closely with the observed clinical wor-
sening and effects on survival that occurred, when GALC was
ablated temporally (Fig. 2b). Similarly, GALC enzymatic activity
mirrored mRNA patterns and peaked at P5 (Fig. 6c), supporting
the idea of a developmental process that requires GALC function.
Notably, the expression pattern of Galc transcripts by in situ
hybridization suggest Galc may also be expressed in non-myelin
regions of the P5 brain, particularly in neurons (Figs. 6a and 3e).
For example, Galc transcripts were clearly expressed in P5 hip-
pocampal neurons and granular neurons of the cerebellum
(Fig. 6a enlargement). These data are consistent with a number of
previous studies that have shown GALC is expressed and is
important in neurons8,38. The unexpected distribution of GALC
encouraged us to carefully determine the cellular expression of
GALC in perinatal brain development. We therefore performed
GALC colocalization experiments using various cell markers
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throughout multiple anatomic regions in the P5 brain. GALC
protein was expressed in all brain cell types, including neurons,
microglia, astrocytes, and OL-lineage cells (Fig. 6d, e). The
majority of GALC at P5 was expressed in neurons (38–73%) and
was far higher than the expression in OL-lineage cells (7–11%),
astrocytes (5–18%), or microglia (4–7%). The unlabeled GALC-
positive population, others (6–44%), presumably reflect undif-
ferentiated cell types39. Regional GALC level among cerebral
cortex, striatum, pons, and spinal cord was not significantly dif-
ferent at P5, which was assessed by antibody staining (Fig. 6f).
Furthermore, neuronal GALC expression was developmentally
influenced and peaked at P5 (Fig. 6g, h). These results suggest a
role for GALC in early neuronal development.

Brainstem development requires GALC expression. The parallel
findings of increased GALC expression at P5, along with
increased susceptibility to deletion of GALC prior to P5, suggests
that a developmental process dependent on GALC occurs at P5.
This finding is particulary surprising, as twitcher symptomatology
does not begin until P21, and therefore suggests the possibility of

an early developmental defect occuring prior to hallmark of KD
progression. To monitor the neuronal development, we used
Thy1.1-YFP reporter mice that express YFP at high levels in a
sparse population of motor, sensory, and some central neurons40.
Thy1.1-YFP was crossed with Galc-KO mice or WT controls.
Confocal analysis showed a dramatic decrease in the density of
YFP axons in the brainstem of P35 symptomatic Galc-KO;
Thy1.1-YFP mice (Fig. 7a). Coronal sections confirmed that
pyramidal, pontine retucular, trigeminal, and gigantocellular
nuclei were dramatically affected in the pons and medulla of
Galc-KO;Thy1.1-YFP mice (Fig. 7b:1). Instead, neurons of the
cerebellum were only moderately changed, while other brain
rostral regions were not affected (Fig. 7b:2, 3). High power neu-
ronal magnification further emphasized the region-specific nature
of pathology seen in the Galc-iKO mice (Fig. 7c, d), ultimately
suggesting that hindbrain pathology is likely a major consequence
of KD pathogenesis. A protein marker for neuronal processes,
Tuj1 (neuron-specific class III beta-tubulin), was also similarly
reduced in the brainstem of P35 moribund Galc-KO compared to
WT (Supplementary Fig. 3a). Mutant axons sometimes appeared
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Fig. 4 Galc-iKO brains have morphological signs of demyelination and axonal degeneration regardless of induction starting time. Electron microscopy
analysis of the optic nerves (a), spinal cords (d), and their morphometry quantifications (b, e) from Galc-iKO and corresponding WT. Induced deletion
starting at either P3–4 (Galc-iKO≤ P4) or P8–10 (Galc-iKO≥ P6), showed that both conditional Galc-iKO brains have morphological signs of demyelination,
axonal degeneration, and gliosis. Although there was no difference of those pathological extents in the optic nerves between the early- and late-induced
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iKO≥ P6 than Galc-iKO≤ P4. Scale bar= 4 µm. Unpaired two-tailed Student’s t test was used. c, f The myelin sheaths of both optic nerves and spinal cords
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percentiles, the center lines are median value, and the whiskers are 0.05 and 0.95 percentiles.
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with swellings, breaks, or transections, suggesting severe struc-
tural disruption with axonal degeneration (Fig. 7e). To determine
if the reduction in Thy1.1-YFP signal reflected neuronal/axonal
damage secondary to demyelination and inflammation, pre-
symptomatic mice were analyzed at P14 (Fig. 7f). Intriguingly, a

similar reduction of Thy1.1-YFP was seen in the brainstem of P14
Galc-KO mice, when clinical symptoms are normally absent. In
line with previous studies, there was no evident microglial
pathology at this early, “asymptomatic” timepoint (Fig. 7g–h and
Supplementary Fig. 3b). Instead, we suspect that the reduced
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neuronal signal reflects a neural developmental perturbation in
Galc-KO brains.

To determine if the attenuated neuronal signal was influenced
by GALC expression in the early development, we crossed the
same Thy1.1-YFP mice with our Galc-iKO system. We then
analyzed brains of P35 mice that were either induced at P3 (Galc-
iKO ≤ P4) or P7–8 (Galc-iKO ≥ P6; Fig. 8a). Comparing induc-
tion at both timepoints revealed that the brainstem, and in
particular the pons, had a dramatic reduction of YFP neurons/
axons in the Galc-iKO ≤ P4, when compared to the Galc-iKO ≥
P6 (Fig. 8b, c). Meticulous analysis of YFP signal intensity in
serial sagittal brain sections validated that non-brainstem brain
regions were not affected during the critical period (Supplemen-
tary Fig. 4). To confirm if this neuronal effect was the
consequence of a developmental process, and not secondary to
canonical KD pathogenesis, brains were promptly analyzed 24 h
after the last tamoxifen administration (Fig. 8d). In line with a
developmental defect, neuronal YFP signal in the brainstem
was reduced immediately after tamoxifen induction in Galc-
iKO ≤ P4 mice (Fig. 8e, f). Although a similar trend in YFP signal
reduction was also observed by temporal Galc deletion starting at
P7 (Galc-iKO ≥ P6), this finding was not statistically significant
(Fig. 8f). Taken together, these results suggest that GALC
expression at P5 is critical in the development and stability of
brainstem neurons.

Galc deficiency increases a population of immature brainstem
neurons. Although white matter and myelinating OL are thought
to be the main contributors to Krabbe pathogenesis, they are not
yet fully differentiated before P6. Furthermore, because neurons
expressed the highest levels of GALC at P5 (Fig. 6), we explored

the effect of GALC on neuronal development in the brainstem. T-
brain-1 (TBR1), a brain-specific T-box transcription factor, plays
a critical role in the brain development. TBR1 expression is
highest in immature neurons at the embryonic stage of brain
development, and is gradually reduced as neurons mature41.
Interestingly, the number and overall intensity of TBR1-positive
cells were significantly increased in the brainstem of Galc-KO
mice compared to WT during P3–7 (Fig. 9a–c), suggesting GALC
may be involved in the maturation step of neurons from an
immature stage. The same analysis in Galc-iKO mice showed that
the brainstem of Galc-iKO ≤ P4 had a dramatic increase of TBR1-
positive cell bodies and intensity compared to controls 24-h post
induction (Fig. 9d–f). However, the TBR1 signals in the brainstem
of Galc-iKO ≥ P6 did not show significant change, suggesting
Galc deletion before P4 is critical for the persistent TBR1
expression.

The neuronal marker NeuN begins to be expressed during
early embryogenesis in postmitotic neuroblasts, and remains
expressed in differentiating and terminally differentiated neurons
thereafter42. The overall NeuN-positive cell number was not
different between WT and KO brainstems at P3, 5, and 7
(Supplementary Fig. 5a, b). This may be due to the fact that NeuN
detects both mature neurons and immature postmitotic neurons
during early brain development43,44. We also measured prolifer-
ating neurons by EDU labeling for 24-h prior to analysis. EDU-
positive neurons colocalized with either TBR1 or NeuN were rare
during the period, and were not different between WT and KO
(Supplementary Fig. 5d, f). Since EDU labels cells only during the
S phase of cell cycle, we also measured Ki67 signals which are
expressed during all stages of cell proliferation including the G1,
S, G2, and M phases of cell cycle. The Ki67 labeled cell number
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was also unchanged in Galc-KO (Supplementary Fig. 5e, g),
suggesting proliferation of neurons is not affected by Galc
deficiency postnatally. While the number of neurons in the early
developmental time period was not changed, there was a
significant reduction in neurons of the P40 moribund Galc-KO
brainstem (Supplementary Fig. 5c) presumably caused by
apoptosis (Supplementary Fig. 5h, i), though it is not clear if
this reduction is due to neuron-autonomous or secondary effects
of other cell’s pathogenesis.

Galc deficiency causes reduced brainstem SOX2+Olig2+
OPCs. During the critical period P4–6, GALC is expressed not
only in neurons but also in other cell types, including OL-lineage
cells (Fig. 6d, e). The murine pons, which is a core structure of the
brainstem, quadruples in volume shortly after birth and peaks at
P4, preceding myelination45. During this period, postnatal SOX2
+Olig2+ OL-progenitor cells (OPC) expand 10–18-fold into the
OL-lineage cells that later comprise the >90% of adult pons OLs.
Therefore, in addition to neurons, it is possible that OPCs could
be a key player affecting the development of KD brainstem during
P4–6. To test this hypothesis, we counted OPC numbers in the
brainstem of Galc-KO and WT at P3, P5, and P7 by immunos-
taining with the OL-lineage marker Olig2 and neural stem cell
lineage marker SOX2. Interestingly, both numbers of SOX2
+/Olig2+ and Olig2+ cells were dramatically reduced in the
brainstem of the Galc-KO, compared to WT at all P3, 5, and 7
(Fig. 9g–i and Supplementary Fig. 6), suggesting that GALC has a
specific role in the development of OLs in the postnatal brain-
stem. As before, we analyzed the number of OPCs in the brains of
both Galc-iKO ≤ P4 and Galc-iKO ≥ P6. Interestingly, within 24 h
of tamoxifen injection, SOX2+/Olig2+ and Olig2+ cell numbers

were dramatically reduced in the brainstems of both Galc-iKO ≤
P4 and Galc-iKO ≥ P6 (Fig. 9j–l and Supplementary Fig. 7). These
data suggest that GALC expression is required for the expansion
of the OPC population during brainstem development, but is
independent of the critical period P4-6.

Neuron-specific perinatal Galc influences neuronal differ-
entiation without affecting OPCs. Analysis of Galc-iKO high-
lights the importance of GALC in neurons during the early
brainstem development. To determine if neuron-specific GALC
ablation is sufficient to attenuate the maturation of neurons, we
used pan-neuron-specific Thy1-Cre/ERT2 mice46 to induce
neuron-specific temporal Galc-CKO mice. Although the Thy1-
Cre/ERT2 line is well characterized in the literature, we first
confirmed Cre specificity and efficiency. To test both, tamoxifen
was injected into Thy1-Cre/ERT2;tdTomato starting at P2
tamoxifen at a dose of 25 μg per gram of body weight for four
consecutive days. At P10 and P30, the animals were analyzed for
the specificity of Cre expression and efficiency of Cre-loxP
recombination (Supplementary Fig. 8a). The tdTomato protein is
efficiently expressed in Thy1-positive cells in whole brain,
including cerebellum, brainstem, cerebral cortex, and corpus
callosum (Supplementary Fig. 8b, c). A total of 60–80% of
Thy1 signals colocalized with tdTomato in the brain at both P10
and P30, indicating substantial specific recombination in neurons.
Other cell markers Olig2 (OL), GFAP (astrocytes), and Iba1
(microglia) were minimally co-labeled with tdTomato, suggesting
that Thy1 promoter-driven Cre expression is specific to neurons
(Supplementary Fig. 8d). Next, we analyzed the population of
immature neurons in the brainstem of Thy1-Cre/ERT2-driven
neuron-specific Galc-CKO induced starting at P2. As before, the
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analysis of mice at P60 showed an increase number of TBR1 cells
and signal intensity in the brainstem of neuron-specific condi-
tional mice vs WT (Fig. 10a–c). Similar to Galc-KO (Supple-
mentary Fig. 5a, b), the overall NeuN-positive cell number was
not different between WT and CKO brainstems at P60 (Fig. 10e).
However, the number of Olig2-positive cells in the brainstem was
not changed (Fig. 10d, f). These data suggest that neuronal GALC
affects the maturation of neurons in a cell autonomous manner,
but not the expansion of the OPC population.

We hypothesized that the brainstem psychosine accumulation
secondary to perinatal Galc ablation (Fig. 5f) may correlate with
the perturbation seen in brainstem neuronal differentiation. This
hypothesis is in line with previous studies, which demonstrated
that purified Galc-null granule neurons from twitcher had
elevated psychosine levels8. We therefore used our neuron-
specific inducible system, Thy1-Cre/ERT2-driven Galc-CKO mice
induced at P3, and measured psychosine levels in P60 cerebral
cortex, cerebellum, brainstem, and spinal cord. Interestingly, we
found that psychosine did not accumulate secondary to neuron-
specific Galc ablation (Supplementary Fig. 8e). This suggests that
the observed maturation defect of brainstem neurons, which was
dependent on neuron-specific GALC expression, was not directly
influenced by psychosine accumulation. Furthermore, the accu-
mulation of brainstem psychosine (Fig. 5f), was likely due to non-
neuronal GALC ablation.

Discussion
Temporal requirement for GALC in KD pathogenesis. To
better understand the role of GALC in development, we used a
conditional mutagenic approach and generated a novel mouse
model of KD. We were particularly interested in the role of early
postnatal GALC function, as empirical clinical evidence suggests
that gene and stem cell therapy is more efficacious if delivered in
a poorly defined presymptomatic window47. Our approach was to
methodically induce Galc deletion at various postnatal time-
points, thereby determining key postnatal events impacted by
GALC deficiency. While we expected GALC to be important at a
time period that coincided with myelination, we were surprised to
find that GALC deficiency abruptly accelerated mortality when
ablated before P4 compared to after P6 in C57BL6 mice. The
protective role of perinatal GALC is particularly surprising and
suggestive of a function unrelated to its canonical role in
myelination.

This developmental role for GALC likely correlates with the
observed clinical benefit of early, presymptomatic KD treatment.
For example, presymptomatic infants transplanted before 1-
month old have better outcomes than older presymptomatic
infants47. KD pathogenesis may begin very early in development,
perhaps even prenatally. In fact, Kobayashi et al. observed high
level of psychosine accumulation in human fetal brain and
spinal cord with KD, supporting the idea of prenatal disease
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development48. While the timescale between mice and humans is
considerably different, the sequence of key events in brain
maturation, such as neurogenesis, synaptogenesis, gliogenesis,
and myelination between the two is consistent49. It was estimated
that the mouse CNS at P1–3 corresponds to a gestational age of
23–32 weeks in humans, P7 to 32–36 weeks, and P10 to a term
infant, at least in regards to white matter development50.
Therefore, we anticipate that if our hypothesis on the early
critical period of vulnerability is correct, then in utero treatments
should have better outcomes than conventional postnatal
treatment.

We also explored the possibility that the worsened clinical
phenotype seen in early-induced mice reflected variable postnatal
recombination. We were particularly concerned that the devel-
oping blood–brain barrier (BBB) in early neonatal mice would
cause differences in tamoxifen uptake. Instead, we found

recombination was similar among our variable induction time-
points (Fig. 3). This data fits with the fact that tight junctions
between cerebral endothelial cells (the morphological basis for
BBB impermeability) are functionally effective as soon as the first
blood vessels penetrate the parenchyma of the developing brain51,
and also evidenced by analyzing tamoxifen metabolites in the
postnatal brain26. Nonetheless, it is worth noting that the earliest
induced Galc-iKO mice, occurring on postnatal day P0, still had
significantly longer life spans (~P60) than either Galc-KO or
twitcher (~P45; Fig. 1). This may indicate that the inducible Cre-
loxP system is incomplete, and thereby delays progression of the
KD phenotype52. Alternatively, deletion of Galc prior to birth
may be required to fully recapitulate the global KD phenotype.

Another interesting and unexpected finding of our study was
that residual GALC returned in the late course of the disease
models (Fig. 3h and Supplementary Fig. 2). Our inducible
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Cre-LoxP system is dependent upon tamoxifen exposure for
continued recombination events; thus, it seems plausible that
substantial GALC activities could eventually return after Galc
ablation especially if a non-recombined minority of cells
repopulate over time. Intriguingly, despite the substantial GALC
activity that returned in all Galc-iKO mice, the disease course
remained unaltered and mice continued to deteriorate and
inevitably reached moribundity (Fig. 2b, c). This finding may
correlate with recent gene therapy trials for a number of LSDs, in
which increased enzyme activity was detected at the whole
parenchymal brain level, but unfortunately resulted in minimal
clinical improvements53,54. This suggests that providing sufficient
GALC to specific cell types at an appropriate temporal period is
critical to treat KD.

Cell and region-specific requirement for GALC in brain
development. After elucidating a developmental critical period
that requires GALC, our next task was to discern the cellular,
regional, and functional mechanism by which GALC is protec-
tive. Our work illustrates that GALC is not only required by
myelinating cells, but is also expressed in many other brain cells
as shown in Fig. 6. At the perinatal timepoint, GALC is most
highly expressed in neurons, suggesting a neuron-autonomous
role for GALC in early postnatal development. It is also known
that GALC in neural stem cells maintains a subventricular zone
neurogenic niche during the early postnatal period55. While the
majority of neurons are generated embryonically, many neuronal
populations must mature and differentiate postnatally. For
example, the dentate gyrus (DG) is marked by substantial post-
natal neuronal maturation, with a high number of immature
granule cells (GCs) present during the first 2 weeks of postnatal
life. These GC neurons then progress toward more mature pat-
terns over the next few weeks of DG maturation56. Similarly,

postnatal refinement of neurons of the visual cortex is critical for
the intrinsic properties, and plasticity needed for proper function
and network activity57. Furthermore, most pontine circuits are
postnatally acquired or refined45, which contains nuclei that relay
signals from the forebrain to the cerebellum, along with nuclei
that deal primarily with vital functions58. Therefore, our finding
that GALC influences postnatal neuronal differentiation, while
surprising, is not unprecedented.

We show that brainstem development is dependent on
intrinsic GALC expression by neurons. Specifically, brainstem
neurons lacking GALC had perturbed differentiation and were in
a more immature state. Neurons of this region ultimately had
more axonal atrophy and degeneration, when Galc was deleted
between P4–6. These pathological findings were not equal among
all brain regions and were most pronounced in neurons of the
brainstem. Interestingly, defective neurogenesis of the hindbrain
and midbrain regions was previously noted in a zebrafish model
of KD59. The brainstem was also previously implicated in KD as
the region where pathology first develops60. While the functional
consequence of brainstem dysfunction is difficult to directly
assess, it is known to serve as an important relay between the
forebrain, cerebellum, and other nuclei associated with vital
functions58. In fact, most children who develop KD in infancy die
before the age of 2, often from respiratory failure61 and suspected
autonomic dysfunction. In addition, even presymptomatic KD
infants treated with HSCT continue to develop substantial motor
impairments because of brainstem dysfunction involving corti-
cospinal tract pathology31. Therefore, we suspect that GALC-
dependent brainstem dysfunction may directly influence KD
pathogenesis.

Despite our conclusion that P5 GALC influences brainstem
neuronal differentiation, the molecular mechanism by which this
happens remains unknown. Nonetheless, the argument for
neuronal pathology caused by an autonomous role for neuronal
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GALC is extensive. First and foremost, GALC is expressed by a
diverse population of neurons in WT mice38. Secondly, neuronal
pathology in KD precedes demyelination in both the CNS and
PNS of twitcher, and increases in frequency with disease
progression, ultimately leading to axonal damage and neuronal
apoptosis8,62. In addition, neuronal pathology occurs in twitcher
unable to synthesize galactosylceramide and psychosine, indicat-
ing a possible presence of a non-ceramide galactosyltransferase-
based substrate for GALC in neurons63. Interestingly, this closely
resembles a poorly characterized neuronal brainstem pathology in
aged bone marrow transplanted twitcher63. Purified primary
cultures of twitcher neurons were also able to produce psychosine
directly, and had defects in abnormal neurites and disrupted
axonal transport64. Finally, α-synuclein accumulated in the brains
of twitcher and basal ganglia of Krabbe patients65.

We found that prior to the onset of overt clinical symptoms,
neuronal swellings, varicosities, and transected fibers were already
detectable in Galc-deleted mutants (Figs. 7f–h and 8d–f). These
findings preceded overt neuronal loss, as reductions in neuronal
numbers only occurred shortly before death (Supplementary
Fig. 5). This confirms previous studies, which suggest that axonal
stress and dysfunction precede overt neuronal apoptosis in
twitcher8, a process which is consistent with the pathophysiology
of other neurological disorders66. Since lysosomes are essential for
synaptic biogenesis67, it is conceivable that the degenerative
process may be related to neuronal synaptic function at the axon
terminal. Here, structural and functional defects may begin to
impact synaptic efficiency, thereby causing overt neuronal
toxicity68, apoptosis, and ultimately overall brain
development69,70. We suspect that immature brainstem neurons,
influenced by autonomous GALC deficiency, are more vulnerable
to toxins like psychosine, while also being less able to respond to
local environmental signals, and are eventually eliminated71.

We found that in the brainstem, expression of the immature
neuron-specific transcription factor, TBR1, is developmentally
regulated by GALC during the perinatal period. TBR1 is
gestationally expressed in glutamatergic early-born cortical
neurons41,72. However, beginning postnatally, TBR1 expression
occurs in neurons of the thalamus and specific nuclei of the
hindbrain including but not limited to the locus coeruleus,
cerebellar nuclei, and Purkinje cells72. The role of TBR1 is
therefore speculated to contribute to cellular differentiation as
opposed to regional specification. In particular, it is hypothesized
that the differentiation of radial glia to postmitotic projection
neurons involve the sequential transition from PAX6 to TBR2 to
TBR1 (ref. 73). This sequential development has also been
documented in neurons of the hindbrain, including the deep
cerebellar nuclei74. The role of TBR1-expressing glutamatergic
neurons of the hindbrain have not been fully clarified75. In
addition to neuronal differentiation abnormalities, we observed
that OL-lineage cell expansion was significantly reduced upon
Galc deletion in the brainstem perinatally. Due to the common
origin of neurons and OL-lineage cells, namely neural stem cells,
it seemed conceivable that a dynamic interplay between the
differentiation of OLs and neurons influenced proper brainstem
development. However, our study showed that neuronal GALC
did not influence the expansion of the OPC population during the
critical period P4–6 (Fig. 10), suggesting a neuron-autonomous
role of GALC for neuronal maturation exclusively. In fact,
although myelination of the central nervous system appears
normal in the early postnatal life of the twitcher mouse16, axonal
swellings, and varicosities occur as early as P7 (refs. 8,16). These
early axonal phenotypes, in the absence of demyelination, suggest
a neuron-autonomous effect of GALC deficiency. Also, we cannot
exclude the possibility that GALC may directly regulate the
activation of TBR1 in the progression of neuronal maturation.

In summary, our findings highlight a previously unidentified
critical period in which GALC is required for neuronal brainstem
development. The sudden and abrupt change in the clinical
phenotype of Galc-iKO mice induced before or after P5 suggests a
highly dynamic developmental process related to the function of
GALC. This finding is particularly interesting as P0–10 represents
a presymptomatic timepoint in Galc-KO mice, occurring well
before the majority of myelination in the murine brain. These
findings are surprising, but may correlate with the presympto-
matic therapeutic window seen in treating KD patients. Further
studies are required to elaborate on the specific cellular
mechanisms, which require GALC for brainstem development
and if similar processes occur in other LSDs.

Methods
Generation of a conditional Galc floxed allele mouse. A Galc targeting vector
(Supplementary Fig. 1a) from a BAC clone harboring a mouse Galc gene (bMQ-
165I15, Source Bioscience, UK) was made by using a genetic recombineering
technique (GeneBridges GmbH, Germany). Of the 17 Galc exons, we decided to
flank exon 9 by two loxP sites, because the region from exons 7–10 on the Galc
gene is consistently expressed among all splice variants (Ensembl Genomes).
Furthermore, removal of exon 9 leads to a frame shift mutation in the remaining
protein coding transcript. The targeting vector was then injected into embryonic
stem (ES) cells from 129S6 mice, ultimately yielding 225 surviving clones. PCR
screening of the vector’s short arm junction led to the selection of seven Galc-
targeted positive clones, which were confirmed further by Southern blot (Supple-
mentary Fig. 1b) and DNA sequencing of both arm junctions. Two positive ES cells
were injected into blastocysts, and both cells generated chimeras successfully. One
chimera transgene was germline transmitted (r in Supplementary Fig. 1a), which
was crossed with Del-FLPe mice (JAX#012930)76 to remove the FRT-neomycin-
FRT cassette. The resultant floxed mice (f in Supplementary Fig. 1a) were mated to
constitutive ubiquitous Cre (CMV-Cre; JAX#006054)21 to validate if Galc can be
completely deleted by Cre-loxP recombination (− in Supplementary Fig. 1a), and
generate a null phenotype that would be comparable to twitcher. For genotyping of
Galc floxed mouse, three primers were used; primer-1= 5′-CATCATCCTGTTT
CCACAGG-3′, primer-2= 5′-AATATGTAGGGAGAGAGTGGTC-3′, and pri-
mer-3= 5′-CTATTTTAAGGGAGTTCTGCCAGTG-3′. WT is 266 bp, loxP floxed
is 393 bp, and null allele is 514 bp.

Animals. Experiments were conducted according to the protocols approved by the
Institutional Animal Care and Use Committee of University at Buffalo and Roswell
Park Cancer Institute. The housing condition was a 12-h light/12-h dark cycle at
23 °C with 50% humidity. All animals were maintained on the congenic back-
ground of C57BL/6 N. Breeder C57BL/6 N mice were purchased from Charles
River (Wilmington, MA). CAG-Cre/ERT(JAX#004682), CMV-Cre (JAX#006054),
tdTomato (JAX#007905), Thy1.1-YFP (JAX#003782), and Thy1-Cre/ERT2

(JAX#012708) were purchased from The Jackson laboratory (Bar Harbor, ME). For
Cre/ERT-mediated recombination, a 5 mg/ml tamoxifen (Sigma-Aldrich) solution
was prepared in autoclaved corn oil (Sigma-Aldrich). To achieve efficient Galc
recombination by tamoxifen, multiple pilot experiments were conducted with
varying doses (25–100 μg per gram of body weight) and times (2–5 consecutive
days) of tamoxifen injection. Finally, perinatal CAG-Cre/ERT; Galc floxed mice
were injected intraperitoneally for four consecutive days (total 4×) with 25 µg/gram
body weight, in pups between P0 and P10. This was the maximum achievable
dosage while avoiding tamoxifen-induced gastric toxicity77. It has been reported
that tamoxifen affects glucose/lipid metabolism78 and myelination79, which could
theoretically affect the survival of GALC-deficient mice. To exclude this potential
confounding factor, we treated Galc-KO mice with tamoxifen using the same
paradigm, starting injections at P4. Importantly, tamoxifen did not affect the life
span of Galc-KO mice (40–45 days, n= 3), arguing against the possibility of
confounding tamoxifen toxicity. For proliferation assays, mice were pulsed with
100 µg per gram of body weight of 5-ethynyl-2′-deoxyuridine (Sigma-Aldrich) at
24 h before sacrifice by injection intraperitoneally.

Tissue and immunohistochemistry. Mice at defined ages were anesthetized,
sacrificed, and then perfused with ice-cold phosphate-buffered saline (PBS) fol-
lowed by 4% paraformaldehyde (PFA). Brains and spinal cords were dissected,
postfixed in 4% PFA overnight, dehydrated in 30% sucrose at 4 °C, embedded in
OCT (Leica), and processed as cryosections with a thickness of 20 μm. For
immunohistochemistry, cryosections were permeabilized and blocked in blocking
buffer (0.1% Triton X-100, 20% fetal bovine serum, and 2% bovine serum albumin
in PBS) for 1 h at room temperature, and overlaid with primary antibodies over-
night at 4 °C. Primary antibodies used were GALC80 (1:500 dilution), NeuN (EMD
Millipore; 1:200 dilution), Olig2 (Peprotech; 1:300 dilution), GFAP (Sigma-Aldrich
and Abcam; 1:250 dilution, respectively), Iba1 (Wako; 1:200 dilution), CD68 (Bio-
Rad; 1:200 dilution), CD163 (Bio-Rad; 1:200 dilution), tdTomato (Origene; 1:500
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dilution), SOX2 (R&D systems; 1:300 dilution), TBR1 (Abcam; 1:100 dilution),
cleaved caspase-3 (Cell Signaling Technology; 1:100 dilution), and Ki67 (Invitro-
gen; 1:200 dilution). After washing with PBS, sections were incubated with
fluorophore-conjugated secondary IgGs (Alexa Fluor 488-AffiniPure F(ab′)2
Fragment Donkey anti-Chicken IgY, Alexa Fluor 488-AffiniPure Donkey Anti-Rat
IgG, Cy3-AffiniPure Donkey Anti-Goat IgG (H+ L), Rhodamine-AffiniPure
Donkey Anti-Rat IgG, Rhodamine Red-X-AffiniPure Donkey Anti-Rabbit IgG,
Alexa Fluor 594-AffiniPure Goat anti-Mouse IgG2b, Alexa Fluor 594-AffiniPure
Goat Anti-Mouse IgG-Fc subclass 2a, and Alexa Fluor 647-AffiniPure F(ab′)2
Fragment Donkey Anti-Rabbit IgG, all 1:800 dilution; from Jackson laboratories).
After washing (3× for 5 min) with PBS, coverslips were mounted with Vectashield
(Vector Laboratories) mounting medium and DAPI. For colorimetric cleaved
caspase-3 staining, SignalStain® Boost IHC Detection Reagent (Cell Signaling
Technology) was used with hematoxylin counterstain. Images were acquired and
analyses performed while blinded to genotype. For the quantification of YFP,
CD68/CD163, and Tuj1 levels, area and intensity of fluorescence were quantified
with ImageJ81. Briefly, all the conditions were imaged with identical illumination,
laser power, and gain parameters. The imaging and quantifications were performed
in a blinded manner. The images were thresholded equally to achieve a binary
image, subtracted by the background values obtained from the sections of non-YFP
genotype or without primary antibody incubation, and then normalized to average
of the control condition prior to statistical testing. The values are represented as %
change compared to control.

GALC quantification. Specific cell type expression of GALC was performed by
immunohistochemistry in matched sagittal brain sections. Specific brain regions
were co-stained for GALC, cell-specific markers (NeuN for neurons; GFAP for
astroglia; Olig2 for oligodendroglia; and Iba1 for microglia) and nuclear counter-
staining (DAPI). Images were acquired using Lecia SP5 laser-scanning confocal
microscopic analysis (Lecia Biosystems) with identical illumination, laser power,
and gain parameters. Z-stacks were recorded utilizing sequential confocal images
that were collected at 1 μm intervals covering 25 μm depth. The lowest threshold
for the acquisition of GALC signal was always set by using the comparable Galc-
KO sections. Mean fluorescent intensity was measured from six random, non-
overlapping fields from at minimum three animals per genotype at each age, and
then thresholding applied equally to each image to correct for background with
ImageJ software (NIH). Maximum projection images were segmented using the
autocontext classification with ilastik (v1.4b3)82 for more accurate and unbiased
quantification. The ilastik is a machine learning tool for image segmentation. To
train the machine learning model three images of each region per cell stain were
randomly selected for manual, sparse annotation of the different stains. The
autocontext workflow requires this annotation twice, and uses the output from the
first training as inputs to the second segmentation algorithm, resulting in improved
segmentation of the cell stains from the background image. The segmented images
of cellular regions were processed further with ImageJ to analyze the number and
intensity of the GALC-stained vesicles per cell. Number of cell counts were 40–60
for NeuN, 20–30 for Olig2, 15–25 for GFAP, and 10 for Iba1 per image field.

Transmission electron microscopy. Mice were first anesthetized with 250 mg/kg
body weight avertin, and then perfused with PBS and 2.5% gluta-aldehyde in
phosphate buffer, and incubated in fixative for 1 week. After being postfixed, spinal
cords were dissected and embedded in Epon. Ultrathin sections were cut and
stained with uranyl acetate and lead citrate, and then collected on grids. The
pictures were taken with a Tecnai electron microscope.

Western blot analyses. After homogenizing whole brains in RIPA buffer con-
taining protease inhibitors (Roche) and PMSF, total protein extracts were separated
by SDS–PAGE, transferred to PVDF membrane (Millipore), and blocked with 5%
skim milk or BSA in TBS-Tween20. Primary antibodies used were GAPDH
(Chemicon; 1:5000 dilution), β-tubulin (Novus Biologicals; 1:5000 dilution),
tdTomato (Origene; 1:1000 dilution), TLR2 (R&D systems; 1:100 dilution), HA
(Roche; 1:2000 dilution), and GFAP (Sigma-Aldrich; 1:1000 dilution). Peroxidase-
conjugated secondary antibodies used were Anti-Rabbit IgG (H+ L; Novus Bio-
logicals; 1:2000 dilution), AffiniPure Donkey Anti-Chicken IgY, and AffiniPure
Goat Anti-Rat IgG (all 1:3000 dilution, from Jackson laboratories). Specific protein
bands were quantified by means of ImageJ and Image Studio (LI-COR Biosciences),
and the values (in pixels) obtained were normalized on those of the corresponding
β-tubulin bands. Normalized values were then expressed as the percentage of
values obtained from region-matched bands of control WT tissues.

GALC enzyme assay. GALC activity was determined via competitive inhibition of
β-galactosidase2. Snap-frozen whole brains were homogenized in 10 mM sodium
phosphate buffer, pH 6.0, with 0.1% (v/v) Nonidet NP-40 by using Dounce
homogenizer. A total of 1 μg of total brain lysates were mixed with 4-
methylumbelliferone-β-galactopyranoside (final 1.5 mM) resuspended in 0.1/0.2 M
citrate/phosphate buffer, pH 4.0, and AgNO3 (final 55 µM) at 37 °C for 1 h. The
enzymatic reactions were stopped by adding 0.2 M glycine/NaOH, pH 10.6.
Fluorescence of liberated 4-ethylumbelliferone was measured on a spectro-
fluorometer (λex 360 nm; λem 446 nm).

Northern blot hybridization. Northern blot analyses with 20 μg of total RNAs
from mouse brains were performed with NorthernMax kit (ThermoFisher Scien-
tific)83. The probes were prepared as the [α-32P] dCTP Galc exon fragment excised
from the plasmid that harbors PCR product for exons 5–9 of mouse Galc (540 bp)
and the mouse glyceraldehyde-3-phosphate dehydrogenase (508 bp).

In situ hybridization. Galc in situ hybridization was performed with a slight
modification of the previous method84. Cryosections of brain were incubated with
digoxigenin (DIG)-labeled antisense riboprobes for murine Galc. The probe was
synthesized using T3 RNA polymerase (Promega) and labeled with DIG RNA label
mix (Roche). An anti-DIG antibody conjugated with alkaline phosphatase (Roche)
was used to probe sections, which were stained with 5-bromo-4-cloro-3-indlyl
phosphate/nitro blue tetrazolium (Roche) chromogenic substrates.

Measurement of psychosine. Brain and spinal cord lysates were extracted in
chloroform:methanol and partially purified on a strong cation exchanger column.
After evaporation to dryness, each residue was dissolved in methanol and analyzed
using LC–MS/MS8.

Statistical analyses. Data collection and analysis were performed blind to the
conditions of the experiments. Statistical analyses were performed using GraphPad
Prism, version 8 (GraphPad Software, La Jolla, CA). The number or animals and
cell cultures used for the experiments are indicated in the corresponding figure
legends. Two-tailed unpaired Student’s t test was used for the difference between
two groups, except G-ratio analysis in which Welch’s t test was used due to dif-
ferent sample number. One-way or two-way ANOVA with Bonferroni or Tukey’s
multiple comparisons were used for the differences among multiple groups
depending on the number of variables. Values of p < 0.05 were considered to
represent a significant difference. Data are presented as mean ± SEM or SD.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All other data are available from the corresponding authors upon reasonable request. The
Galc floxed (flox/+) and null (+/−) mouse lines generated in this study will be deposited
to JAX (www.jax.org) to be available to the scientific communitiy. Source data are
provided with this paper.
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